cpu_subr.c revision 1.11 1 1.11 matt /* $NetBSD: cpu_subr.c,v 1.11 2003/10/09 20:49:06 matt Exp $ */
2 1.1 matt
3 1.1 matt /*-
4 1.1 matt * Copyright (c) 2001 Matt Thomas.
5 1.1 matt * Copyright (c) 2001 Tsubai Masanari.
6 1.1 matt * Copyright (c) 1998, 1999, 2001 Internet Research Institute, Inc.
7 1.1 matt * All rights reserved.
8 1.1 matt *
9 1.1 matt * Redistribution and use in source and binary forms, with or without
10 1.1 matt * modification, are permitted provided that the following conditions
11 1.1 matt * are met:
12 1.1 matt * 1. Redistributions of source code must retain the above copyright
13 1.1 matt * notice, this list of conditions and the following disclaimer.
14 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 matt * notice, this list of conditions and the following disclaimer in the
16 1.1 matt * documentation and/or other materials provided with the distribution.
17 1.1 matt * 3. All advertising materials mentioning features or use of this software
18 1.1 matt * must display the following acknowledgement:
19 1.1 matt * This product includes software developed by
20 1.1 matt * Internet Research Institute, Inc.
21 1.1 matt * 4. The name of the author may not be used to endorse or promote products
22 1.1 matt * derived from this software without specific prior written permission.
23 1.1 matt *
24 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25 1.1 matt * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26 1.1 matt * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27 1.1 matt * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
28 1.1 matt * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
29 1.1 matt * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30 1.1 matt * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31 1.1 matt * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32 1.1 matt * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33 1.1 matt * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 1.1 matt */
35 1.9 lukem
36 1.9 lukem #include <sys/cdefs.h>
37 1.11 matt __KERNEL_RCSID(0, "$NetBSD: cpu_subr.c,v 1.11 2003/10/09 20:49:06 matt Exp $");
38 1.1 matt
39 1.1 matt #include "opt_ppcparam.h"
40 1.1 matt #include "opt_multiprocessor.h"
41 1.1 matt #include "opt_altivec.h"
42 1.1 matt #include "sysmon_envsys.h"
43 1.1 matt
44 1.1 matt #include <sys/param.h>
45 1.1 matt #include <sys/systm.h>
46 1.1 matt #include <sys/device.h>
47 1.1 matt
48 1.1 matt #include <uvm/uvm_extern.h>
49 1.1 matt
50 1.1 matt #include <powerpc/oea/hid.h>
51 1.1 matt #include <powerpc/oea/hid_601.h>
52 1.1 matt #include <powerpc/spr.h>
53 1.1 matt
54 1.1 matt #include <dev/sysmon/sysmonvar.h>
55 1.1 matt
56 1.7 matt static void cpu_enable_l2cr(register_t);
57 1.7 matt static void cpu_enable_l3cr(register_t);
58 1.1 matt static void cpu_config_l2cr(int);
59 1.7 matt static void cpu_config_l3cr(int);
60 1.1 matt static void cpu_print_speed(void);
61 1.1 matt #if NSYSMON_ENVSYS > 0
62 1.1 matt static void cpu_tau_setup(struct cpu_info *);
63 1.1 matt static int cpu_tau_gtredata __P((struct sysmon_envsys *,
64 1.1 matt struct envsys_tre_data *));
65 1.1 matt static int cpu_tau_streinfo __P((struct sysmon_envsys *,
66 1.1 matt struct envsys_basic_info *));
67 1.1 matt #endif
68 1.1 matt
69 1.1 matt int cpu;
70 1.1 matt int ncpus;
71 1.1 matt
72 1.7 matt struct fmttab {
73 1.7 matt register_t fmt_mask;
74 1.7 matt register_t fmt_value;
75 1.7 matt const char *fmt_string;
76 1.7 matt };
77 1.7 matt
78 1.7 matt static const struct fmttab cpu_7450_l2cr_formats[] = {
79 1.7 matt { L2CR_L2E, 0, " disabled" },
80 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
81 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
82 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
83 1.7 matt { L2CR_L2E, ~0, " 256KB L2 cache" },
84 1.7 matt { 0 }
