Home | History | Annotate | Line # | Download | only in oea
cpu_subr.c revision 1.22
      1  1.22      matt /*	$NetBSD: cpu_subr.c,v 1.22 2005/01/21 00:58:34 matt Exp $	*/
      2   1.1      matt 
      3   1.1      matt /*-
      4   1.1      matt  * Copyright (c) 2001 Matt Thomas.
      5   1.1      matt  * Copyright (c) 2001 Tsubai Masanari.
      6   1.1      matt  * Copyright (c) 1998, 1999, 2001 Internet Research Institute, Inc.
      7   1.1      matt  * All rights reserved.
      8   1.1      matt  *
      9   1.1      matt  * Redistribution and use in source and binary forms, with or without
     10   1.1      matt  * modification, are permitted provided that the following conditions
     11   1.1      matt  * are met:
     12   1.1      matt  * 1. Redistributions of source code must retain the above copyright
     13   1.1      matt  *    notice, this list of conditions and the following disclaimer.
     14   1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
     15   1.1      matt  *    notice, this list of conditions and the following disclaimer in the
     16   1.1      matt  *    documentation and/or other materials provided with the distribution.
     17   1.1      matt  * 3. All advertising materials mentioning features or use of this software
     18   1.1      matt  *    must display the following acknowledgement:
     19   1.1      matt  *	This product includes software developed by
     20   1.1      matt  *	Internet Research Institute, Inc.
     21   1.1      matt  * 4. The name of the author may not be used to endorse or promote products
     22   1.1      matt  *    derived from this software without specific prior written permission.
     23   1.1      matt  *
     24   1.1      matt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     25   1.1      matt  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     26   1.1      matt  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     27   1.1      matt  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     28   1.1      matt  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     29   1.1      matt  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     30   1.1      matt  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     31   1.1      matt  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     32   1.1      matt  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     33   1.1      matt  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     34   1.1      matt  */
     35   1.9     lukem 
     36   1.9     lukem #include <sys/cdefs.h>
     37  1.22      matt __KERNEL_RCSID(0, "$NetBSD: cpu_subr.c,v 1.22 2005/01/21 00:58:34 matt Exp $");
     38   1.1      matt 
     39   1.1      matt #include "opt_ppcparam.h"
     40   1.1      matt #include "opt_multiprocessor.h"
     41   1.1      matt #include "opt_altivec.h"
     42   1.1      matt #include "sysmon_envsys.h"
     43   1.1      matt 
     44   1.1      matt #include <sys/param.h>
     45   1.1      matt #include <sys/systm.h>
     46   1.1      matt #include <sys/device.h>
     47  1.12      matt #include <sys/malloc.h>
     48   1.1      matt 
     49   1.1      matt #include <uvm/uvm_extern.h>
     50   1.1      matt 
     51   1.1      matt #include <powerpc/oea/hid.h>
     52   1.1      matt #include <powerpc/oea/hid_601.h>
     53   1.1      matt #include <powerpc/spr.h>
     54   1.1      matt 
     55   1.1      matt #include <dev/sysmon/sysmonvar.h>
     56   1.1      matt 
     57   1.7      matt static void cpu_enable_l2cr(register_t);
     58   1.7      matt static void cpu_enable_l3cr(register_t);
     59   1.1      matt static void cpu_config_l2cr(int);
     60   1.7      matt static void cpu_config_l3cr(int);
     61   1.1      matt static void cpu_print_speed(void);
     62  1.20      matt static void cpu_idlespin(void);
     63   1.1      matt #if NSYSMON_ENVSYS > 0
     64   1.1      matt static void cpu_tau_setup(struct cpu_info *);
     65   1.1      matt static int cpu_tau_gtredata __P((struct sysmon_envsys *,
