cpu_subr.c revision 1.17 1 1.17 briggs /* $NetBSD: cpu_subr.c,v 1.17 2005/01/07 20:41:35 briggs Exp $ */
2 1.1 matt
3 1.1 matt /*-
4 1.1 matt * Copyright (c) 2001 Matt Thomas.
5 1.1 matt * Copyright (c) 2001 Tsubai Masanari.
6 1.1 matt * Copyright (c) 1998, 1999, 2001 Internet Research Institute, Inc.
7 1.1 matt * All rights reserved.
8 1.1 matt *
9 1.1 matt * Redistribution and use in source and binary forms, with or without
10 1.1 matt * modification, are permitted provided that the following conditions
11 1.1 matt * are met:
12 1.1 matt * 1. Redistributions of source code must retain the above copyright
13 1.1 matt * notice, this list of conditions and the following disclaimer.
14 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 matt * notice, this list of conditions and the following disclaimer in the
16 1.1 matt * documentation and/or other materials provided with the distribution.
17 1.1 matt * 3. All advertising materials mentioning features or use of this software
18 1.1 matt * must display the following acknowledgement:
19 1.1 matt * This product includes software developed by
20 1.1 matt * Internet Research Institute, Inc.
21 1.1 matt * 4. The name of the author may not be used to endorse or promote products
22 1.1 matt * derived from this software without specific prior written permission.
23 1.1 matt *
24 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25 1.1 matt * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26 1.1 matt * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27 1.1 matt * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
28 1.1 matt * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
29 1.1 matt * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30 1.1 matt * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31 1.1 matt * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32 1.1 matt * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33 1.1 matt * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 1.1 matt */
35 1.9 lukem
36 1.9 lukem #include <sys/cdefs.h>
37 1.17 briggs __KERNEL_RCSID(0, "$NetBSD: cpu_subr.c,v 1.17 2005/01/07 20:41:35 briggs Exp $");
38 1.1 matt
39 1.1 matt #include "opt_ppcparam.h"
40 1.1 matt #include "opt_multiprocessor.h"
41 1.1 matt #include "opt_altivec.h"
42 1.1 matt #include "sysmon_envsys.h"
43 1.1 matt
44 1.1 matt #include <sys/param.h>
45 1.1 matt #include <sys/systm.h>
46 1.1 matt #include <sys/device.h>
47 1.12 matt #include <sys/malloc.h>
48 1.1 matt
49 1.1 matt #include <uvm/uvm_extern.h>
50 1.1 matt
51 1.1 matt #include <powerpc/oea/hid.h>
52 1.1 matt #include <powerpc/oea/hid_601.h>
53 1.1 matt #include <powerpc/spr.h>
54 1.1 matt
55 1.1 matt #include <dev/sysmon/sysmonvar.h>
56 1.1 matt
57 1.7 matt static void cpu_enable_l2cr(register_t);
58 1.7 matt static void cpu_enable_l3cr(register_t);
59 1.1 matt static void cpu_config_l2cr(int);
60 1.7 matt static void cpu_config_l3cr(int);
61 1.1 matt static void cpu_print_speed(void);
62 1.1 matt #if NSYSMON_ENVSYS > 0
63 1.1 matt static void cpu_tau_setup(struct cpu_info *);
64 1.1 matt static int cpu_tau_gtredata __P((struct sysmon_envsys *,
65 1.1 matt struct envsys_tre_data *));
66 1.1 matt static int cpu_tau_streinfo __P((struct sysmon_envsys *,
67 1.1 matt struct envsys_basic_info *));
68 1.1 matt #endif
69 1.1 matt
70 1.1 matt int cpu;
71 1.1 matt int ncpus;
72 1.1 matt
73 1.7 matt struct fmttab {
74 1.7 matt register_t fmt_mask;
75 1.7 matt register_t fmt_value;
76 1.7 matt const char *fmt_string;
77 1.7 matt };
78 1.7 matt
79 1.7 matt static const struct fmttab cpu_7450_l2cr_formats[] = {
80 1.7 matt { L2CR_L2E, 0, " disabled" },
81 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
82 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
83 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
84 1.7 matt { L2CR_L2E, ~0, " 256KB L2 cache" },
85 1.7 matt { 0 }
86 1.7 matt };