85 1.7 matt };
86 1.7 matt
87 1.11 matt static const struct fmttab cpu_7457_l2cr_formats[] = {
88 1.11 matt { L2CR_L2E, 0, " disabled" },
89 1.11 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
90 1.11 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
91 1.11 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
92 1.11 matt { L2CR_L2E, ~0, " 512KB L2 cache" },
93 1.11 matt { 0 }
94 1.11 matt };
95 1.11 matt
96 1.7 matt static const struct fmttab cpu_7450_l3cr_formats[] = {
97 1.7 matt { L3CR_L3DO|L3CR_L3IO, L3CR_L3DO, " data-only" },
98 1.7 matt { L3CR_L3DO|L3CR_L3IO, L3CR_L3IO, " instruction-only" },
99 1.7 matt { L3CR_L3DO|L3CR_L3IO, L3CR_L3DO|L3CR_L3IO, " locked" },
100 1.7 matt { L3CR_L3SIZ, L3SIZ_2M, " 2MB" },
101 1.7 matt { L3CR_L3SIZ, L3SIZ_1M, " 1MB" },
102 1.7 matt { L3CR_L3PE|L3CR_L3APE, L3CR_L3PE|L3CR_L3APE, " parity" },
103 1.7 matt { L3CR_L3PE|L3CR_L3APE, L3CR_L3PE, " data-parity" },
104 1.7 matt { L3CR_L3PE|L3CR_L3APE, L3CR_L3APE, " address-parity" },
105 1.7 matt { L3CR_L3PE|L3CR_L3APE, 0, " no-parity" },
106 1.7 matt { L3CR_L3SIZ, ~0, " L3 cache" },
107 1.7 matt { L3CR_L3RT, L3RT_MSUG2_DDR, " (DDR SRAM)" },
108 1.7 matt { L3CR_L3RT, L3RT_PIPELINE_LATE, " (LW SRAM)" },
109 1.7 matt { L3CR_L3RT, L3RT_PB2_SRAM, " (PB2 SRAM)" },
110 1.7 matt { L3CR_L3CLK, ~0, " at" },
111 1.7 matt { L3CR_L3CLK, L3CLK_20, " 2:1" },
112 1.7 matt { L3CR_L3CLK, L3CLK_25, " 2.5:1" },
113 1.7 matt { L3CR_L3CLK, L3CLK_30, " 3:1" },
114 1.7 matt { L3CR_L3CLK, L3CLK_35, " 3.5:1" },
115 1.7 matt { L3CR_L3CLK, L3CLK_40, " 4:1" },
116 1.7 matt { L3CR_L3CLK, L3CLK_50, " 5:1" },
117 1.7 matt { L3CR_L3CLK, L3CLK_60, " 6:1" },
118 1.7 matt { L3CR_L3CLK, ~0, " ratio" },
119 1.7 matt { 0, 0 },
120 1.7 matt };
121 1.7 matt
122 1.7 matt static const struct fmttab cpu_ibm750_l2cr_formats[] = {
123 1.7 matt { L2CR_L2E, 0, " disabled" },
124 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
125 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
126 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
127 1.7 matt { 0, ~0, " 512KB" },
128 1.7 matt { L2CR_L2WT, L2CR_L2WT, " WT" },
129 1.7 matt { L2CR_L2WT, 0, " WB" },
130 1.7 matt { L2CR_L2PE, L2CR_L2PE, " with ECC" },
131 1.7 matt { 0, ~0, " L2 cache" },
132 1.7 matt { 0 }
133 1.7 matt };
134 1.7 matt
135 1.7 matt static const struct fmttab cpu_l2cr_formats[] = {
136 1.7 matt { L2CR_L2E, 0, " disabled" },
137 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
138 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
139 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
140 1.7 matt { L2CR_L2PE, L2CR_L2PE, " parity" },
141 1.7 matt { L2CR_L2PE, 0, " no-parity" },
142 1.7 matt { L2CR_L2SIZ, L2SIZ_2M, " 2MB" },
143 1.7 matt { L2CR_L2SIZ, L2SIZ_1M, " 1MB" },
144 1.7 matt { L2CR_L2SIZ, L2SIZ_512K, " 512KB" },
145 1.7 matt { L2CR_L2SIZ, L2SIZ_256K, " 256KB" },
146 1.7 matt { L2CR_L2WT, L2CR_L2WT, " WT" },
147 1.7 matt { L2CR_L2WT, 0, " WB" },
148 1.7 matt { L2CR_L2E, ~0, " L2 cache" },
149 1.7 matt { L2CR_L2RAM, L2RAM_FLOWTHRU_BURST, " (FB SRAM)" },
150 1.7 matt { L2CR_L2RAM, L2RAM_PIPELINE_LATE, " (LW SRAM)" },
151 1.7 matt { L2CR_L2RAM, L2RAM_PIPELINE_BURST, " (PB SRAM)" },
152 1.7 matt { L2CR_L2CLK, ~0, " at" },
153 1.7 matt { L2CR_L2CLK, L2CLK_10, " 1:1" },
154 1.7 matt { L2CR_L2CLK, L2CLK_15, " 1.5:1" },
155 1.7 matt { L2CR_L2CLK, L2CLK_20, " 2:1" },
156 1.7 matt { L2CR_L2CLK, L2CLK_25, " 2.5:1" },
157 1.7 matt { L2CR_L2CLK, L2CLK_30, " 3:1" },
158 1.7 matt { L2CR_L2CLK, L2CLK_35, " 3.5:1" },
159 1.7 matt { L2CR_L2CLK, L2CLK_40, " 4:1" },
160 1.7 matt { L2CR_L2CLK, ~0, " ratio" },
161 1.7 matt { 0 }
162 1.7 matt };
163 1.7 matt
164 1.7 matt static void cpu_fmttab_print(const struct fmttab *, register_t);
165 1.7 matt
166 1.7 matt struct cputab {
167 1.7 matt const char name[8];
168 1.7 matt uint16_t version;
169 1.7 matt uint16_t revfmt;