     66   1.1      matt     struct envsys_tre_data *));
     67   1.1      matt static int cpu_tau_streinfo __P((struct sysmon_envsys *,
     68   1.1      matt     struct envsys_basic_info *));
     69   1.1      matt #endif
     70   1.1      matt 
     71   1.1      matt int cpu;
     72   1.1      matt int ncpus;
     73   1.1      matt 
     74   1.7      matt struct fmttab {
     75   1.7      matt 	register_t fmt_mask;
     76   1.7      matt 	register_t fmt_value;
     77   1.7      matt 	const char *fmt_string;
     78   1.7      matt };
     79   1.7      matt 
     80   1.7      matt static const struct fmttab cpu_7450_l2cr_formats[] = {
     81   1.7      matt 	{ L2CR_L2E, 0, " disabled" },
     82   1.7      matt 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
     83   1.7      matt 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
     84   1.7      matt 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
     85   1.7      matt 	{ L2CR_L2E, ~0, " 256KB L2 cache" },
     86   1.7      matt 	{ 0 }
     87   1.7      matt };
     88   1.7      matt 
     89  1.22      matt static const struct fmttab cpu_7448_l2cr_formats[] = {
     90  1.22      matt 	{ L2CR_L2E, 0, " disabled" },
     91  1.22      matt 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
     92  1.22      matt 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
     93  1.22      matt 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
     94  1.22      matt 	{ L2CR_L2E, ~0, " 1MB L2 cache" },
     95  1.22      matt 	{ 0 }
     96  1.22      matt };
     97  1.22      matt 
     98  1.11      matt static const struct fmttab cpu_7457_l2cr_formats[] = {
     99  1.11      matt 	{ L2CR_L2E, 0, " disabled" },
    100  1.11      matt 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
    101  1.11      matt 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
    102  1.11      matt 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
    103  1.11      matt 	{ L2CR_L2E, ~0, " 512KB L2 cache" },
    104  1.11      matt 	{ 0 }
    105  1.11      matt };
    106  1.11      matt 
    107   1.7      matt static const struct fmttab cpu_7450_l3cr_formats[] = {
    108   1.7      matt 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3DO, " data-only" },
    109   1.7      matt 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3IO, " instruction-only" },
    110   1.7      matt 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3DO|L3CR_L3IO, " locked" },
    111   1.7      matt 	{ L3CR_L3SIZ, L3SIZ_2M, " 2MB" },
    112   1.7      matt 	{ L3CR_L3SIZ, L3SIZ_1M, " 1MB" },
    113   1.7      matt 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3PE|L3CR_L3APE, " parity" },
    114   1.7      matt 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3PE, " data-parity" },
    115   1.7      matt 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3APE, " address-parity" },
    116   1.7      matt 	{ L3CR_L3PE|L3CR_L3APE, 0, " no-parity" },
    117   1.7      matt 	{ L3CR_L3SIZ, ~0, " L3 cache" },
    118   1.7      matt 	{ L3CR_L3RT, L3RT_MSUG2_DDR, " (DDR SRAM)" },
    119   1.7      matt 	{ L3CR_L3RT, L3RT_PIPELINE_LATE, " (LW SRAM)" },
    120   1.7      matt 	{ L3CR_L3RT, L3RT_PB2_SRAM, " (PB2 SRAM)" },
    121   1.7      matt 	{ L3CR_L3CLK, ~0, " at" },
    122   1.7      matt 	{ L3CR_L3CLK, L3CLK_20, " 2:1" },
    123   1.7      matt 	{ L3CR_L3CLK, L3CLK_25, " 2.5:1" },
    124   1.7      matt 	{ L3CR_L3CLK, L3CLK_30, " 3:1" },
    125   1.7      matt 	{ L3CR_L3CLK, L3CLK_35, " 3.5:1" },
    126   1.7      matt 	{ L3CR_L3CLK, L3CLK_40, " 4:1" },
    127   1.7      matt 	{ L3CR_L3CLK, L3CLK_50, " 5:1" },
    128   1.7      matt 	{ L3CR_L3CLK, L3CLK_60, " 6:1" },
    129   1.7      matt 	{ L3CR_L3CLK, ~0, " ratio" },
    130   1.7      matt 	{ 0, 0 },
    131   1.7      matt };
    132   1.7      matt 
    133   1.7      matt static const struct fmttab cpu_ibm750_l2cr_formats[] = {
    134   1.7      matt 	{ L2CR_L2E, 0, " disabled" },