87 1.7 matt
88 1.11 matt static const struct fmttab cpu_7457_l2cr_formats[] = {
89 1.11 matt { L2CR_L2E, 0, " disabled" },
90 1.11 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
91 1.11 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
92 1.11 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
93 1.11 matt { L2CR_L2E, ~0, " 512KB L2 cache" },
94 1.11 matt { 0 }
95 1.11 matt };
96 1.11 matt
97 1.7 matt static const struct fmttab cpu_7450_l3cr_formats[] = {
98 1.7 matt { L3CR_L3DO|L3CR_L3IO, L3CR_L3DO, " data-only" },
99 1.7 matt { L3CR_L3DO|L3CR_L3IO, L3CR_L3IO, " instruction-only" },
100 1.7 matt { L3CR_L3DO|L3CR_L3IO, L3CR_L3DO|L3CR_L3IO, " locked" },
101 1.7 matt { L3CR_L3SIZ, L3SIZ_2M, " 2MB" },
102 1.7 matt { L3CR_L3SIZ, L3SIZ_1M, " 1MB" },
103 1.7 matt { L3CR_L3PE|L3CR_L3APE, L3CR_L3PE|L3CR_L3APE, " parity" },
104 1.7 matt { L3CR_L3PE|L3CR_L3APE, L3CR_L3PE, " data-parity" },
105 1.7 matt { L3CR_L3PE|L3CR_L3APE, L3CR_L3APE, " address-parity" },
106 1.7 matt { L3CR_L3PE|L3CR_L3APE, 0, " no-parity" },
107 1.7 matt { L3CR_L3SIZ, ~0, " L3 cache" },
108 1.7 matt { L3CR_L3RT, L3RT_MSUG2_DDR, " (DDR SRAM)" },
109 1.7 matt { L3CR_L3RT, L3RT_PIPELINE_LATE, " (LW SRAM)" },
110 1.7 matt { L3CR_L3RT, L3RT_PB2_SRAM, " (PB2 SRAM)" },
111 1.7 matt { L3CR_L3CLK, ~0, " at" },
112 1.7 matt { L3CR_L3CLK, L3CLK_20, " 2:1" },
113 1.7 matt { L3CR_L3CLK, L3CLK_25, " 2.5:1" },
114 1.7 matt { L3CR_L3CLK, L3CLK_30, " 3:1" },
115 1.7 matt { L3CR_L3CLK, L3CLK_35, " 3.5:1" },
116 1.7 matt { L3CR_L3CLK, L3CLK_40, " 4:1" },
117 1.7 matt { L3CR_L3CLK, L3CLK_50, " 5:1" },
118 1.7 matt { L3CR_L3CLK, L3CLK_60, " 6:1" },
119 1.7 matt { L3CR_L3CLK, ~0, " ratio" },
120 1.7 matt { 0, 0 },
121 1.7 matt };
122 1.7 matt
123 1.7 matt static const struct fmttab cpu_ibm750_l2cr_formats[] = {
124 1.7 matt { L2CR_L2E, 0, " disabled" },
125 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
126 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
127 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
128 1.7 matt { 0, ~0, " 512KB" },
129 1.7 matt { L2CR_L2WT, L2CR_L2WT, " WT" },
130 1.7 matt { L2CR_L2WT, 0, " WB" },
131 1.7 matt { L2CR_L2PE, L2CR_L2PE, " with ECC" },
132 1.7 matt { 0, ~0, " L2 cache" },
133 1.7 matt { 0 }
134 1.7 matt };
135 1.7 matt
136 1.7 matt static const struct fmttab cpu_l2cr_formats[] = {
137 1.7 matt { L2CR_L2E, 0, " disabled" },
138 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
139 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
140 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
141 1.7 matt { L2CR_L2PE, L2CR_L2PE, " parity" },
142 1.7 matt { L2CR_L2PE, 0, " no-parity" },
143 1.7 matt { L2CR_L2SIZ, L2SIZ_2M, " 2MB" },
144 1.7 matt { L2CR_L2SIZ, L2SIZ_1M, " 1MB" },
145 1.7 matt { L2CR_L2SIZ, L2SIZ_512K, " 512KB" },
146 1.7 matt { L2CR_L2SIZ, L2SIZ_256K, " 256KB" },
147 1.7 matt { L2CR_L2WT, L2CR_L2WT, " WT" },
148 1.7 matt { L2CR_L2WT, 0, " WB" },
149 1.7 matt { L2CR_L2E, ~0, " L2 cache" },
150 1.7 matt { L2CR_L2RAM, L2RAM_FLOWTHRU_BURST, " (FB SRAM)" },
151 1.7 matt { L2CR_L2RAM, L2RAM_PIPELINE_LATE, " (LW SRAM)" },
152 1.7 matt { L2CR_L2RAM, L2RAM_PIPELINE_BURST, " (PB SRAM)" },
153 1.7 matt { L2CR_L2CLK, ~0, " at" },
154 1.7 matt { L2CR_L2CLK, L2CLK_10, " 1:1" },
155 1.7 matt { L2CR_L2CLK, L2CLK_15, " 1.5:1" },
156 1.7 matt { L2CR_L2CLK, L2CLK_20, " 2:1" },
157 1.7 matt { L2CR_L2CLK, L2CLK_25, " 2.5:1" },
158 1.7 matt { L2CR_L2CLK, L2CLK_30, " 3:1" },
159 1.7 matt { L2CR_L2CLK, L2CLK_35, " 3.5:1" },
160 1.7 matt { L2CR_L2CLK, L2CLK_40, " 4:1" },
161 1.7 matt { L2CR_L2CLK, ~0, " ratio" },
162 1.7 matt { 0 }
163 1.7 matt };
164 1.7 matt
165 1.7 matt static void cpu_fmttab_print(const struct fmttab *, register_t);
166 1.7 matt
167 1.7 matt struct cputab {
168 1.7 matt const char name[8];
169 1.7 matt uint16_t version;
170 1.7 matt uint16_t revfmt;
171 1.7 matt };
172 1.7 matt #define REVFMT_MAJMIN 1 /* %u.%u */