170 1.7 matt };
171 1.7 matt #define REVFMT_MAJMIN 1 /* %u.%u */
172 1.7 matt #define REVFMT_HEX 2 /* 0x%04x */
173 1.7 matt #define REVFMT_DEC 3 /* %u */
174 1.7 matt static const struct cputab models[] = {
175 1.7 matt { "601", MPC601, REVFMT_DEC },
176 1.7 matt { "602", MPC602, REVFMT_DEC },
177 1.7 matt { "603", MPC603, REVFMT_MAJMIN },
178 1.7 matt { "603e", MPC603e, REVFMT_MAJMIN },
179 1.7 matt { "603ev", MPC603ev, REVFMT_MAJMIN },
180 1.7 matt { "604", MPC604, REVFMT_MAJMIN },
181 1.7 matt { "604ev", MPC604ev, REVFMT_MAJMIN },
182 1.7 matt { "620", MPC620, REVFMT_HEX },
183 1.7 matt { "750", MPC750, REVFMT_MAJMIN },
184 1.7 matt { "750FX", IBM750FX, REVFMT_MAJMIN },
185 1.7 matt { "7400", MPC7400, REVFMT_MAJMIN },
186 1.7 matt { "7410", MPC7410, REVFMT_MAJMIN },
187 1.7 matt { "7450", MPC7450, REVFMT_MAJMIN },
188 1.7 matt { "7455", MPC7455, REVFMT_MAJMIN },
189 1.11 matt { "7457", MPC7457, REVFMT_MAJMIN },
190 1.7 matt { "8240", MPC8240, REVFMT_MAJMIN },
191 1.7 matt { "", 0, REVFMT_HEX }
192 1.7 matt };
193 1.7 matt
194 1.7 matt
195 1.1 matt #ifdef MULTIPROCESSOR
196 1.1 matt struct cpu_info cpu_info[CPU_MAXNUM];
197 1.1 matt #else
198 1.1 matt struct cpu_info cpu_info[1];
199 1.1 matt #endif
200 1.1 matt
201 1.1 matt int cpu_altivec;
202 1.1 matt char cpu_model[80];
203 1.1 matt
204 1.1 matt void
205 1.7 matt cpu_fmttab_print(const struct fmttab *fmt, register_t data)
206 1.7 matt {
207 1.7 matt for (; fmt->fmt_mask != 0 || fmt->fmt_value != 0; fmt++) {
208 1.7 matt if ((~fmt->fmt_mask & fmt->fmt_value) != 0 ||
209 1.7 matt (data & fmt->fmt_mask) == fmt->fmt_value)
210 1.7 matt aprint_normal("%s", fmt->fmt_string);
211 1.7 matt }
212 1.7 matt }
213 1.7 matt
214 1.7 matt void
215 1.1 matt cpu_probe_cache(void)
216 1.1 matt {
217 1.1 matt u_int assoc, pvr, vers;
218 1.1 matt
219 1.1 matt pvr = mfpvr();
220 1.1 matt vers = pvr >> 16;
221 1.1 matt
222 1.1 matt switch (vers) {
223 1.1 matt #define K *1024
224 1.1 matt case IBM750FX:
225 1.1 matt case MPC601:
226 1.1 matt case MPC750:
227 1.1 matt case MPC7450:
228 1.1 matt case MPC7455:
229 1.11 matt case MPC7457:
230 1.1 matt curcpu()->ci_ci.dcache_size = 32 K;
231 1.1 matt curcpu()->ci_ci.icache_size = 32 K;
232 1.1 matt assoc = 8;
233 1.1 matt break;
234 1.1 matt case MPC603:
235 1.1 matt curcpu()->ci_ci.dcache_size = 8 K;
236 1.1 matt curcpu()->ci_ci.icache_size = 8 K;
237 1.1 matt assoc = 2;
238 1.1 matt break;
239 1.1 matt case MPC603e:
240 1.1 matt case MPC603ev:
241 1.1 matt case MPC604:
242 1.1 matt case MPC8240:
243 1.1 matt case MPC8245:
244 1.1 matt curcpu()->ci_ci.dcache_size = 16 K;
245 1.1 matt curcpu()->ci_ci.icache_size = 16 K;
246 1.1 matt assoc = 4;
247 1.1 matt break;
248 1.1 matt case MPC604ev:
249 1.1 matt curcpu()->ci_ci.dcache_size = 32 K;
250 1.1 matt curcpu()->ci_ci.icache_size = 32 K;
251 1.1 matt assoc = 4;
252 1.1 matt break;
253 1.1 matt default:
254 1.6 thorpej curcpu()->ci_ci.dcache_size = PAGE_SIZE;
255 1.6 thorpej curcpu()->ci_ci.icache_size = PAGE_SIZE;
256 1.1 matt assoc = 1;
257 1.1 matt #undef K
258 1.1 matt }
259 1.1 matt
260 1.1 matt /* Presently common across all implementations. */
261 1.1 matt curcpu()->ci_ci.dcache_line_size = CACHELINESIZE;
262 1.1 matt curcpu()->ci_ci.icache_line_size = CACHELINESIZE;
263 1.1 matt
264 1.1 matt /*
265 1.1 matt * Possibly recolor.
266 1.1 matt */
267 1.1 matt uvm_page_recolor(atop(curcpu()->ci_ci.dcache_size / assoc));
268 1.1 matt }
269 1.1 matt
270 1.1 matt struct cpu_info *
271 1.1 matt cpu_attach_common(struct device *self, int id)
272 1.1 matt {
273 1.1 matt struct cpu_info *ci;
274 1.1 matt u_int pvr, vers;
275 1.1 matt
276 1.1 matt ncpus++;
277 1.1 matt ci = &cpu_info[id];
278 1.1 matt #ifndef MULTIPROCESSOR
279 1.1 matt /*
280 1.1 matt * If this isn't the primary CPU, print an error message
281 1.1 matt * and just bail out.
