altivec.c revision 1.5 1 /* $NetBSD: altivec.c,v 1.5 2003/07/15 02:54:45 lukem Exp $ */
2
3 /*
4 * Copyright (C) 1996 Wolfgang Solfrank.
5 * Copyright (C) 1996 TooLs GmbH.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by TooLs GmbH.
19 * 4. The name of TooLs GmbH may not be used to endorse or promote products
20 * derived from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
27 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
28 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
29 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
30 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
31 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: altivec.c,v 1.5 2003/07/15 02:54:45 lukem Exp $");
36
37 #include "opt_multiprocessor.h"
38
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/sa.h>
42 #include <sys/systm.h>
43 #include <sys/user.h>
44 #include <sys/malloc.h>
45 #include <sys/pool.h>
46
47 #include <uvm/uvm_extern.h>
48
49 #include <powerpc/altivec.h>
50 #include <powerpc/spr.h>
51 #include <powerpc/psl.h>
52
53 void
54 enable_vec()
55 {
56 struct cpu_info *ci = curcpu();
57 struct lwp *l = curlwp;
58 struct pcb *pcb = &l->l_addr->u_pcb;
59 struct trapframe *tf = trapframe(l);
60 struct vreg *vr = &pcb->pcb_vr;
61 register_t msr;
62
63 KASSERT(pcb->pcb_veccpu == NULL);
64
65 pcb->pcb_flags |= PCB_ALTIVEC;
66
67 /*
68 * Enable AltiVec temporarily (and disable interrupts).
69 */
70 msr = mfmsr();
71 mtmsr((msr & ~PSL_EE) | PSL_VEC);
72 __asm __volatile ("isync");
73 if (ci->ci_veclwp) {
74 save_vec_cpu();
75 }
76 KASSERT(curcpu()->ci_veclwp == NULL);
77
78 /*
79 * Restore VSCR by first loading it into a vector and then into VSCR.
80 * (this needs to done before loading the user's vector registers
81 * since we need to use a scratch vector register)
82 */
83 __asm __volatile("vxor %2,%2,%2; lvewx %2,%0,%1; mtvscr %2" \
84 :: "b"(vr), "r"(offsetof(struct vreg, vscr)), "n"(0));
85
86 /*
87 * VRSAVE will be restored when trap frame returns
88 */
89 tf->tf_xtra[TF_VRSAVE] = vr->vrsave;
90
91 #define LVX(n,vr) __asm /*__volatile*/("lvx %2,%0,%1" \
92 :: "b"(vr), "r"(offsetof(struct vreg, vreg[n])), "n"(n));
93
94 /*
95 * Load all 32 vector registers
96 */
97 LVX( 0,vr); LVX( 1,vr); LVX( 2,vr); LVX( 3,vr);
98 LVX( 4,vr); LVX( 5,vr); LVX( 6,vr); LVX( 7,vr);
99 LVX( 8,vr); LVX( 9,vr); LVX(10,vr); LVX(11,vr);
100 LVX(12,vr); LVX(13,vr); LVX(14,vr); LVX(15,vr);
101
102 LVX(16,vr); LVX(17,vr); LVX(18,vr); LVX(19,vr);
103 LVX(20,vr); LVX(21,vr); LVX(22,vr); LVX(23,vr);
104 LVX(24,vr); LVX(25,vr); LVX(26,vr); LVX(27,vr);
105 LVX(28,vr); LVX(29,vr); LVX(30,vr); LVX(31,vr);
106 __asm __volatile ("isync");
107
108 /*
109 * Enable AltiVec when we return to user-mode.
110 * Record the new ownership of the AltiVec unit.
111 */
112 tf->srr1 |= PSL_VEC;
113 curcpu()->ci_veclwp = l;
114 pcb->pcb_veccpu = curcpu();
115 __asm __volatile ("sync");
116
117 /*
118 * Restore MSR (turn off AltiVec)
119 */
120 mtmsr(msr);
121 }
122
123 void
124 save_vec_cpu(void)
125 {
126 struct cpu_info *ci = curcpu();
127 struct lwp *l;
128 struct pcb *pcb;
129 struct vreg *vr;
130 struct trapframe *tf;
131 register_t msr;
132
133 /*
134 * Turn on AltiVEC, turn off interrupts.