    135   1.7      matt 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
    136   1.7      matt 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
    137   1.7      matt 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
    138   1.7      matt 	{ 0, ~0, " 512KB" },
    139   1.7      matt 	{ L2CR_L2WT, L2CR_L2WT, " WT" },
    140   1.7      matt 	{ L2CR_L2WT, 0, " WB" },
    141   1.7      matt 	{ L2CR_L2PE, L2CR_L2PE, " with ECC" },
    142   1.7      matt 	{ 0, ~0, " L2 cache" },
    143   1.7      matt 	{ 0 }
    144   1.7      matt };
    145   1.7      matt 
    146   1.7      matt static const struct fmttab cpu_l2cr_formats[] = {
    147   1.7      matt 	{ L2CR_L2E, 0, " disabled" },
    148   1.7      matt 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
    149   1.7      matt 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
    150   1.7      matt 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
    151   1.7      matt 	{ L2CR_L2PE, L2CR_L2PE, " parity" },
    152   1.7      matt 	{ L2CR_L2PE, 0, " no-parity" },
    153   1.7      matt 	{ L2CR_L2SIZ, L2SIZ_2M, " 2MB" },
    154   1.7      matt 	{ L2CR_L2SIZ, L2SIZ_1M, " 1MB" },
    155   1.7      matt 	{ L2CR_L2SIZ, L2SIZ_512K, " 512KB" },
    156   1.7      matt 	{ L2CR_L2SIZ, L2SIZ_256K, " 256KB" },
    157   1.7      matt 	{ L2CR_L2WT, L2CR_L2WT, " WT" },
    158   1.7      matt 	{ L2CR_L2WT, 0, " WB" },
    159   1.7      matt 	{ L2CR_L2E, ~0, " L2 cache" },
    160   1.7      matt 	{ L2CR_L2RAM, L2RAM_FLOWTHRU_BURST, " (FB SRAM)" },
    161   1.7      matt 	{ L2CR_L2RAM, L2RAM_PIPELINE_LATE, " (LW SRAM)" },
    162   1.7      matt 	{ L2CR_L2RAM, L2RAM_PIPELINE_BURST, " (PB SRAM)" },
    163   1.7      matt 	{ L2CR_L2CLK, ~0, " at" },
    164   1.7      matt 	{ L2CR_L2CLK, L2CLK_10, " 1:1" },
    165   1.7      matt 	{ L2CR_L2CLK, L2CLK_15, " 1.5:1" },
    166   1.7      matt 	{ L2CR_L2CLK, L2CLK_20, " 2:1" },
    167   1.7      matt 	{ L2CR_L2CLK, L2CLK_25, " 2.5:1" },
    168   1.7      matt 	{ L2CR_L2CLK, L2CLK_30, " 3:1" },
    169   1.7      matt 	{ L2CR_L2CLK, L2CLK_35, " 3.5:1" },
    170   1.7      matt 	{ L2CR_L2CLK, L2CLK_40, " 4:1" },
    171   1.7      matt 	{ L2CR_L2CLK, ~0, " ratio" },
    172   1.7      matt 	{ 0 }
    173   1.7      matt };
    174   1.7      matt 
    175   1.7      matt static void cpu_fmttab_print(const struct fmttab *, register_t);
    176   1.7      matt 
    177   1.7      matt struct cputab {
    178   1.7      matt 	const char name[8];
    179   1.7      matt 	uint16_t version;
    180   1.7      matt 	uint16_t revfmt;
    181   1.7      matt };
    182   1.7      matt #define	REVFMT_MAJMIN	1		/* %u.%u */
    183   1.7      matt #define	REVFMT_HEX	2		/* 0x%04x */
    184   1.7      matt #define	REVFMT_DEC	3		/* %u */
    185   1.7      matt static const struct cputab models[] = {
    186   1.7      matt 	{ "601",	MPC601,		REVFMT_DEC },
    187   1.7      matt 	{ "602",	MPC602,		REVFMT_DEC },
    188   1.7      matt 	{ "603",	MPC603,		REVFMT_MAJMIN },
    189   1.7      matt 	{ "603e",	MPC603e,	REVFMT_MAJMIN },
    190   1.7      matt 	{ "603ev",	MPC603ev,	REVFMT_MAJMIN },
    191   1.7      matt 	{ "604",	MPC604,		REVFMT_MAJMIN },
    192  1.15    briggs 	{ "604e",	MPC604e,	REVFMT_MAJMIN },
    193   1.7      matt 	{ "604ev",	MPC604ev,	REVFMT_MAJMIN },
    194   1.7      matt 	{ "620",	MPC620,  	REVFMT_HEX },
    195   1.7      matt 	{ "750",	MPC750,		REVFMT_MAJMIN },
    196   1.7      matt 	{ "750FX",	IBM750FX,	REVFMT_MAJMIN },
    197   1.7      matt 	{ "7400",	MPC7400,	REVFMT_MAJMIN },
    198   1.7      matt 	{ "7410",	MPC7410,	REVFMT_MAJMIN },
    199   1.7      matt 	{ "7450",	MPC7450,	REVFMT_MAJMIN },
    200   1.7      matt 	{ "7455",	MPC7455,	REVFMT_MAJMIN },
    201  1.11      matt 	{ "7457",	MPC7457,	REVFMT_MAJMIN },
    202  1.21      matt 	{ "7447A",	MPC7447A,	REVFMT_MAJMIN },
    203  1.22      matt 	{ "7448",	MPC7448,	REVFMT_MAJMIN },
    204   1.7      matt 	{ "8240",	MPC8240,	REVFMT_MAJMIN },
    205   1.7      matt 	{ "",		0,		REVFMT_HEX }