282 1.1 matt */
283 1.1 matt if (id != 0) {
284 1.3 matt aprint_normal(": ID %d\n", id);
285 1.3 matt aprint_normal("%s: processor off-line; multiprocessor support "
286 1.1 matt "not present in kernel\n", self->dv_xname);
287 1.1 matt return (NULL);
288 1.1 matt }
289 1.1 matt #endif
290 1.1 matt
291 1.1 matt ci->ci_cpuid = id;
292 1.1 matt ci->ci_intrdepth = -1;
293 1.1 matt ci->ci_dev = self;
294 1.1 matt
295 1.1 matt pvr = mfpvr();
296 1.1 matt vers = (pvr >> 16) & 0xffff;
297 1.1 matt
298 1.1 matt switch (id) {
299 1.1 matt case 0:
300 1.1 matt /* load my cpu_number to PIR */
301 1.1 matt switch (vers) {
302 1.1 matt case MPC601:
303 1.1 matt case MPC604:
304 1.1 matt case MPC604ev:
305 1.1 matt case MPC7400:
306 1.1 matt case MPC7410:
307 1.1 matt case MPC7450:
308 1.1 matt case MPC7455:
309 1.11 matt case MPC7457:
310 1.1 matt mtspr(SPR_PIR, id);
311 1.1 matt }
312 1.1 matt cpu_setup(self, ci);
313 1.1 matt break;
314 1.1 matt default:
315 1.1 matt if (id >= CPU_MAXNUM) {
316 1.3 matt aprint_normal(": more than %d cpus?\n", CPU_MAXNUM);
317 1.1 matt panic("cpuattach");
318 1.1 matt }
319 1.1 matt #ifndef MULTIPROCESSOR
320 1.3 matt aprint_normal(" not configured\n");
321 1.1 matt return NULL;
322 1.1 matt #endif
323 1.1 matt }
324 1.1 matt return (ci);
325 1.1 matt }
326 1.1 matt
327 1.1 matt void
328 1.1 matt cpu_setup(self, ci)
329 1.1 matt struct device *self;
330 1.1 matt struct cpu_info *ci;
331 1.1 matt {
332 1.1 matt u_int hid0, pvr, vers;
333 1.1 matt char *bitmask, hidbuf[128];
334 1.1 matt char model[80];
335 1.1 matt
336 1.1 matt pvr = mfpvr();
337 1.1 matt vers = (pvr >> 16) & 0xffff;
338 1.1 matt
339 1.1 matt cpu_identify(model, sizeof(model));
340 1.3 matt aprint_normal(": %s, ID %d%s\n", model, cpu_number(),
341 1.1 matt cpu_number() == 0 ? " (primary)" : "");
342 1.1 matt
343 1.1 matt hid0 = mfspr(SPR_HID0);
344 1.1 matt cpu_probe_cache();
345 1.1 matt
346 1.1 matt /*
347 1.1 matt * Configure power-saving mode.
348 1.1 matt */
349 1.1 matt switch (vers) {
350 1.1 matt case MPC603:
351 1.1 matt case MPC603e:
352 1.1 matt case MPC603ev:
353 1.1 matt case MPC604ev:
354 1.1 matt case MPC750:
355 1.1 matt case IBM750FX:
356 1.1 matt case MPC7400:
357 1.1 matt case MPC7410:
358 1.1 matt case MPC8240:
359 1.1 matt case MPC8245:
360 1.1 matt /* Select DOZE mode. */
361 1.1 matt hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
362 1.1 matt hid0 |= HID0_DOZE | HID0_DPM;
363 1.1 matt powersave = 1;
364 1.1 matt break;
365 1.1 matt
366 1.11 matt case MPC7457:
367 1.1 matt case MPC7455:
368 1.1 matt case MPC7450:
369 1.5 matt /* Enable the 7450 branch caches */
370 1.5 matt hid0 |= HID0_SGE | HID0_BTIC;
371 1.5 matt hid0 |= HID0_LRSTK | HID0_FOLD | HID0_BHT;
372 1.1 matt /* Disable BTIC on 7450 Rev 2.0 or earlier */
373 1.5 matt if (vers == MPC7450 && (pvr & 0xFFFF) <= 0x0200)
374 1.1 matt hid0 &= ~HID0_BTIC;
375 1.1 matt /* Select NAP mode. */
376 1.1 matt hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
377 1.1 matt hid0 |= HID0_NAP | HID0_DPM;
378 1.1 matt powersave = 0; /* but don't use it */
379 1.1 matt break;
380 1.1 matt
381 1.1 matt default:
382 1.1 matt /* No power-saving mode is available. */ ;
383 1.1 matt }
384 1.1 matt
385 1.1 matt #ifdef NAPMODE
386 1.1 matt switch (vers) {
387 1.1 matt case IBM750FX:
388 1.1 matt case MPC750:
389 1.1 matt case MPC7400:
390 1.1 matt /* Select NAP mode. */
391 1.1 matt hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
392 1.1 matt hid0 |= HID0_NAP;
393 1.1 matt break;
394 1.1 matt }
395 1.1 matt #endif
396 1.1 matt
397 1.1 matt switch (vers) {
398 1.1 matt case IBM750FX:
399 1.1 matt case MPC750:
400 1.1 matt hid0 &= ~HID0_DBP; /* XXX correct? */
401 1.1 matt hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
402 1.1 matt break;
403 1.1 matt
404 1.1 matt case MPC7400:
405 1.1 matt case MPC7410:
406 1.1 matt hid0 &= ~HID0_SPD;
407 1.1 matt hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
408 1.1 matt hid0 |= HID0_EIEC;
409 1.1 matt break;
410 1.1 matt }
411 1.1 matt
412 1.1 matt mtspr(SPR_HID0, hid0);
413 1.1 matt
414 1.1 matt switch (vers) {
415 1.1 matt case MPC601:
416 1.1 matt bitmask = HID0_601_BITMASK;
417 1.1 matt break;
418 1.1 matt case MPC7450:
419 1.1 matt case MPC7455:
420 1.11 matt case MPC7457:
421 1.1 matt bitmask = HID0_7450_BITMASK;
422 1.1 matt break;
423 1.1 matt default:
424 1.1 matt bitmask = HID0_BITMASK;
425 1.1 matt break;
426 1.1 matt }
427 1.1 matt bitmask_snprintf(hid0, bitmask, hidbuf, sizeof hidbuf);
428 1.3 matt aprint_normal("%s: HID0 %s\n", self->dv_xname, hidbuf);
429 1.1 matt
430 1.1 matt /*
431 1.1 matt * Display speed and cache configuration.