173 1.7 matt #define REVFMT_HEX 2 /* 0x%04x */
174 1.7 matt #define REVFMT_DEC 3 /* %u */
175 1.7 matt static const struct cputab models[] = {
176 1.7 matt { "601", MPC601, REVFMT_DEC },
177 1.7 matt { "602", MPC602, REVFMT_DEC },
178 1.7 matt { "603", MPC603, REVFMT_MAJMIN },
179 1.7 matt { "603e", MPC603e, REVFMT_MAJMIN },
180 1.7 matt { "603ev", MPC603ev, REVFMT_MAJMIN },
181 1.7 matt { "604", MPC604, REVFMT_MAJMIN },
182 1.15 briggs { "604e", MPC604e, REVFMT_MAJMIN },
183 1.7 matt { "604ev", MPC604ev, REVFMT_MAJMIN },
184 1.7 matt { "620", MPC620, REVFMT_HEX },
185 1.7 matt { "750", MPC750, REVFMT_MAJMIN },
186 1.7 matt { "750FX", IBM750FX, REVFMT_MAJMIN },
187 1.7 matt { "7400", MPC7400, REVFMT_MAJMIN },
188 1.7 matt { "7410", MPC7410, REVFMT_MAJMIN },
189 1.7 matt { "7450", MPC7450, REVFMT_MAJMIN },
190 1.7 matt { "7455", MPC7455, REVFMT_MAJMIN },
191 1.11 matt { "7457", MPC7457, REVFMT_MAJMIN },
192 1.7 matt { "8240", MPC8240, REVFMT_MAJMIN },
193 1.7 matt { "", 0, REVFMT_HEX }
194 1.7 matt };
195 1.7 matt
196 1.7 matt
197 1.1 matt #ifdef MULTIPROCESSOR
198 1.1 matt struct cpu_info cpu_info[CPU_MAXNUM];
199 1.1 matt #else
200 1.1 matt struct cpu_info cpu_info[1];
201 1.1 matt #endif
202 1.1 matt
203 1.1 matt int cpu_altivec;
204 1.14 kleink int cpu_psluserset, cpu_pslusermod;
205 1.1 matt char cpu_model[80];
206 1.1 matt
207 1.1 matt void
208 1.7 matt cpu_fmttab_print(const struct fmttab *fmt, register_t data)
209 1.7 matt {
210 1.7 matt for (; fmt->fmt_mask != 0 || fmt->fmt_value != 0; fmt++) {
211 1.7 matt if ((~fmt->fmt_mask & fmt->fmt_value) != 0 ||
212 1.7 matt (data & fmt->fmt_mask) == fmt->fmt_value)
213 1.7 matt aprint_normal("%s", fmt->fmt_string);
214 1.7 matt }
215 1.7 matt }
216 1.7 matt
217 1.7 matt void
218 1.1 matt cpu_probe_cache(void)
219 1.1 matt {
220 1.1 matt u_int assoc, pvr, vers;
221 1.1 matt
222 1.1 matt pvr = mfpvr();
223 1.1 matt vers = pvr >> 16;
224 1.1 matt
225 1.1 matt switch (vers) {
226 1.1 matt #define K *1024
227 1.1 matt case IBM750FX:
228 1.1 matt case MPC601:
229 1.1 matt case MPC750:
230 1.1 matt case MPC7450:
231 1.1 matt case MPC7455:
232 1.11 matt case MPC7457:
233 1.1 matt curcpu()->ci_ci.dcache_size = 32 K;
234 1.1 matt curcpu()->ci_ci.icache_size = 32 K;
235 1.1 matt assoc = 8;
236 1.1 matt break;
237 1.1 matt case MPC603:
238 1.1 matt curcpu()->ci_ci.dcache_size = 8 K;
239 1.1 matt curcpu()->ci_ci.icache_size = 8 K;
240 1.1 matt assoc = 2;
241 1.1 matt break;
242 1.1 matt case MPC603e:
243 1.1 matt case MPC603ev:
244 1.1 matt case MPC604:
245 1.1 matt case MPC8240:
246 1.1 matt case MPC8245:
247 1.1 matt curcpu()->ci_ci.dcache_size = 16 K;
248 1.1 matt curcpu()->ci_ci.icache_size = 16 K;
249 1.1 matt assoc = 4;
250 1.1 matt break;
251 1.15 briggs case MPC604e:
252 1.1 matt case MPC604ev:
253 1.1 matt curcpu()->ci_ci.dcache_size = 32 K;
254 1.1 matt curcpu()->ci_ci.icache_size = 32 K;
255 1.1 matt assoc = 4;
256 1.1 matt break;
257 1.1 matt default:
258 1.6 thorpej curcpu()->ci_ci.dcache_size = PAGE_SIZE;
259 1.6 thorpej curcpu()->ci_ci.icache_size = PAGE_SIZE;
260 1.1 matt assoc = 1;
261 1.1 matt #undef K
262 1.1 matt }
263 1.1 matt
264 1.1 matt /* Presently common across all implementations. */
265 1.1 matt curcpu()->ci_ci.dcache_line_size = CACHELINESIZE;
266 1.1 matt curcpu()->ci_ci.icache_line_size = CACHELINESIZE;
267 1.1 matt
268 1.1 matt /*
269 1.1 matt * Possibly recolor.
270 1.1 matt */
271 1.1 matt uvm_page_recolor(atop(curcpu()->ci_ci.dcache_size / assoc));
272 1.1 matt }
273 1.1 matt
274 1.1 matt struct cpu_info *
275 1.1 matt cpu_attach_common(struct device *self, int id)
276 1.1 matt {
277 1.1 matt struct cpu_info *ci;
278 1.1 matt u_int pvr, vers;
279 1.1 matt
280 1.1 matt ncpus++;
281 1.1 matt ci = &cpu_info[id];
282 1.1 matt #ifndef MULTIPROCESSOR
283 1.1 matt /*
284 1.1 matt * If this isn't the primary CPU, print an error message
285 1.1 matt * and just bail out.