    206   1.7      matt };
    207   1.7      matt 
    208   1.7      matt 
    209   1.1      matt #ifdef MULTIPROCESSOR
    210   1.1      matt struct cpu_info cpu_info[CPU_MAXNUM];
    211   1.1      matt #else
    212   1.1      matt struct cpu_info cpu_info[1];
    213   1.1      matt #endif
    214   1.1      matt 
    215   1.1      matt int cpu_altivec;
    216  1.14    kleink int cpu_psluserset, cpu_pslusermod;
    217   1.1      matt char cpu_model[80];
    218   1.1      matt 
    219   1.1      matt void
    220   1.7      matt cpu_fmttab_print(const struct fmttab *fmt, register_t data)
    221   1.7      matt {
    222   1.7      matt 	for (; fmt->fmt_mask != 0 || fmt->fmt_value != 0; fmt++) {
    223   1.7      matt 		if ((~fmt->fmt_mask & fmt->fmt_value) != 0 ||
    224   1.7      matt 		    (data & fmt->fmt_mask) == fmt->fmt_value)
    225   1.7      matt 			aprint_normal("%s", fmt->fmt_string);
    226   1.7      matt 	}
    227   1.7      matt }
    228   1.7      matt 
    229   1.7      matt void
    230  1.20      matt cpu_idlespin(void)
    231  1.20      matt {
    232  1.20      matt 	register_t msr;
    233  1.20      matt 
    234  1.20      matt 	if (powersave <= 0)
    235  1.20      matt 		return;
    236  1.20      matt 
    237  1.20      matt 	__asm __volatile(
    238  1.20      matt 		"sync;"
    239  1.20      matt 		"mfmsr	%0;"
    240  1.20      matt 		"oris	%0,%0,%1@h;"	/* enter power saving mode */
    241  1.20      matt 		"mtmsr	%0;"
    242  1.20      matt 		"isync;"
    243  1.20      matt 	    :	"=r"(msr)
    244  1.20      matt 	    :	"J"(PSL_POW));
    245  1.20      matt }
    246  1.20      matt 
    247  1.20      matt void
    248   1.1      matt cpu_probe_cache(void)
    249   1.1      matt {
    250   1.1      matt 	u_int assoc, pvr, vers;
    251   1.1      matt 
    252   1.1      matt 	pvr = mfpvr();
    253   1.1      matt 	vers = pvr >> 16;
    254   1.1      matt 
    255   1.1      matt 	switch (vers) {
    256   1.1      matt #define	K	*1024
    257   1.1      matt 	case IBM750FX:
    258   1.1      matt 	case MPC601:
    259   1.1      matt 	case MPC750:
    260  1.22      matt 	case MPC7447A:
    261  1.22      matt 	case MPC7448:
    262   1.1      matt 	case MPC7450:
    263   1.1      matt 	case MPC7455:
    264  1.11      matt 	case MPC7457:
    265   1.1      matt 		curcpu()->ci_ci.dcache_size = 32 K;
    266   1.1      matt 		curcpu()->ci_ci.icache_size = 32 K;
    267   1.1      matt 		assoc = 8;
    268   1.1      matt 		break;
    269   1.1      matt 	case MPC603:
    270   1.1      matt 		curcpu()->ci_ci.dcache_size = 8 K;
    271   1.1      matt 		curcpu()->ci_ci.icache_size = 8 K;
    272   1.1      matt 		assoc = 2;
    273   1.1      matt 		break;
    274   1.1      matt 	case MPC603e:
    275   1.1      matt 	case MPC603ev:
    276   1.1      matt 	case MPC604:
    277   1.1      matt 	case MPC8240:
    278   1.1      matt 	case MPC8245:
    279   1.1      matt 		curcpu()->ci_ci.dcache_size = 16 K;
    280   1.1      matt 		curcpu()->ci_ci.icache_size = 16 K;
    281   1.1      matt 		assoc = 4;
    282   1.1      matt 		break;
    283  1.15    briggs 	case MPC604e:
    284   1.1      matt 	case MPC604ev:
    285   1.1      matt 		curcpu()->ci_ci.dcache_size = 32 K;
    286   1.1      matt 		curcpu()->ci_ci.icache_size = 32 K;
    287   1.1      matt 		assoc = 4;
    288   1.1      matt 		break;
    289   1.1      matt 	default:
    290   1.6   thorpej 		curcpu()->ci_ci.dcache_size = PAGE_SIZE;
    291   1.6   thorpej 		curcpu()->ci_ci.icache_size = PAGE_SIZE;
    292   1.1      matt 		assoc = 1;
    293   1.1      matt #undef	K
    294   1.1      matt 	}
    295   1.1      matt 
    296   1.1      matt 	/* Presently common across all implementations. */
    297   1.1      matt 	curcpu()->ci_ci.dcache_line_size = CACHELINESIZE;
    298   1.1      matt 	curcpu()->ci_ci.icache_line_size = CACHELINESIZE;
    299   1.1      matt 
    300   1.1      matt 	/*
    301   1.1      matt 	 * Possibly recolor.