432 1.1 matt */
433 1.1 matt if (vers == MPC750 || vers == MPC7400 || vers == IBM750FX ||
434 1.11 matt vers == MPC7410 || MPC745X_P(vers)) {
435 1.7 matt aprint_normal("%s: ", self->dv_xname);
436 1.1 matt cpu_print_speed();
437 1.11 matt if (MPC745X_P(vers)) {
438 1.7 matt cpu_config_l3cr(vers);
439 1.7 matt } else {
440 1.7 matt cpu_config_l2cr(pvr);
441 1.7 matt }
442 1.7 matt aprint_normal("\n");
443 1.1 matt }
444 1.1 matt
445 1.1 matt #if NSYSMON_ENVSYS > 0
446 1.1 matt /*
447 1.1 matt * Attach MPC750 temperature sensor to the envsys subsystem.
448 1.1 matt * XXX the 74xx series also has this sensor, but it is not
449 1.1 matt * XXX supported by Motorola and may return values that are off by
450 1.1 matt * XXX 35-55 degrees C.
451 1.1 matt */
452 1.1 matt if (vers == MPC750 || vers == IBM750FX)
453 1.1 matt cpu_tau_setup(ci);
454 1.1 matt #endif
455 1.1 matt
456 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
457 1.1 matt NULL, self->dv_xname, "clock");
458 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_softclock, EVCNT_TYPE_INTR,
459 1.1 matt NULL, self->dv_xname, "soft clock");
460 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_softnet, EVCNT_TYPE_INTR,
461 1.1 matt NULL, self->dv_xname, "soft net");
462 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_softserial, EVCNT_TYPE_INTR,
463 1.1 matt NULL, self->dv_xname, "soft serial");
464 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
465 1.1 matt NULL, self->dv_xname, "traps");
466 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
467 1.1 matt &ci->ci_ev_traps, self->dv_xname, "kernel DSI traps");
468 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
469 1.1 matt &ci->ci_ev_traps, self->dv_xname, "user DSI traps");
470 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
471 1.1 matt &ci->ci_ev_udsi, self->dv_xname, "user DSI failures");
472 1.10 matt evcnt_attach_dynamic(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP,
473 1.10 matt &ci->ci_ev_traps, self->dv_xname, "kernel ISI traps");
474 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
475 1.1 matt &ci->ci_ev_traps, self->dv_xname, "user ISI traps");
476 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
477 1.1 matt &ci->ci_ev_isi, self->dv_xname, "user ISI failures");
478 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
479 1.1 matt &ci->ci_ev_traps, self->dv_xname, "system call traps");
480 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
481 1.1 matt &ci->ci_ev_traps, self->dv_xname, "PGM traps");
482 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
483 1.1 matt &ci->ci_ev_traps, self->dv_xname, "FPU unavailable traps");
484 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_fpusw, EVCNT_TYPE_TRAP,
485 1.1 matt &ci->ci_ev_fpu, self->dv_xname, "FPU context switches");
486 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
487 1.1 matt &ci->ci_ev_traps, self->dv_xname, "user alignment traps");
488 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
489 1.1 matt &ci->ci_ev_ali, self->dv_xname, "user alignment traps");
490 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
491 1.1 matt &ci->ci_ev_umchk, self->dv_xname, "user MCHK failures");
492 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
493 1.1 matt &ci->ci_ev_traps, self->dv_xname, "AltiVec unavailable");
494 1.1 matt #ifdef ALTIVEC
495 1.1 matt if (cpu_altivec) {
496 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_vecsw, EVCNT_TYPE_TRAP,
497 1.1 matt &ci->ci_ev_vec, self->dv_xname, "AltiVec context switches");
498 1.1 matt }
499 1.1 matt #endif
500 1.1 matt }
501 1.1 matt
502 1.1 matt void
503 1.1 matt cpu_identify(char *str, size_t len)
504 1.1 matt {
505 1.1 matt u_int pvr, maj, min;
506 1.1 matt uint16_t vers, rev, revfmt;
507 1.1 matt const struct cputab *cp;
508 1.1 matt const char *name;
509 1.1 matt size_t n;
510 1.1 matt
511 1.1 matt pvr = mfpvr();
512 1.1 matt vers = pvr >> 16;
513 1.1 matt rev = pvr;
514 1.1 matt switch (vers) {
515 1.1 matt case MPC7410:
516 1.1 matt min = (pvr >> 0) & 0xff;
517 1.1 matt maj = min <= 4 ? 1 : 2;
518 1.1 matt break;
519 1.1 matt default:
520 1.1 matt maj = (pvr >> 8) & 0xf;
521 1.1 matt min = (pvr >> 0) & 0xf;
522 1.1 matt }
523 1.1 matt
524 1.1 matt for (cp = models; cp->name[0] != '\0'; cp++) {
525 1.1 matt if (cp->version == vers)
526 1.1 matt break;
527 1.1 matt }
528 1.1 matt
529 1.1 matt if (str == NULL) {