286 1.1 matt */
287 1.1 matt if (id != 0) {
288 1.3 matt aprint_normal(": ID %d\n", id);
289 1.3 matt aprint_normal("%s: processor off-line; multiprocessor support "
290 1.1 matt "not present in kernel\n", self->dv_xname);
291 1.1 matt return (NULL);
292 1.1 matt }
293 1.1 matt #endif
294 1.1 matt
295 1.1 matt ci->ci_cpuid = id;
296 1.1 matt ci->ci_intrdepth = -1;
297 1.1 matt ci->ci_dev = self;
298 1.1 matt
299 1.1 matt pvr = mfpvr();
300 1.1 matt vers = (pvr >> 16) & 0xffff;
301 1.1 matt
302 1.1 matt switch (id) {
303 1.1 matt case 0:
304 1.1 matt /* load my cpu_number to PIR */
305 1.1 matt switch (vers) {
306 1.1 matt case MPC601:
307 1.1 matt case MPC604:
308 1.15 briggs case MPC604e:
309 1.1 matt case MPC604ev:
310 1.1 matt case MPC7400:
311 1.1 matt case MPC7410:
312 1.1 matt case MPC7450:
313 1.1 matt case MPC7455:
314 1.11 matt case MPC7457:
315 1.1 matt mtspr(SPR_PIR, id);
316 1.1 matt }
317 1.1 matt cpu_setup(self, ci);
318 1.1 matt break;
319 1.1 matt default:
320 1.1 matt if (id >= CPU_MAXNUM) {
321 1.3 matt aprint_normal(": more than %d cpus?\n", CPU_MAXNUM);
322 1.1 matt panic("cpuattach");
323 1.1 matt }
324 1.1 matt #ifndef MULTIPROCESSOR
325 1.3 matt aprint_normal(" not configured\n");
326 1.1 matt return NULL;
327 1.1 matt #endif
328 1.1 matt }
329 1.1 matt return (ci);
330 1.1 matt }
331 1.1 matt
332 1.1 matt void
333 1.1 matt cpu_setup(self, ci)
334 1.1 matt struct device *self;
335 1.1 matt struct cpu_info *ci;
336 1.1 matt {
337 1.1 matt u_int hid0, pvr, vers;
338 1.1 matt char *bitmask, hidbuf[128];
339 1.1 matt char model[80];
340 1.1 matt
341 1.1 matt pvr = mfpvr();
342 1.1 matt vers = (pvr >> 16) & 0xffff;
343 1.1 matt
344 1.1 matt cpu_identify(model, sizeof(model));
345 1.3 matt aprint_normal(": %s, ID %d%s\n", model, cpu_number(),
346 1.1 matt cpu_number() == 0 ? " (primary)" : "");
347 1.1 matt
348 1.1 matt hid0 = mfspr(SPR_HID0);
349 1.1 matt cpu_probe_cache();
350 1.1 matt
351 1.1 matt /*
352 1.1 matt * Configure power-saving mode.
353 1.1 matt */
354 1.1 matt switch (vers) {
355 1.1 matt case MPC603:
356 1.1 matt case MPC603e:
357 1.1 matt case MPC603ev:
358 1.1 matt case MPC750:
359 1.1 matt case IBM750FX:
360 1.1 matt case MPC7400:
361 1.1 matt case MPC7410:
362 1.1 matt case MPC8240:
363 1.1 matt case MPC8245:
364 1.1 matt /* Select DOZE mode. */
365 1.1 matt hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
366 1.1 matt hid0 |= HID0_DOZE | HID0_DPM;
367 1.1 matt powersave = 1;
368 1.1 matt break;
369 1.1 matt
370 1.11 matt case MPC7457:
371 1.1 matt case MPC7455:
372 1.1 matt case MPC7450:
373 1.5 matt /* Enable the 7450 branch caches */
374 1.5 matt hid0 |= HID0_SGE | HID0_BTIC;
375 1.5 matt hid0 |= HID0_LRSTK | HID0_FOLD | HID0_BHT;
376 1.1 matt /* Disable BTIC on 7450 Rev 2.0 or earlier */
377 1.5 matt if (vers == MPC7450 && (pvr & 0xFFFF) <= 0x0200)
378 1.1 matt hid0 &= ~HID0_BTIC;
379 1.1 matt /* Select NAP mode. */
380 1.1 matt hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
381 1.1 matt hid0 |= HID0_NAP | HID0_DPM;
382 1.1 matt powersave = 0; /* but don't use it */
383 1.1 matt break;
384 1.1 matt
385 1.1 matt default:
386 1.1 matt /* No power-saving mode is available. */ ;
387 1.1 matt }
388 1.1 matt
389 1.1 matt #ifdef NAPMODE
390 1.1 matt switch (vers) {
391 1.1 matt case IBM750FX:
392 1.1 matt case MPC750:
393 1.1 matt case MPC7400:
394 1.1 matt /* Select NAP mode. */
395 1.1 matt hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
396 1.1 matt hid0 |= HID0_NAP;
397 1.1 matt break;
398 1.1 matt }
399 1.1 matt #endif
400 1.1 matt
401 1.1 matt switch (vers) {
402 1.1 matt case IBM750FX:
403 1.1 matt case MPC750:
404 1.1 matt hid0 &= ~HID0_DBP; /* XXX correct? */
405 1.1 matt hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
406 1.1 matt break;
407 1.1 matt
408 1.1 matt case MPC7400:
409 1.1 matt case MPC7410:
410 1.1 matt hid0 &= ~HID0_SPD;
411 1.1 matt hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
412 1.1 matt hid0 |= HID0_EIEC;
413 1.1 matt break;
414 1.1 matt }
415 1.1 matt
416 1.1 matt mtspr(SPR_HID0, hid0);
417 1.1 matt
418 1.1 matt switch (vers) {
419 1.1 matt case MPC601:
420 1.1 matt bitmask = HID0_601_BITMASK;
421 1.1 matt break;
422 1.1 matt case MPC7450:
423 1.1 matt case MPC7455:
424 1.11 matt case MPC7457:
425 1.1 matt bitmask = HID0_7450_BITMASK;
426 1.1 matt break;
427 1.1 matt default:
428 1.1 matt bitmask = HID0_BITMASK;
429 1.1 matt break;
430 1.1 matt }
431 1.1 matt bitmask_snprintf(hid0, bitmask, hidbuf, sizeof hidbuf);
432 1.3 matt aprint_normal("%s: HID0 %s\n", self->dv_xname, hidbuf);
433 1.1 matt
434 1.1 matt /*
435 1.1 matt * Display speed and cache configuration.