    302   1.1      matt 	 */
    303   1.1      matt 	uvm_page_recolor(atop(curcpu()->ci_ci.dcache_size / assoc));
    304   1.1      matt }
    305   1.1      matt 
    306   1.1      matt struct cpu_info *
    307   1.1      matt cpu_attach_common(struct device *self, int id)
    308   1.1      matt {
    309   1.1      matt 	struct cpu_info *ci;
    310   1.1      matt 	u_int pvr, vers;
    311   1.1      matt 
    312   1.1      matt 	ncpus++;
    313   1.1      matt 	ci = &cpu_info[id];
    314   1.1      matt #ifndef MULTIPROCESSOR
    315   1.1      matt 	/*
    316   1.1      matt 	 * If this isn't the primary CPU, print an error message
    317   1.1      matt 	 * and just bail out.
    318   1.1      matt 	 */
    319   1.1      matt 	if (id != 0) {
    320   1.3      matt 		aprint_normal(": ID %d\n", id);
    321   1.3      matt 		aprint_normal("%s: processor off-line; multiprocessor support "
    322   1.1      matt 		    "not present in kernel\n", self->dv_xname);
    323   1.1      matt 		return (NULL);
    324   1.1      matt 	}
    325   1.1      matt #endif
    326   1.1      matt 
    327   1.1      matt 	ci->ci_cpuid = id;
    328   1.1      matt 	ci->ci_intrdepth = -1;
    329   1.1      matt 	ci->ci_dev = self;
    330  1.20      matt 	ci->ci_idlespin = cpu_idlespin;
    331   1.1      matt 
    332   1.1      matt 	pvr = mfpvr();
    333   1.1      matt 	vers = (pvr >> 16) & 0xffff;
    334   1.1      matt 
    335   1.1      matt 	switch (id) {
    336   1.1      matt 	case 0:
    337   1.1      matt 		/* load my cpu_number to PIR */
    338   1.1      matt 		switch (vers) {
    339   1.1      matt 		case MPC601:
    340   1.1      matt 		case MPC604:
    341  1.15    briggs 		case MPC604e:
    342   1.1      matt 		case MPC604ev:
    343   1.1      matt 		case MPC7400:
    344   1.1      matt 		case MPC7410:
    345  1.22      matt 		case MPC7447A:
    346  1.22      matt 		case MPC7448:
    347   1.1      matt 		case MPC7450:
    348   1.1      matt 		case MPC7455:
    349  1.11      matt 		case MPC7457:
    350   1.1      matt 			mtspr(SPR_PIR, id);
    351   1.1      matt 		}
    352   1.1      matt 		cpu_setup(self, ci);
    353   1.1      matt 		break;
    354   1.1      matt 	default:
    355   1.1      matt 		if (id >= CPU_MAXNUM) {
    356   1.3      matt 			aprint_normal(": more than %d cpus?\n", CPU_MAXNUM);
    357   1.1      matt 			panic("cpuattach");
    358   1.1      matt 		}
    359   1.1      matt #ifndef MULTIPROCESSOR
    360   1.3      matt 		aprint_normal(" not configured\n");
    361   1.1      matt 		return NULL;
    362   1.1      matt #endif
    363   1.1      matt 	}
    364   1.1      matt 	return (ci);
    365   1.1      matt }
    366   1.1      matt 
    367   1.1      matt void
    368   1.1      matt cpu_setup(self, ci)
    369   1.1      matt 	struct device *self;
    370   1.1      matt 	struct cpu_info *ci;
    371   1.1      matt {
    372   1.1      matt 	u_int hid0, pvr, vers;
    373   1.1      matt 	char *bitmask, hidbuf[128];
    374   1.1      matt 	char model[80];
    375   1.1      matt 
    376   1.1      matt 	pvr = mfpvr();
    377   1.1      matt 	vers = (pvr >> 16) & 0xffff;
    378   1.1      matt 
    379   1.1      matt 	cpu_identify(model, sizeof(model));
    380   1.3      matt 	aprint_normal(": %s, ID %d%s\n", model,  cpu_number(),
    381   1.1      matt 	    cpu_number() == 0 ? " (primary)" : "");
    382   1.1      matt 
    383   1.1      matt 	hid0 = mfspr(SPR_HID0);
    384   1.1      matt 	cpu_probe_cache();
    385   1.1      matt 
    386   1.1      matt 	/*
    387   1.1      matt 	 * Configure power-saving mode.