135 */
136 msr = mfmsr();
137 mtmsr((msr & ~PSL_EE) | PSL_VEC);
138 __asm __volatile ("isync");
139 l = ci->ci_veclwp;
140 if (l == NULL) {
141 goto out;
142 }
143 pcb = &l->l_addr->u_pcb;
144 vr = &pcb->pcb_vr;
145 tf = trapframe(l);
146
147 #define STVX(n,vr) __asm /*__volatile*/("stvx %2,%0,%1" \
148 :: "b"(vr), "r"(offsetof(struct vreg, vreg[n])), "n"(n));
149
150 /*
151 * Save the vector registers.
152 */
153 STVX( 0,vr); STVX( 1,vr); STVX( 2,vr); STVX( 3,vr);
154 STVX( 4,vr); STVX( 5,vr); STVX( 6,vr); STVX( 7,vr);
155 STVX( 8,vr); STVX( 9,vr); STVX(10,vr); STVX(11,vr);
156 STVX(12,vr); STVX(13,vr); STVX(14,vr); STVX(15,vr);
157
158 STVX(16,vr); STVX(17,vr); STVX(18,vr); STVX(19,vr);
159 STVX(20,vr); STVX(21,vr); STVX(22,vr); STVX(23,vr);
160 STVX(24,vr); STVX(25,vr); STVX(26,vr); STVX(27,vr);
161 STVX(28,vr); STVX(29,vr); STVX(30,vr); STVX(31,vr);
162
163 /*
164 * Save VSCR (this needs to be done after save the vector registers
165 * since we need to use one as scratch).
166 */
167 __asm __volatile("mfvscr %2; stvewx %2,%0,%1" \
168 :: "b"(vr), "r"(offsetof(struct vreg, vscr)), "n"(0));
169
170 /*
171 * Save VRSAVE
172 */
173 vr->vrsave = tf->tf_xtra[TF_VRSAVE];
174
175 /*
176 * Note that we aren't using any CPU resources and stop any
177 * data streams.
178 */
179 tf->srr1 &= ~PSL_VEC;
180 pcb->pcb_veccpu = NULL;
181 ci->ci_veclwp = NULL;
182 __asm __volatile ("dssall; sync");
183
184 out:
185
186 /*
187 * Restore MSR (turn off AltiVec)
188 */
189 mtmsr(msr);
190 }
191
192 /*
193 * Save a process's AltiVEC state to its PCB. The state may be in any CPU.
194 * The process must either be curproc or traced by curproc (and stopped).
195 * (The point being that the process must not run on another CPU during
196 * this function).
197 */
198 void
199 save_vec_lwp(l)
200 struct lwp *l;
201 {
202 struct pcb *pcb = &l->l_addr->u_pcb;
203 struct cpu_info *ci = curcpu();
204
205 /*
206 * If it's already in the PCB, there's nothing to do.
207 */
208
209 if (pcb->pcb_veccpu == NULL) {
210 return;
211 }
212
213 /*
214 * If the state is in the current CPU, just flush the current CPU's
215 * state.
216 */
217
218 if (l == ci->ci_veclwp) {
219 save_vec_cpu();
220 return;
221 }
222
223 #ifdef MULTIPROCESSOR
224
225 /*
226 * It must be on another CPU, flush it from there.
227 */
228
229 mp_save_vec_lwp(l);
230 #endif
231 }
232
233 #define ZERO_VEC 19
234
235 void
236 vzeropage(paddr_t pa)
237 {
238 const paddr_t ea = pa + PAGE_SIZE;
239 uint32_t vec[7], *vp = (void *) roundup((uintptr_t) vec, 16);
240 register_t omsr, msr;
241
242 __asm __volatile("mfmsr %0" : "=r"(omsr) :);
243
244 /*
245 * Turn on AltiVec, turn off interrupts.