530 1.1 matt str = cpu_model;
531 1.1 matt len = sizeof(cpu_model);
532 1.1 matt cpu = vers;
533 1.1 matt }
534 1.1 matt
535 1.1 matt revfmt = cp->revfmt;
536 1.1 matt name = cp->name;
537 1.1 matt if (rev == MPC750 && pvr == 15) {
538 1.1 matt name = "755";
539 1.1 matt revfmt = REVFMT_HEX;
540 1.1 matt }
541 1.1 matt
542 1.1 matt if (cp->name[0] != '\0') {
543 1.1 matt n = snprintf(str, len, "%s (Revision ", cp->name);
544 1.1 matt } else {
545 1.1 matt n = snprintf(str, len, "Version %#x (Revision ", vers);
546 1.1 matt }
547 1.1 matt if (len > n) {
548 1.1 matt switch (revfmt) {
549 1.1 matt case REVFMT_MAJMIN:
550 1.1 matt snprintf(str + n, len - n, "%u.%u)", maj, min);
551 1.1 matt break;
552 1.1 matt case REVFMT_HEX:
553 1.1 matt snprintf(str + n, len - n, "0x%04x)", rev);
554 1.1 matt break;
555 1.1 matt case REVFMT_DEC:
556 1.1 matt snprintf(str + n, len - n, "%u)", rev);
557 1.1 matt break;
558 1.1 matt }
559 1.1 matt }
560 1.1 matt }
561 1.1 matt
562 1.1 matt #ifdef L2CR_CONFIG
563 1.1 matt u_int l2cr_config = L2CR_CONFIG;
564 1.1 matt #else
565 1.1 matt u_int l2cr_config = 0;
566 1.1 matt #endif
567 1.1 matt
568 1.2 jklos #ifdef L3CR_CONFIG
569 1.2 jklos u_int l3cr_config = L3CR_CONFIG;
570 1.2 jklos #else
571 1.2 jklos u_int l3cr_config = 0;
572 1.2 jklos #endif
573 1.2 jklos
574 1.1 matt void
575 1.7 matt cpu_enable_l2cr(register_t l2cr)
576 1.7 matt {
577 1.7 matt register_t msr, x;
578 1.7 matt
579 1.7 matt /* Disable interrupts and set the cache config bits. */
580 1.7 matt msr = mfmsr();
581 1.7 matt mtmsr(msr & ~PSL_EE);
582 1.7 matt #ifdef ALTIVEC
583 1.7 matt if (cpu_altivec)
584 1.7 matt __asm __volatile("dssall");
585 1.7 matt #endif
586 1.7 matt __asm __volatile("sync");
587 1.7 matt mtspr(SPR_L2CR, l2cr & ~L2CR_L2E);
588 1.7 matt __asm __volatile("sync");
589 1.7 matt
590 1.7 matt /* Wait for L2 clock to be stable (640 L2 clocks). */
591 1.7 matt delay(100);
592 1.7 matt
593 1.7 matt /* Invalidate all L2 contents. */
594 1.7 matt mtspr(SPR_L2CR, l2cr | L2CR_L2I);
595 1.7 matt do {
596 1.7 matt x = mfspr(SPR_L2CR);
597 1.7 matt } while (x & L2CR_L2IP);
598 1.7 matt
599 1.7 matt /* Enable L2 cache. */
600 1.7 matt l2cr |= L2CR_L2E;
601 1.7 matt mtspr(SPR_L2CR, l2cr);
602 1.7 matt mtmsr(msr);
603 1.7 matt }
604 1.7 matt
605 1.7 matt void
606 1.7 matt cpu_enable_l3cr(register_t l3cr)
607 1.1 matt {
608 1.7 matt register_t x;
609 1.7 matt
610 1.7 matt /* By The Book (numbered steps from section 3.7.1.3 of MPC7450UM) */
611 1.7 matt
612 1.7 matt /*
613 1.7 matt * 1: Set all L3CR bits for final config except L3E, L3I, L3PE, and
614 1.7 matt * L3CLKEN. (also mask off reserved bits in case they were included
615 1.7 matt * in L3CR_CONFIG)
616 1.7 matt */
617 1.7 matt l3cr &= ~(L3CR_L3E|L3CR_L3I|L3CR_L3PE|L3CR_L3CLKEN|L3CR_RESERVED);
618 1.7 matt mtspr(SPR_L3CR, l3cr);
619 1.7 matt
620 1.7 matt /* 2: Set L3CR[5] (otherwise reserved bit) to 1 */
621 1.7 matt l3cr |= 0x04000000;
622 1.7 matt mtspr(SPR_L3CR, l3cr);
623 1.7 matt
624 1.7 matt /* 3: Set L3CLKEN to 1*/
625 1.7 matt l3cr |= L3CR_L3CLKEN;
626 1.7 matt mtspr(SPR_L3CR, l3cr);
627 1.7 matt
628 1.7 matt /* 4/5: Perform a global cache invalidate (ref section 3.7.3.6) */
629 1.7 matt __asm __volatile("dssall;sync");
630 1.7 matt /* L3 cache is already disabled, no need to clear L3E */
631 1.7 matt mtspr(SPR_L3CR, l3cr|L3CR_L3I);
632 1.7 matt do {
633 1.7 matt x = mfspr(SPR_L3CR);
634 1.7 matt } while (x & L3CR_L3I);
635 1.7 matt
636 1.7 matt /* 6: Clear L3CLKEN to 0 */
637 1.7 matt l3cr &= ~L3CR_L3CLKEN;
638 1.7 matt mtspr(SPR_L3CR, l3cr);
639 1.7 matt
640 1.7 matt /* 7: Perform a 'sync' and wait at least 100 CPU cycles */
641 1.7 matt __asm __volatile("sync");
642 1.7 matt delay(100);
643 1.7 matt
644 1.7 matt /* 8: Set L3E and L3CLKEN */
645 1.7 matt l3cr |= (L3CR_L3E|L3CR_L3CLKEN);
646 1.7 matt mtspr(SPR_L3CR, l3cr);
647 1.7 matt
648 1.7 matt /* 9: Perform a 'sync' and wait at least 100 CPU cycles */
649 1.7 matt __asm __volatile("sync");
650 1.7 matt delay(100);
651 1.7 matt }
652 1.7 matt
653 1.7 matt void
654 1.7 matt cpu_config_l2cr(int pvr)
655 1.7 matt {
656 1.7 matt register_t l2cr;
657 1.1 matt
658 1.1 matt l2cr = mfspr(SPR_L2CR);
659 1.1 matt
660 1.1 matt /*
661 1.1 matt * For MP systems, the firmware may only configure the L2 cache
662 1.1 matt * on the first CPU. In this case, assume that the other CPUs
663 1.1 matt * should use the same value for L2CR.