    388   1.1      matt 	 */
    389   1.1      matt 	switch (vers) {
    390  1.18    briggs 	case MPC604:
    391  1.18    briggs 	case MPC604e:
    392  1.18    briggs 	case MPC604ev:
    393  1.18    briggs 		/*
    394  1.18    briggs 		 * Do not have HID0 support settings, but can support
    395  1.18    briggs 		 * MSR[POW] off
    396  1.18    briggs 		 */
    397  1.18    briggs 		powersave = 1;
    398  1.18    briggs 		break;
    399  1.18    briggs 
    400   1.1      matt 	case MPC603:
    401   1.1      matt 	case MPC603e:
    402   1.1      matt 	case MPC603ev:
    403   1.1      matt 	case MPC750:
    404   1.1      matt 	case IBM750FX:
    405   1.1      matt 	case MPC7400:
    406   1.1      matt 	case MPC7410:
    407   1.1      matt 	case MPC8240:
    408   1.1      matt 	case MPC8245:
    409   1.1      matt 		/* Select DOZE mode. */
    410   1.1      matt 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
    411   1.1      matt 		hid0 |= HID0_DOZE | HID0_DPM;
    412   1.1      matt 		powersave = 1;
    413   1.1      matt 		break;
    414   1.1      matt 
    415  1.22      matt 	case MPC7447A:
    416  1.22      matt 	case MPC7448:
    417  1.11      matt 	case MPC7457:
    418   1.1      matt 	case MPC7455:
    419   1.1      matt 	case MPC7450:
    420   1.5      matt 		/* Enable the 7450 branch caches */
    421   1.5      matt 		hid0 |= HID0_SGE | HID0_BTIC;
    422   1.5      matt 		hid0 |= HID0_LRSTK | HID0_FOLD | HID0_BHT;
    423   1.1      matt 		/* Disable BTIC on 7450 Rev 2.0 or earlier */
    424   1.5      matt 		if (vers == MPC7450 && (pvr & 0xFFFF) <= 0x0200)
    425   1.1      matt 			hid0 &= ~HID0_BTIC;
    426   1.1      matt 		/* Select NAP mode. */
    427  1.19       chs 		hid0 &= ~(HID0_HIGH_BAT_EN | HID0_SLEEP);
    428  1.22      matt 		hid0 |= HID0_NAP | HID0_DPM /* | HID0_XBSEN */;
    429  1.19       chs 		powersave = 1;
    430   1.1      matt 		break;
    431   1.1      matt 
    432   1.1      matt 	default:
    433   1.1      matt 		/* No power-saving mode is available. */ ;
    434   1.1      matt 	}
    435   1.1      matt 
    436   1.1      matt #ifdef NAPMODE
    437   1.1      matt 	switch (vers) {
    438   1.1      matt 	case IBM750FX:
    439   1.1      matt 	case MPC750:
    440   1.1      matt 	case MPC7400:
    441   1.1      matt 		/* Select NAP mode. */
    442   1.1      matt 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
    443   1.1      matt 		hid0 |= HID0_NAP;
    444   1.1      matt 		break;
    445   1.1      matt 	}
    446   1.1      matt #endif
    447   1.1      matt 
    448   1.1      matt 	switch (vers) {
    449   1.1      matt 	case IBM750FX:
    450   1.1      matt 	case MPC750:
    451   1.1      matt 		hid0 &= ~HID0_DBP;		/* XXX correct? */
    452   1.1      matt 		hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
    453   1.1      matt 		break;
    454   1.1      matt 
    455   1.1      matt 	case MPC7400:
    456   1.1      matt 	case MPC7410:
    457   1.1      matt 		hid0 &= ~HID0_SPD;
    458   1.1      matt 		hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
    459   1.1      matt 		hid0 |= HID0_EIEC;
    460   1.1      matt 		break;
    461   1.1      matt 	}
    462   1.1      matt 
    463   1.1      matt 	mtspr(SPR_HID0, hid0);
    464  1.22      matt 	__asm __volatile("sync;isync");
    465   1.1      matt 
    466   1.1      matt 	switch (vers) {
    467   1.1      matt 	case MPC601:
    468   1.1      matt 		bitmask = HID0_601_BITMASK;
    469   1.1      matt 		break;
    470   1.1      matt 	case MPC7450:
    471   1.1      matt 	case MPC7455:
    472  1.11      matt 	case MPC7457:
    473   1.1      matt 		bitmask = HID0_7450_BITMASK;
    474   1.1      matt 		break;
    475   1.1      matt 	default:
    476   1.1      matt 		bitmask = HID0_BITMASK;
    477   1.1      matt 		break;
    478   1.1      matt 	}
    479   1.1      matt 	bitmask_snprintf(hid0, bitmask, hidbuf, sizeof hidbuf);
    480   1.3      matt 	aprint_normal("%s: HID0 %s\n", self->dv_xname, hidbuf);
    481   1.1      matt 
    482   1.1      matt 	/*
    483   1.1      matt 	 * Display speed and cache configuration.