246 */
247 msr = (omsr & ~PSL_EE) | PSL_VEC;
248 __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
249
250 /*
251 * Save the VEC register we are going to use before we disable
252 * relocation.
253 */
254 __asm("stvx %1,0,%0" :: "r"(vp), "n"(ZERO_VEC));
255 __asm("vxor %0,%0,%0" :: "n"(ZERO_VEC));
256
257 /*
258 * Turn off data relocation (DMMU off).
259 */
260 msr &= ~PSL_DR;
261 __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
262
263 /*
264 * Zero the page using a single cache line.
265 */
266 do {
267 __asm("stvx %2,%0,%1" :: "b"(pa), "r"( 0), "n"(ZERO_VEC));
268 __asm("stvxl %2,%0,%1" :: "b"(pa), "r"(16), "n"(ZERO_VEC));
269 __asm("stvx %2,%0,%1" :: "b"(pa), "r"(32), "n"(ZERO_VEC));
270 __asm("stvxl %2,%0,%1" :: "b"(pa), "r"(48), "n"(ZERO_VEC));
271 pa += 64;
272 } while (pa < ea);
273
274 /*
275 * Restore data relocation (DMMU on);
276 */
277 msr |= PSL_DR;
278 __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
279
280 /*
281 * Restore VEC register (now that we can access the stack again).
282 */
283 __asm("lvx %1,0,%0" :: "r"(vp), "n"(ZERO_VEC));
284
285 /*
286 * Restore old MSR (AltiVec OFF).
287 */
288 __asm __volatile("sync; mtmsr %0; isync" :: "r"(omsr));
289 }
290
291 #define LO_VEC 16
292 #define HI_VEC 17
293
294 void
295 vcopypage(paddr_t dst, paddr_t src)
296 {
297 const paddr_t edst = dst + PAGE_SIZE;
298 uint32_t vec[11], *vp = (void *) roundup((uintptr_t) vec, 16);
299 register_t omsr, msr;
300
301 __asm __volatile("mfmsr %0" : "=r"(omsr) :);
302
303 /*
304 * Turn on AltiVec, turn off interrupts.
305 */
306 msr = (omsr & ~PSL_EE) | PSL_VEC;
307 __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
308
309 /*
310 * Save the VEC registers we will be using before we disable
311 * relocation.
312 */
313 __asm("stvx %2,%1,%0" :: "b"(vp), "r"( 0), "n"(LO_VEC));
314 __asm("stvx %2,%1,%0" :: "b"(vp), "r"(16), "n"(HI_VEC));
315
316 /*
317 * Turn off data relocation (DMMU off).
318 */
319 msr &= ~PSL_DR;
320 __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
321
322 /*
323 * Copy the page using a single cache line. On most PPCs, two
324 * vector registers occupy one cache line.
325 */
326 do {
327 __asm("lvx %2,%0,%1" :: "b"(src), "r"( 0), "n"(LO_VEC));
328 __asm("stvx %2,%0,%1" :: "b"(dst), "r"( 0), "n"(LO_VEC));
329 __asm("lvxl %2,%0,%1" :: "b"(src), "r"(16), "n"(HI_VEC));
330 __asm("stvxl %2,%0,%1" :: "b"(dst), "r"(16), "n"(HI_VEC));
331 src += 32;
332 dst += 32;
333 } while (dst < edst);
334
335 /*
336 * Restore data relocation (DMMU on);
337 */
338 msr |= PSL_DR;
339 __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
340
341 /*
342 * Restore VEC registers (now that we can access the stack again).
343 */
344 __asm("lvx %2,%1,%0" :: "b"(vp), "r"( 0), "n"(LO_VEC));
345 __asm("lvx %2,%1,%0" :: "b"(vp), "r"(16), "n"(HI_VEC));
346
347 /*
348 * Restore old MSR (AltiVec OFF).
349 */
350 __asm __volatile("sync; mtmsr %0; isync" :: "r"(omsr));
351 }
352