664 1.1 matt */
665 1.1 matt if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
666 1.1 matt l2cr_config = l2cr;
667 1.1 matt }
668 1.1 matt
669 1.1 matt /*
670 1.1 matt * Configure L2 cache if not enabled.
671 1.1 matt */
672 1.8 scw if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
673 1.7 matt cpu_enable_l2cr(l2cr_config);
674 1.8 scw l2cr = mfspr(SPR_L2CR);
675 1.8 scw }
676 1.7 matt
677 1.7 matt if ((l2cr & L2CR_L2E) == 0)
678 1.7 matt return;
679 1.1 matt
680 1.7 matt aprint_normal(",");
681 1.7 matt if ((pvr >> 16) == IBM750FX ||
682 1.7 matt (pvr & 0xffffff00) == 0x00082200 /* IBM750CX */ ||
683 1.7 matt (pvr & 0xffffef00) == 0x00082300 /* IBM750CXe */) {
684 1.7 matt cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
685 1.7 matt } else {
686 1.7 matt cpu_fmttab_print(cpu_l2cr_formats, l2cr);
687 1.1 matt }
688 1.7 matt }
689 1.1 matt
690 1.7 matt void
691 1.7 matt cpu_config_l3cr(int vers)
692 1.7 matt {
693 1.7 matt register_t l2cr;
694 1.7 matt register_t l3cr;
695 1.7 matt
696 1.7 matt l2cr = mfspr(SPR_L2CR);
697 1.1 matt
698 1.7 matt /*
699 1.7 matt * For MP systems, the firmware may only configure the L2 cache
700 1.7 matt * on the first CPU. In this case, assume that the other CPUs
701 1.7 matt * should use the same value for L2CR.
702 1.7 matt */
703 1.7 matt if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
704 1.7 matt l2cr_config = l2cr;
705 1.7 matt }
706 1.1 matt
707 1.7 matt /*
708 1.7 matt * Configure L2 cache if not enabled.
709 1.7 matt */
710 1.7 matt if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
711 1.7 matt cpu_enable_l2cr(l2cr_config);
712 1.7 matt l2cr = mfspr(SPR_L2CR);
713 1.7 matt }
714 1.7 matt
715 1.7 matt aprint_normal(",");
716 1.11 matt cpu_fmttab_print(vers == MPC7457
717 1.11 matt ? cpu_7457_l2cr_formats : cpu_7450_l2cr_formats, l2cr);
718 1.2 jklos
719 1.7 matt l3cr = mfspr(SPR_L3CR);
720 1.1 matt
721 1.7 matt /*
722 1.7 matt * For MP systems, the firmware may only configure the L3 cache
723 1.7 matt * on the first CPU. In this case, assume that the other CPUs
724 1.7 matt * should use the same value for L3CR.
725 1.7 matt */
726 1.7 matt if ((l3cr & L3CR_L3E) != 0 && l3cr_config == 0) {
727 1.7 matt l3cr_config = l3cr;
728 1.7 matt }
729 1.1 matt
730 1.7 matt /*
731 1.7 matt * Configure L3 cache if not enabled.