    484   1.1      matt 	 */
    485  1.15    briggs 	switch (vers) {
    486  1.15    briggs 	case MPC604:
    487  1.15    briggs 	case MPC604e:
    488  1.15    briggs 	case MPC604ev:
    489  1.15    briggs 	case MPC750:
    490  1.15    briggs 	case IBM750FX:
    491  1.16    briggs 	case MPC7400:
    492  1.15    briggs 	case MPC7410:
    493  1.22      matt 	case MPC7447A:
    494  1.22      matt 	case MPC7448:
    495  1.16    briggs 	case MPC7450:
    496  1.16    briggs 	case MPC7455:
    497  1.16    briggs 	case MPC7457:
    498   1.7      matt 		aprint_normal("%s: ", self->dv_xname);
    499   1.1      matt 		cpu_print_speed();
    500  1.15    briggs 
    501  1.17    briggs 		if (vers == IBM750FX || vers == MPC750 ||
    502  1.17    briggs 		    vers == MPC7400  || vers == MPC7410 || MPC745X_P(vers)) {
    503  1.15    briggs 			if (MPC745X_P(vers)) {
    504  1.15    briggs 				cpu_config_l3cr(vers);
    505  1.15    briggs 			} else {
    506  1.15    briggs 				cpu_config_l2cr(pvr);
    507  1.15    briggs 			}
    508   1.7      matt 		}
    509   1.7      matt 		aprint_normal("\n");
    510  1.15    briggs 		break;
    511   1.1      matt 	}
    512   1.1      matt 
    513   1.1      matt #if NSYSMON_ENVSYS > 0
    514   1.1      matt 	/*
    515   1.1      matt 	 * Attach MPC750 temperature sensor to the envsys subsystem.
    516   1.1      matt 	 * XXX the 74xx series also has this sensor, but it is not
    517   1.1      matt 	 * XXX supported by Motorola and may return values that are off by
    518   1.1      matt 	 * XXX 35-55 degrees C.
    519   1.1      matt 	 */
    520   1.1      matt 	if (vers == MPC750 || vers == IBM750FX)
    521   1.1      matt 		cpu_tau_setup(ci);
    522   1.1      matt #endif
    523   1.1      matt 
    524   1.1      matt 	evcnt_attach_dynamic(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
    525   1.1      matt 		NULL, self->dv_xname, "clock");
    526   1.1      matt 	evcnt_attach_dynamic(&ci->ci_ev_softclock, EVCNT_TYPE_INTR,
    527   1.1      matt 		NULL, self->dv_xname, "soft clock");
    528   1.1      matt 	evcnt_attach_dynamic(&ci->ci_ev_softnet, EVCNT_TYPE_INTR,
    529   1.1      matt 		NULL, self->dv_xname, "soft net");
    530   1.1      matt 	evcnt_attach_dynamic(&ci->ci_ev_softserial, EVCNT_TYPE_INTR,
    531   1.1      matt 		NULL, self->dv_xname, "soft serial");
    532   1.1      matt 	evcnt_attach_dynamic(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
    533   1.1      matt 		NULL, self->dv_xname, "traps");
    534   1.1      matt 	evcnt_attach_dynamic(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
    535   1.1      matt 		&ci->ci_ev_traps, self->dv_xname, "kernel DSI traps");
    536   1.1      matt 	evcnt_attach_dynamic(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
    537   1.1      matt 		&ci->ci_ev_traps, self->dv_xname, "user DSI traps");
    538   1.1      matt 	evcnt_attach_dynamic(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
    539   1.1      matt 		&ci->ci_ev_udsi, self->dv_xname, "user DSI failures");
    540  1.10      matt 	evcnt_attach_dynamic(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP,
    541  1.10      matt 		&ci->ci_ev_traps, self->dv_xname, "kernel ISI traps");
    542   1.1      matt 	evcnt_attach_dynamic(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
    543   1.1      matt 		&ci->ci_ev_traps, self->dv_xname, "user ISI traps");
    544   1.1      matt 	evcnt_attach_dynamic(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
    545   1.1      matt 		&ci->ci_ev_isi, self->dv_xname, "user ISI failures");
    546   1.1      matt 	evcnt_attach_dynamic(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
    547   1.1      matt 		&ci->ci_ev_traps, self->dv_xname, "system call traps");
