altivec.c revision 1.4 1 /* $NetBSD: altivec.c,v 1.4 2003/06/23 11:01:36 martin Exp $ */
2
3 /*
4 * Copyright (C) 1996 Wolfgang Solfrank.
5 * Copyright (C) 1996 TooLs GmbH.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by TooLs GmbH.
19 * 4. The name of TooLs GmbH may not be used to endorse or promote products
20 * derived from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
27 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
28 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
29 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
30 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
31 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include "opt_multiprocessor.h"
35
36 #include <sys/param.h>
37 #include <sys/proc.h>
38 #include <sys/sa.h>
39 #include <sys/systm.h>
40 #include <sys/user.h>
41 #include <sys/malloc.h>
42 #include <sys/pool.h>
43
44 #include <uvm/uvm_extern.h>
45
46 #include <powerpc/altivec.h>
47 #include <powerpc/spr.h>
48 #include <powerpc/psl.h>
49
50 void
51 enable_vec()
52 {
53 struct cpu_info *ci = curcpu();
54 struct lwp *l = curlwp;
55 struct pcb *pcb = &l->l_addr->u_pcb;
56 struct trapframe *tf = trapframe(l);
57 struct vreg *vr = &pcb->pcb_vr;
58 register_t msr;
59
60 KASSERT(pcb->pcb_veccpu == NULL);
61
62 pcb->pcb_flags |= PCB_ALTIVEC;
63
64 /*
65 * Enable AltiVec temporarily (and disable interrupts).
66 */
67 msr = mfmsr();
68 mtmsr((msr & ~PSL_EE) | PSL_VEC);
69 __asm __volatile ("isync");
70 if (ci->ci_veclwp) {
71 save_vec_cpu();
72 }
73 KASSERT(curcpu()->ci_veclwp == NULL);
74
75 /*
76 * Restore VSCR by first loading it into a vector and then into VSCR.
77 * (this needs to done before loading the user's vector registers
78 * since we need to use a scratch vector register)
79 */
80 __asm __volatile("vxor %2,%2,%2; lvewx %2,%0,%1; mtvscr %2" \
81 :: "b"(vr), "r"(offsetof(struct vreg, vscr)), "n"(0));
82
83 /*
84 * VRSAVE will be restored when trap frame returns
85 */
86 tf->tf_xtra[TF_VRSAVE] = vr->vrsave;
87
88 #define LVX(n,vr) __asm /*__volatile*/("lvx %2,%0,%1" \
89 :: "b"(vr), "r"(offsetof(struct vreg, vreg[n])), "n"(n));
90
91 /*
92 * Load all 32 vector registers
93 */
94 LVX( 0,vr); LVX( 1,vr); LVX( 2,vr); LVX( 3,vr);
95 LVX( 4,vr); LVX( 5,vr); LVX( 6,vr); LVX( 7,vr);
96 LVX( 8,vr); LVX( 9,vr); LVX(10,vr); LVX(11,vr);
97 LVX(12,vr); LVX(13,vr); LVX(14,vr); LVX(15,vr);
98
99 LVX(16,vr); LVX(17,vr); LVX(18,vr); LVX(19,vr);
100 LVX(20,vr); LVX(21,vr); LVX(22,vr); LVX(23,vr);
101 LVX(24,vr); LVX(25,vr); LVX(26,vr); LVX(27,vr);
102 LVX(28,vr); LVX(29,vr); LVX(30,vr); LVX(31,vr);
103 __asm __volatile ("isync");
104
105 /*
106 * Enable AltiVec when we return to user-mode.
107 * Record the new ownership of the AltiVec unit.
108 */
109 tf->srr1 |= PSL_VEC;
110 curcpu()->ci_veclwp = l;
111 pcb->pcb_veccpu = curcpu();
112 __asm __volatile ("sync");
113
114 /*
115 * Restore MSR (turn off AltiVec)
116 */
117 mtmsr(msr);
118 }
119
120 void
121 save_vec_cpu(void)
122 {
123 struct cpu_info *ci = curcpu();
124 struct lwp *l;
125 struct pcb *pcb;
126 struct vreg *vr;
127 struct trapframe *tf;
128 register_t msr;
129
130 /*
131 * Turn on AltiVEC, turn off interrupts.