436 1.1 matt */
437 1.15 briggs switch (vers) {
438 1.15 briggs case MPC604:
439 1.15 briggs case MPC604e:
440 1.15 briggs case MPC604ev:
441 1.15 briggs case MPC750:
442 1.15 briggs case IBM750FX:
443 1.16 briggs case MPC7400:
444 1.15 briggs case MPC7410:
445 1.16 briggs case MPC7450:
446 1.16 briggs case MPC7455:
447 1.16 briggs case MPC7457:
448 1.7 matt aprint_normal("%s: ", self->dv_xname);
449 1.1 matt cpu_print_speed();
450 1.15 briggs
451 1.17 briggs if (vers == IBM750FX || vers == MPC750 ||
452 1.17 briggs vers == MPC7400 || vers == MPC7410 || MPC745X_P(vers)) {
453 1.15 briggs if (MPC745X_P(vers)) {
454 1.15 briggs cpu_config_l3cr(vers);
455 1.15 briggs } else {
456 1.15 briggs cpu_config_l2cr(pvr);
457 1.15 briggs }
458 1.7 matt }
459 1.7 matt aprint_normal("\n");
460 1.15 briggs break;
461 1.1 matt }
462 1.1 matt
463 1.1 matt #if NSYSMON_ENVSYS > 0
464 1.1 matt /*
465 1.1 matt * Attach MPC750 temperature sensor to the envsys subsystem.
466 1.1 matt * XXX the 74xx series also has this sensor, but it is not
467 1.1 matt * XXX supported by Motorola and may return values that are off by
468 1.1 matt * XXX 35-55 degrees C.
469 1.1 matt */
470 1.1 matt if (vers == MPC750 || vers == IBM750FX)
471 1.1 matt cpu_tau_setup(ci);
472 1.1 matt #endif
473 1.1 matt
474 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
475 1.1 matt NULL, self->dv_xname, "clock");
476 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_softclock, EVCNT_TYPE_INTR,
477 1.1 matt NULL, self->dv_xname, "soft clock");
478 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_softnet, EVCNT_TYPE_INTR,
479 1.1 matt NULL, self->dv_xname, "soft net");
480 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_softserial, EVCNT_TYPE_INTR,
481 1.1 matt NULL, self->dv_xname, "soft serial");
482 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
483 1.1 matt NULL, self->dv_xname, "traps");
484 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
485 1.1 matt &ci->ci_ev_traps, self->dv_xname, "kernel DSI traps");
486 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
487 1.1 matt &ci->ci_ev_traps, self->dv_xname, "user DSI traps");
488 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
489 1.1 matt &ci->ci_ev_udsi, self->dv_xname, "user DSI failures");
490 1.10 matt evcnt_attach_dynamic(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP,
491 1.10 matt &ci->ci_ev_traps, self->dv_xname, "kernel ISI traps");
492 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
493 1.1 matt &ci->ci_ev_traps, self->dv_xname, "user ISI traps");
494 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
495 1.1 matt &ci->ci_ev_isi, self->dv_xname, "user ISI failures");
496 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
497 1.1 matt &ci->ci_ev_traps, self->dv_xname, "system call traps");
498 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
499 1.1 matt &ci->ci_ev_traps, self->dv_xname, "PGM traps");
500 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
501 1.1 matt &ci->ci_ev_traps, self->dv_xname, "FPU unavailable traps");
502 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_fpusw, EVCNT_TYPE_TRAP,
503 1.1 matt &ci->ci_ev_fpu, self->dv_xname, "FPU context switches");
504 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
505 1.1 matt &ci->ci_ev_traps, self->dv_xname, "user alignment traps");
506 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
507 1.1 matt &ci->ci_ev_ali, self->dv_xname, "user alignment traps");
508 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
509 1.1 matt &ci->ci_ev_umchk, self->dv_xname, "user MCHK failures");
510 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
511 1.1 matt &ci->ci_ev_traps, self->dv_xname, "AltiVec unavailable");
512 1.1 matt #ifdef ALTIVEC
513 1.1 matt if (cpu_altivec) {
514 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_vecsw, EVCNT_TYPE_TRAP,
515 1.1 matt &ci->ci_ev_vec, self->dv_xname, "AltiVec context switches");
516 1.1 matt }
517 1.1 matt #endif
518 1.1 matt }
519 1.1 matt
520 1.1 matt void
521 1.1 matt cpu_identify(char *str, size_t len)
522 1.1 matt {
523 1.1 matt u_int pvr, maj, min;
524 1.1 matt uint16_t vers, rev, revfmt;
525 1.1 matt const struct cputab *cp;
526 1.1 matt const char *name;
527 1.1 matt size_t n;
528 1.1 matt
529 1.1 matt pvr = mfpvr();
530 1.1 matt vers = pvr >> 16;
531 1.1 matt rev = pvr;
532 1.1 matt switch (vers) {
533 1.1 matt case MPC7410:
534 1.1 matt min = (pvr >> 0) & 0xff;
535 1.1 matt maj = min <= 4 ? 1 : 2;
536 1.1 matt break;
537 1.1 matt default:
538 1.1 matt maj = (pvr >> 8) & 0xf;
539 1.1 matt min = (pvr >> 0) & 0xf;
540 1.1 matt }