732 1.7 matt */
733 1.7 matt if ((l3cr & L3CR_L3E) == 0 && l3cr_config != 0) {
734 1.7 matt cpu_enable_l3cr(l3cr_config);
735 1.7 matt l3cr = mfspr(SPR_L3CR);
736 1.7 matt }
737 1.7 matt
738 1.7 matt if (l3cr & L3CR_L3E) {
739 1.7 matt aprint_normal(",");
740 1.7 matt cpu_fmttab_print(cpu_7450_l3cr_formats, l3cr);
741 1.7 matt }
742 1.1 matt }
743 1.1 matt
744 1.1 matt void
745 1.1 matt cpu_print_speed(void)
746 1.1 matt {
747 1.1 matt uint64_t cps;
748 1.1 matt
749 1.7 matt mtspr(SPR_MMCR0, MMCR0_FC);
750 1.1 matt mtspr(SPR_PMC1, 0);
751 1.7 matt mtspr(SPR_MMCR0, MMCR0_PMC1SEL(PMCN_CYCLES));
752 1.1 matt delay(100000);
753 1.1 matt cps = (mfspr(SPR_PMC1) * 10) + 4999;
754 1.1 matt
755 1.7 matt aprint_normal("%lld.%02lld MHz", cps / 1000000, (cps / 10000) % 100);
756 1.1 matt }
757 1.1 matt
758 1.1 matt #if NSYSMON_ENVSYS > 0
759 1.1 matt const struct envsys_range cpu_tau_ranges[] = {
760 1.1 matt { 0, 0, ENVSYS_STEMP}
761 1.1 matt };
762 1.1 matt
763 1.1 matt struct envsys_basic_info cpu_tau_info[] = {
764 1.1 matt { 0, ENVSYS_STEMP, "CPU temp", 0, 0, ENVSYS_FVALID}
765 1.1 matt };
766 1.1 matt
767 1.1 matt void
768 1.1 matt cpu_tau_setup(struct cpu_info *ci)
769 1.1 matt {
770 1.1 matt struct sysmon_envsys *sme;
771 1.1 matt int error;
772 1.1 matt
773 1.1 matt sme = &ci->ci_sysmon;
774 1.1 matt sme->sme_nsensors = 1;
775 1.1 matt sme->sme_envsys_version = 1000;
776 1.1 matt sme->sme_ranges = cpu_tau_ranges;
777 1.1 matt sme->sme_sensor_info = cpu_tau_info;
778 1.1 matt sme->sme_sensor_data = &ci->ci_tau_info;
779 1.1 matt
780 1.1 matt sme->sme_sensor_data->sensor = 0;
781 1.1 matt sme->sme_sensor_data->warnflags = ENVSYS_WARN_OK;
782 1.1 matt sme->sme_sensor_data->validflags = ENVSYS_FVALID|ENVSYS_FCURVALID;
783 1.1 matt sme->sme_cookie = ci;
784 1.1 matt sme->sme_gtredata = cpu_tau_gtredata;
785 1.1 matt sme->sme_streinfo = cpu_tau_streinfo;
786 1.1 matt
787 1.1 matt if ((error = sysmon_envsys_register(sme)) != 0)
788 1.3 matt aprint_error("%s: unable to register with sysmon (%d)\n",
789 1.1 matt ci->ci_dev->dv_xname, error);
790 1.1 matt }
791 1.1 matt
792 1.1 matt
793 1.1 matt /* Find the temperature of the CPU. */
794 1.1 matt int
795 1.1 matt cpu_tau_gtredata(sme, tred)
796 1.1 matt struct sysmon_envsys *sme;
797 1.1 matt struct envsys_tre_data *tred;
798 1.1 matt {
799 1.1 matt struct cpu_info *ci;
800 1.1 matt int i, threshold, count;
801 1.1 matt
802 1.1 matt if (tred->sensor != 0) {
803 1.1 matt tred->validflags = 0;
804 1.1 matt return 0;
805 1.1 matt }
806 1.1 matt
807 1.1 matt threshold = 64; /* Half of the 7-bit sensor range */
808 1.1 matt mtspr(SPR_THRM1, 0);
809 1.1 matt mtspr(SPR_THRM2, 0);
810 1.1 matt /* XXX This counter is supposed to be "at least 20 microseonds, in
811 1.1 matt * XXX units of clock cycles". Since we don't have convenient
812 1.1 matt * XXX access to the CPU speed, set it to a conservative value,
813 1.1 matt * XXX that is, assuming a fast (1GHz) G3 CPU (As of February 2002,
814 1.1 matt * XXX the fastest G3 processor is 700MHz) . The cost is that
815 1.1 matt * XXX measuring the temperature takes a bit longer.
816 1.1 matt */
817 1.1 matt mtspr(SPR_THRM3, SPR_THRM_TIMER(20000) | SPR_THRM_ENABLE);
818 1.1 matt
819 1.1 matt /* Successive-approximation code adapted from Motorola
820 1.1 matt * application note AN1800/D, "Programming the Thermal Assist
821 1.1 matt * Unit in the MPC750 Microprocessor".
822 1.1 matt */
823 1.1 matt for (i = 4; i >= 0 ; i--) {
824 1.1 matt mtspr(SPR_THRM1,
825 1.1 matt SPR_THRM_THRESHOLD(threshold) | SPR_THRM_VALID);
826 1.1 matt count = 0;
827 1.1 matt while ((count < 100) &&
828 1.1 matt ((mfspr(SPR_THRM1) & SPR_THRM_TIV) == 0)) {
829 1.1 matt count++;
830 1.1 matt delay(1);
831 1.1 matt }
832 1.1 matt if (mfspr(SPR_THRM1) & SPR_THRM_TIN) {
833 1.1 matt /* The interrupt bit was set, meaning the
834 1.1 matt * temperature was above the threshold
835 1.1 matt */
836 1.1 matt threshold += 2 << i;
837 1.1 matt } else {
838 1.1 matt /* Temperature was below the threshold */
839 1.1 matt threshold -= 2 << i;
840 1.1 matt }
841 1.1 matt }
842 1.1 matt threshold += 2;
843 1.1 matt
844 1.1 matt ci = (struct cpu_info *)sme->sme_cookie;
845 1.1 matt /* Convert the temperature in degrees C to microkelvin */
846 1.1 matt ci->ci_tau_info.cur.data_us = (threshold * 1000000) + 273150000;
847 1.1 matt
848 1.1 matt *tred = ci->ci_tau_info;
849 1.1 matt
850 1.1 matt return 0;
851 1.1 matt }
852 1.1 matt
853 1.1 matt int
854 1.1 matt cpu_tau_streinfo(sme, binfo)
855 1.1 matt struct sysmon_envsys *sme;
856 1.1 matt struct envsys_basic_info *binfo;
857 1.1 matt {
858 1.1 matt
859 1.1 matt /* There is nothing to set here. */
860 1.1 matt return (EINVAL);
861 1.1 matt }
862 1.1 matt #endif /* NSYSMON_ENVSYS > 0 */
863