132 */
133 msr = mfmsr();
134 mtmsr((msr & ~PSL_EE) | PSL_VEC);
135 __asm __volatile ("isync");
136 l = ci->ci_veclwp;
137 if (l == NULL) {
138 goto out;
139 }
140 pcb = &l->l_addr->u_pcb;
141 vr = &pcb->pcb_vr;
142 tf = trapframe(l);
143
144 #define STVX(n,vr) __asm /*__volatile*/("stvx %2,%0,%1" \
145 :: "b"(vr), "r"(offsetof(struct vreg, vreg[n])), "n"(n));
146
147 /*
148 * Save the vector registers.
149 */
150 STVX( 0,vr); STVX( 1,vr); STVX( 2,vr); STVX( 3,vr);
151 STVX( 4,vr); STVX( 5,vr); STVX( 6,vr); STVX( 7,vr);
152 STVX( 8,vr); STVX( 9,vr); STVX(10,vr); STVX(11,vr);
153 STVX(12,vr); STVX(13,vr); STVX(14,vr); STVX(15,vr);
154
155 STVX(16,vr); STVX(17,vr); STVX(18,vr); STVX(19,vr);
156 STVX(20,vr); STVX(21,vr); STVX(22,vr); STVX(23,vr);
157 STVX(24,vr); STVX(25,vr); STVX(26,vr); STVX(27,vr);
158 STVX(28,vr); STVX(29,vr); STVX(30,vr); STVX(31,vr);
159
160 /*
161 * Save VSCR (this needs to be done after save the vector registers
162 * since we need to use one as scratch).
163 */
164 __asm __volatile("mfvscr %2; stvewx %2,%0,%1" \
165 :: "b"(vr), "r"(offsetof(struct vreg, vscr)), "n"(0));
166
167 /*
168 * Save VRSAVE
169 */
170 vr->vrsave = tf->tf_xtra[TF_VRSAVE];
171
172 /*
173 * Note that we aren't using any CPU resources and stop any
174 * data streams.
175 */
176 tf->srr1 &= ~PSL_VEC;
177 pcb->pcb_veccpu = NULL;
178 ci->ci_veclwp = NULL;
179 __asm __volatile ("dssall; sync");
180
181 out:
182
183 /*
184 * Restore MSR (turn off AltiVec)
185 */
186 mtmsr(msr);
187 }
188
189 /*
190 * Save a process's AltiVEC state to its PCB. The state may be in any CPU.
191 * The process must either be curproc or traced by curproc (and stopped).
192 * (The point being that the process must not run on another CPU during
193 * this function).
194 */
195 void
196 save_vec_lwp(l)
197 struct lwp *l;
198 {
199 struct pcb *pcb = &l->l_addr->u_pcb;
200 struct cpu_info *ci = curcpu();
201
202 /*
203 * If it's already in the PCB, there's nothing to do.
204 */
205
206 if (pcb->pcb_veccpu == NULL) {
207 return;
208 }
209
210 /*
211 * If the state is in the current CPU, just flush the current CPU's
212 * state.
213 */
214
215 if (l == ci->ci_veclwp) {
216 save_vec_cpu();
217 return;
218 }
219
220 #ifdef MULTIPROCESSOR
221
222 /*
223 * It must be on another CPU, flush it from there.
224 */
225
226 mp_save_vec_lwp(l);
227 #endif
228 }
229
230 #define ZERO_VEC 19
231
232 void
233 vzeropage(paddr_t pa)
234 {
235 const paddr_t ea = pa + PAGE_SIZE;
236 uint32_t vec[7], *vp = (void *) roundup((uintptr_t) vec, 16);
237 register_t omsr, msr;
238
239 __asm __volatile("mfmsr %0" : "=r"(omsr) :);
240
241 /*
242 * Turn on AltiVec, turn off interrupts.