541 1.1 matt
542 1.1 matt for (cp = models; cp->name[0] != '\0'; cp++) {
543 1.1 matt if (cp->version == vers)
544 1.1 matt break;
545 1.1 matt }
546 1.1 matt
547 1.1 matt if (str == NULL) {
548 1.1 matt str = cpu_model;
549 1.1 matt len = sizeof(cpu_model);
550 1.1 matt cpu = vers;
551 1.1 matt }
552 1.1 matt
553 1.1 matt revfmt = cp->revfmt;
554 1.1 matt name = cp->name;
555 1.1 matt if (rev == MPC750 && pvr == 15) {
556 1.1 matt name = "755";
557 1.1 matt revfmt = REVFMT_HEX;
558 1.1 matt }
559 1.1 matt
560 1.1 matt if (cp->name[0] != '\0') {
561 1.1 matt n = snprintf(str, len, "%s (Revision ", cp->name);
562 1.1 matt } else {
563 1.1 matt n = snprintf(str, len, "Version %#x (Revision ", vers);
564 1.1 matt }
565 1.1 matt if (len > n) {
566 1.1 matt switch (revfmt) {
567 1.1 matt case REVFMT_MAJMIN:
568 1.1 matt snprintf(str + n, len - n, "%u.%u)", maj, min);
569 1.1 matt break;
570 1.1 matt case REVFMT_HEX:
571 1.1 matt snprintf(str + n, len - n, "0x%04x)", rev);
572 1.1 matt break;
573 1.1 matt case REVFMT_DEC:
574 1.1 matt snprintf(str + n, len - n, "%u)", rev);
575 1.1 matt break;
576 1.1 matt }
577 1.1 matt }
578 1.1 matt }
579 1.1 matt
580 1.1 matt #ifdef L2CR_CONFIG
581 1.1 matt u_int l2cr_config = L2CR_CONFIG;
582 1.1 matt #else
583 1.1 matt u_int l2cr_config = 0;
584 1.1 matt #endif
585 1.1 matt
586 1.2 jklos #ifdef L3CR_CONFIG
587 1.2 jklos u_int l3cr_config = L3CR_CONFIG;
588 1.2 jklos #else
589 1.2 jklos u_int l3cr_config = 0;
590 1.2 jklos #endif
591 1.2 jklos
592 1.1 matt void
593 1.7 matt cpu_enable_l2cr(register_t l2cr)
594 1.7 matt {
595 1.7 matt register_t msr, x;
596 1.7 matt
597 1.7 matt /* Disable interrupts and set the cache config bits. */
598 1.7 matt msr = mfmsr();
599 1.7 matt mtmsr(msr & ~PSL_EE);
600 1.7 matt #ifdef ALTIVEC
601 1.7 matt if (cpu_altivec)
602 1.7 matt __asm __volatile("dssall");
603 1.7 matt #endif
604 1.7 matt __asm __volatile("sync");
605 1.7 matt mtspr(SPR_L2CR, l2cr & ~L2CR_L2E);
606 1.7 matt __asm __volatile("sync");
607 1.7 matt
608 1.7 matt /* Wait for L2 clock to be stable (640 L2 clocks). */
609 1.7 matt delay(100);
610 1.7 matt
611 1.7 matt /* Invalidate all L2 contents. */
612 1.7 matt mtspr(SPR_L2CR, l2cr | L2CR_L2I);
613 1.7 matt do {
614 1.7 matt x = mfspr(SPR_L2CR);
615 1.7 matt } while (x & L2CR_L2IP);
616 1.7 matt
617 1.7 matt /* Enable L2 cache. */
618 1.7 matt l2cr |= L2CR_L2E;
619 1.7 matt mtspr(SPR_L2CR, l2cr);
620 1.7 matt mtmsr(msr);
621 1.7 matt }
622 1.7 matt
623 1.7 matt void
624 1.7 matt cpu_enable_l3cr(register_t l3cr)
625 1.1 matt {
626 1.7 matt register_t x;
627 1.7 matt
628 1.7 matt /* By The Book (numbered steps from section 3.7.1.3 of MPC7450UM) */
629 1.7 matt
630 1.7 matt /*
631 1.7 matt * 1: Set all L3CR bits for final config except L3E, L3I, L3PE, and
632 1.7 matt * L3CLKEN. (also mask off reserved bits in case they were included
633 1.7 matt * in L3CR_CONFIG)
634 1.7 matt */
635 1.7 matt l3cr &= ~(L3CR_L3E|L3CR_L3I|L3CR_L3PE|L3CR_L3CLKEN|L3CR_RESERVED);
636 1.7 matt mtspr(SPR_L3CR, l3cr);
637 1.7 matt
638 1.7 matt /* 2: Set L3CR[5] (otherwise reserved bit) to 1 */
639 1.7 matt l3cr |= 0x04000000;
640 1.7 matt mtspr(SPR_L3CR, l3cr);
641 1.7 matt
642 1.7 matt /* 3: Set L3CLKEN to 1*/
643 1.7 matt l3cr |= L3CR_L3CLKEN;
644 1.7 matt mtspr(SPR_L3CR, l3cr);
645 1.7 matt
646 1.7 matt /* 4/5: Perform a global cache invalidate (ref section 3.7.3.6) */
647 1.7 matt __asm __volatile("dssall;sync");
648 1.7 matt /* L3 cache is already disabled, no need to clear L3E */
649 1.7 matt mtspr(SPR_L3CR, l3cr|L3CR_L3I);
650 1.7 matt do {
651 1.7 matt x = mfspr(SPR_L3CR);
652 1.7 matt } while (x & L3CR_L3I);
653 1.7 matt
654 1.7 matt /* 6: Clear L3CLKEN to 0 */
655 1.7 matt l3cr &= ~L3CR_L3CLKEN;
656 1.7 matt mtspr(SPR_L3CR, l3cr);
657 1.7 matt
658 1.7 matt /* 7: Perform a 'sync' and wait at least 100 CPU cycles */
659 1.7 matt __asm __volatile("sync");
660 1.7 matt delay(100);
661 1.7 matt
662 1.7 matt /* 8: Set L3E and L3CLKEN */
663 1.7 matt l3cr |= (L3CR_L3E|L3CR_L3CLKEN);
664 1.7 matt mtspr(SPR_L3CR, l3cr);
665 1.7 matt
666 1.7 matt /* 9: Perform a 'sync' and wait at least 100 CPU cycles */
667 1.7 matt __asm __volatile("sync");
668 1.7 matt delay(100);
669 1.7 matt }
670 1.7 matt
671 1.7 matt void
672 1.7 matt cpu_config_l2cr(int pvr)
673 1.7 matt {
674 1.7 matt register_t l2cr;
675 1.1 matt
676 1.1 matt l2cr = mfspr(SPR_L2CR);
677 1.1 matt
678 1.1 matt /*
679 1.1 matt * For MP systems, the firmware may only configure the L2 cache
680 1.1 matt * on the first CPU. In this case, assume that the other CPUs
681 1.1 matt * should use the same value for L2CR.
682 1.1 matt */
683 1.1 matt if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
684 1.1 matt l2cr_config = l2cr;
685 1.1 matt }
686 1.1 matt
687 1.1 matt /*
688 1.1 matt * Configure L2 cache if not enabled.
689 1.1 matt */
690 1.8 scw if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
691 1.7 matt cpu_enable_l2cr(l2cr_config);
692 1.8 scw l2cr = mfspr(SPR_L2CR);
693 1.8 scw }
694 1.7 matt
695 1.15 briggs if ((l2cr & L2CR_L2E) == 0) {
696 1.15 briggs aprint_normal(" L2 cache present but not enabled ");
697 1.7 matt return;
698 1.15 briggs }
699 1.1 matt
700 1.7 matt aprint_normal(",");
701 1.7 matt if ((pvr >> 16) == IBM750FX ||
702 1.7 matt (pvr & 0xffffff00) == 0x00082200 /* IBM750CX */ ||
703 1.7 matt (pvr & 0xffffef00) == 0x00082300 /* IBM750CXe */) {
704 1.7 matt cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
705 1.7 matt } else {
706 1.7 matt cpu_fmttab_print(cpu_l2cr_formats, l2cr);
707 1.1 matt }
708 1.7 matt }
709 1.1 matt
710 1.7 matt void
711 1.7 matt cpu_config_l3cr(int vers)
712 1.7 matt {
713 1.7 matt register_t l2cr;
714 1.7 matt register_t l3cr;
715 1.7 matt
716 1.7 matt l2cr = mfspr(SPR_L2CR);
717 1.1 matt
718 1.7 matt /*
719 1.7 matt * For MP systems, the firmware may only configure the L2 cache
720 1.7 matt * on the first CPU. In this case, assume that the other CPUs
721 1.7 matt * should use the same value for L2CR.
722 1.7 matt */
723 1.7 matt if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
724 1.7 matt l2cr_config = l2cr;
725 1.7 matt }
726 1.1 matt
727 1.7 matt /*
728 1.7 matt * Configure L2 cache if not enabled.
729 1.7 matt */
730 1.7 matt if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
731 1.7 matt cpu_enable_l2cr(l2cr_config);
732 1.7 matt l2cr = mfspr(SPR_L2CR);
733 1.7 matt }
734 1.7 matt
735 1.7 matt aprint_normal(",");
736 1.11 matt cpu_fmttab_print(vers == MPC7457
737 1.11 matt ? cpu_7457_l2cr_formats : cpu_7450_l2cr_formats, l2cr);
738 1.2 jklos
739 1.7 matt l3cr = mfspr(SPR_L3CR);
740 1.1 matt
741 1.7 matt /*
742 1.7 matt * For MP systems, the firmware may only configure the L3 cache
743 1.7 matt * on the first CPU. In this case, assume that the other CPUs
744 1.7 matt * should use the same value for L3CR.
745 1.7 matt */
746 1.7 matt if ((l3cr & L3CR_L3E) != 0 && l3cr_config == 0) {
747 1.7 matt l3cr_config = l3cr;
748 1.7 matt }
749 1.1 matt
750 1.7 matt /*
751 1.7 matt * Configure L3 cache if not enabled.