243 */
244 msr = (omsr & ~PSL_EE) | PSL_VEC;
245 __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
246
247 /*
248 * Save the VEC register we are going to use before we disable
249 * relocation.
250 */
251 __asm("stvx %1,0,%0" :: "r"(vp), "n"(ZERO_VEC));
252 __asm("vxor %0,%0,%0" :: "n"(ZERO_VEC));
253
254 /*
255 * Turn off data relocation (DMMU off).
256 */
257 msr &= ~PSL_DR;
258 __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
259
260 /*
261 * Zero the page using a single cache line.
262 */
263 do {
264 __asm("stvx %2,%0,%1" :: "b"(pa), "r"( 0), "n"(ZERO_VEC));
265 __asm("stvxl %2,%0,%1" :: "b"(pa), "r"(16), "n"(ZERO_VEC));
266 __asm("stvx %2,%0,%1" :: "b"(pa), "r"(32), "n"(ZERO_VEC));
267 __asm("stvxl %2,%0,%1" :: "b"(pa), "r"(48), "n"(ZERO_VEC));
268 pa += 64;
269 } while (pa < ea);
270
271 /*
272 * Restore data relocation (DMMU on);
273 */
274 msr |= PSL_DR;
275 __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
276
277 /*
278 * Restore VEC register (now that we can access the stack again).
279 */
280 __asm("lvx %1,0,%0" :: "r"(vp), "n"(ZERO_VEC));
281
282 /*
283 * Restore old MSR (AltiVec OFF).
284 */
285 __asm __volatile("sync; mtmsr %0; isync" :: "r"(omsr));
286 }
287
288 #define LO_VEC 16
289 #define HI_VEC 17
290
291 void
292 vcopypage(paddr_t dst, paddr_t src)
293 {
294 const paddr_t edst = dst + PAGE_SIZE;
295 uint32_t vec[11], *vp = (void *) roundup((uintptr_t) vec, 16);
296 register_t omsr, msr;
297
298 __asm __volatile("mfmsr %0" : "=r"(omsr) :);
299
300 /*
301 * Turn on AltiVec, turn off interrupts.
302 */
303 msr = (omsr & ~PSL_EE) | PSL_VEC;
304 __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
305
306 /*
307 * Save the VEC registers we will be using before we disable
308 * relocation.
309 */
310 __asm("stvx %2,%1,%0" :: "b"(vp), "r"( 0), "n"(LO_VEC));
311 __asm("stvx %2,%1,%0" :: "b"(vp), "r"(16), "n"(HI_VEC));
312
313 /*
314 * Turn off data relocation (DMMU off).
315 */
316 msr &= ~PSL_DR;
317 __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
318
319 /*
320 * Copy the page using a single cache line. On most PPCs, two
321 * vector registers occupy one cache line.
322 */
323 do {
324 __asm("lvx %2,%0,%1" :: "b"(src), "r"( 0), "n"(LO_VEC));
325 __asm("stvx %2,%0,%1" :: "b"(dst), "r"( 0), "n"(LO_VEC));
326 __asm("lvxl %2,%0,%1" :: "b"(src), "r"(16), "n"(HI_VEC));
327 __asm("stvxl %2,%0,%1" :: "b"(dst), "r"(16), "n"(HI_VEC));
328 src += 32;
329 dst += 32;
330 } while (dst < edst);
331
332 /*
333 * Restore data relocation (DMMU on);
334 */
335 msr |= PSL_DR;
336 __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
337
338 /*
339 * Restore VEC registers (now that we can access the stack again).
340 */
341 __asm("lvx %2,%1,%0" :: "b"(vp), "r"( 0), "n"(LO_VEC));
342 __asm("lvx %2,%1,%0" :: "b"(vp), "r"(16), "n"(HI_VEC));
343
344 /*
345 * Restore old MSR (AltiVec OFF).
346 */
347 __asm __volatile("sync; mtmsr %0; isync" :: "r"(omsr));
348 }
349