752 1.7 matt */
753 1.7 matt if ((l3cr & L3CR_L3E) == 0 && l3cr_config != 0) {
754 1.7 matt cpu_enable_l3cr(l3cr_config);
755 1.7 matt l3cr = mfspr(SPR_L3CR);
756 1.7 matt }
757 1.7 matt
758 1.7 matt if (l3cr & L3CR_L3E) {
759 1.7 matt aprint_normal(",");
760 1.7 matt cpu_fmttab_print(cpu_7450_l3cr_formats, l3cr);
761 1.7 matt }
762 1.1 matt }
763 1.1 matt
764 1.1 matt void
765 1.1 matt cpu_print_speed(void)
766 1.1 matt {
767 1.1 matt uint64_t cps;
768 1.1 matt
769 1.7 matt mtspr(SPR_MMCR0, MMCR0_FC);
770 1.1 matt mtspr(SPR_PMC1, 0);
771 1.7 matt mtspr(SPR_MMCR0, MMCR0_PMC1SEL(PMCN_CYCLES));
772 1.1 matt delay(100000);
773 1.1 matt cps = (mfspr(SPR_PMC1) * 10) + 4999;
774 1.1 matt
775 1.15 briggs mtspr(SPR_MMCR0, MMCR0_FC);
776 1.15 briggs
777 1.7 matt aprint_normal("%lld.%02lld MHz", cps / 1000000, (cps / 10000) % 100);
778 1.1 matt }
779 1.1 matt
780 1.1 matt #if NSYSMON_ENVSYS > 0
781 1.1 matt const struct envsys_range cpu_tau_ranges[] = {
782 1.1 matt { 0, 0, ENVSYS_STEMP}
783 1.1 matt };
784 1.1 matt
785 1.1 matt struct envsys_basic_info cpu_tau_info[] = {
786 1.1 matt { 0, ENVSYS_STEMP, "CPU temp", 0, 0, ENVSYS_FVALID}
787 1.1 matt };
788 1.1 matt
789 1.1 matt void
790 1.1 matt cpu_tau_setup(struct cpu_info *ci)
791 1.1 matt {
792 1.12 matt struct {
793 1.12 matt struct sysmon_envsys sme;
794 1.12 matt struct envsys_tre_data tau_info;
795 1.12 matt } *datap;
796 1.1 matt int error;
797 1.1 matt
798 1.13 christos datap = malloc(sizeof(*datap), M_DEVBUF, M_WAITOK | M_ZERO);
799 1.12 matt
800 1.12 matt ci->ci_sysmon_cookie = &datap->sme;
801 1.12 matt datap->sme.sme_nsensors = 1;
802 1.12 matt datap->sme.sme_envsys_version = 1000;
803 1.12 matt datap->sme.sme_ranges = cpu_tau_ranges;
804 1.12 matt datap->sme.sme_sensor_info = cpu_tau_info;
805 1.12 matt datap->sme.sme_sensor_data = &datap->tau_info;
806 1.1 matt
807 1.12 matt datap->sme.sme_sensor_data->sensor = 0;
808 1.12 matt datap->sme.sme_sensor_data->warnflags = ENVSYS_WARN_OK;
809 1.12 matt datap->sme.sme_sensor_data->validflags = ENVSYS_FVALID|ENVSYS_FCURVALID;
810 1.12 matt datap->sme.sme_cookie = ci;
811 1.12 matt datap->sme.sme_gtredata = cpu_tau_gtredata;
812 1.12 matt datap->sme.sme_streinfo = cpu_tau_streinfo;
813 1.13 christos datap->sme.sme_flags = 0;
814 1.1 matt
815 1.12 matt if ((error = sysmon_envsys_register(&datap->sme)) != 0)
816 1.3 matt aprint_error("%s: unable to register with sysmon (%d)\n",
817 1.1 matt ci->ci_dev->dv_xname, error);
818 1.1 matt }
819 1.1 matt
820 1.1 matt
821 1.1 matt /* Find the temperature of the CPU. */
822 1.1 matt int
823 1.12 matt cpu_tau_gtredata(struct sysmon_envsys *sme, struct envsys_tre_data *tred)
824 1.1 matt {
825 1.1 matt int i, threshold, count;
826 1.1 matt
827 1.1 matt if (tred->sensor != 0) {
828 1.1 matt tred->validflags = 0;
829 1.1 matt return 0;
830 1.1 matt }
831 1.1 matt
832 1.1 matt threshold = 64; /* Half of the 7-bit sensor range */
833 1.1 matt mtspr(SPR_THRM1, 0);
834 1.1 matt mtspr(SPR_THRM2, 0);
835 1.1 matt /* XXX This counter is supposed to be "at least 20 microseonds, in
836 1.1 matt * XXX units of clock cycles". Since we don't have convenient
837 1.1 matt * XXX access to the CPU speed, set it to a conservative value,
838 1.1 matt * XXX that is, assuming a fast (1GHz) G3 CPU (As of February 2002,
839 1.1 matt * XXX the fastest G3 processor is 700MHz) . The cost is that
840 1.1 matt * XXX measuring the temperature takes a bit longer.
841 1.1 matt */
842 1.1 matt mtspr(SPR_THRM3, SPR_THRM_TIMER(20000) | SPR_THRM_ENABLE);
843 1.1 matt
844 1.1 matt /* Successive-approximation code adapted from Motorola
845 1.1 matt * application note AN1800/D, "Programming the Thermal Assist
846 1.1 matt * Unit in the MPC750 Microprocessor".
847 1.1 matt */
848 1.1 matt for (i = 4; i >= 0 ; i--) {
849 1.1 matt mtspr(SPR_THRM1,
850 1.1 matt SPR_THRM_THRESHOLD(threshold) | SPR_THRM_VALID);
851 1.1 matt count = 0;
852 1.1 matt while ((count < 100) &&
853 1.1 matt ((mfspr(SPR_THRM1) & SPR_THRM_TIV) == 0)) {
854 1.1 matt count++;
855 1.1 matt delay(1);
856 1.1 matt }
857 1.1 matt if (mfspr(SPR_THRM1) & SPR_THRM_TIN) {
858 1.1 matt /* The interrupt bit was set, meaning the
859 1.1 matt * temperature was above the threshold
860 1.1 matt */
861 1.1 matt threshold += 2 << i;
862 1.1 matt } else {
863 1.1 matt /* Temperature was below the threshold */
864 1.1 matt threshold -= 2 << i;
865 1.1 matt }
866 1.1 matt }
867 1.1 matt threshold += 2;
868 1.1 matt
869 1.1 matt /* Convert the temperature in degrees C to microkelvin */
870 1.12 matt sme->sme_sensor_data->cur.data_us = (threshold * 1000000) + 273150000;
871 1.1 matt
872 1.12 matt *tred = *sme->sme_sensor_data;
873 1.1 matt
874 1.1 matt return 0;
875 1.1 matt }
876 1.1 matt
877 1.1 matt int
878 1.12 matt cpu_tau_streinfo(struct sysmon_envsys *sme, struct envsys_basic_info *binfo)
879 1.1 matt {
880 1.1 matt
881 1.1 matt /* There is nothing to set here. */
882 1.1 matt return (EINVAL);
883 1.1 matt }
884 1.1 matt #endif /* NSYSMON_ENVSYS > 0 */
885