    548   1.1      matt 	evcnt_attach_dynamic(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
    549   1.1      matt 		&ci->ci_ev_traps, self->dv_xname, "PGM traps");
    550   1.1      matt 	evcnt_attach_dynamic(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
    551   1.1      matt 		&ci->ci_ev_traps, self->dv_xname, "FPU unavailable traps");
    552   1.1      matt 	evcnt_attach_dynamic(&ci->ci_ev_fpusw, EVCNT_TYPE_TRAP,
    553   1.1      matt 		&ci->ci_ev_fpu, self->dv_xname, "FPU context switches");
    554   1.1      matt 	evcnt_attach_dynamic(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
    555   1.1      matt 		&ci->ci_ev_traps, self->dv_xname, "user alignment traps");
    556   1.1      matt 	evcnt_attach_dynamic(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
    557   1.1      matt 		&ci->ci_ev_ali, self->dv_xname, "user alignment traps");
    558   1.1      matt 	evcnt_attach_dynamic(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
    559   1.1      matt 		&ci->ci_ev_umchk, self->dv_xname, "user MCHK failures");
    560   1.1      matt 	evcnt_attach_dynamic(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
    561   1.1      matt 		&ci->ci_ev_traps, self->dv_xname, "AltiVec unavailable");
    562   1.1      matt #ifdef ALTIVEC
    563   1.1      matt 	if (cpu_altivec) {
    564   1.1      matt 		evcnt_attach_dynamic(&ci->ci_ev_vecsw, EVCNT_TYPE_TRAP,
    565   1.1      matt 		    &ci->ci_ev_vec, self->dv_xname, "AltiVec context switches");
    566   1.1      matt 	}
    567   1.1      matt #endif
    568   1.1      matt }
    569   1.1      matt 
    570   1.1      matt void
    571   1.1      matt cpu_identify(char *str, size_t len)
    572   1.1      matt {
    573   1.1      matt 	u_int pvr, maj, min;
    574   1.1      matt 	uint16_t vers, rev, revfmt;
    575   1.1      matt 	const struct cputab *cp;
    576   1.1      matt 	const char *name;
    577   1.1      matt 	size_t n;
    578   1.1      matt 
    579   1.1      matt 	pvr = mfpvr();
    580   1.1      matt 	vers = pvr >> 16;
    581   1.1      matt 	rev = pvr;
    582   1.1      matt 	switch (vers) {
    583   1.1      matt 	case MPC7410:
    584   1.1      matt 		min = (pvr >> 0) & 0xff;
    585   1.1      matt 		maj = min <= 4 ? 1 : 2;
    586   1.1      matt 		break;
    587   1.1      matt 	default:
    588   1.1      matt 		maj = (pvr >>  8) & 0xf;
    589   1.1      matt 		min = (pvr >>  0) & 0xf;
    590   1.1      matt 	}
    591   1.1      matt 
    592   1.1      matt 	for (cp = models; cp->name[0] != '\0'; cp++) {
    593   1.1      matt 		if (cp->version == vers)
    594   1.1      matt 			break;
    595   1.1      matt 	}
    596   1.1      matt 
    597   1.1      matt 	if (str == NULL) {
    598   1.1      matt 		str = cpu_model;
    599   1.1      matt 		len = sizeof(cpu_model);
    600   1.1      matt 		cpu = vers;
    601   1.1      matt 	}
    602   1.1      matt 
    603   1.1      matt 	revfmt = cp->revfmt;
    604   1.1      matt 	name = cp->name;
    605   1.1      matt 	if (rev == MPC750 && pvr == 15) {
    606   1.1      matt 		name = "755";
    607   1.1      matt 		revfmt = REVFMT_HEX;
    608   1.1      matt 	}
    609   1.1      matt 
    610   1.1      matt 	if (cp->name[0] != '\0') {
    611   1.1      matt 		n = snprintf(str, len, "%s (Revision ", cp->name);
    612   1.1      matt 	} else {
    613   1.1      matt 		n = snprintf(str, len, "Version %#x (Revision ", vers);
    614   1.1      matt 	}
    615   1.1      matt 	if (len > n) {
    616   1.1      matt 		switch (revfmt) {
    617   1.1      matt 		case REVFMT_MAJMIN:
    618   1.1      matt 			snprintf(str + n, len - n, "%u.%u)", maj, min);
    619   1.1      matt 			break;
    620   1.1      matt 		case REVFMT_HEX:
    621   1.1      matt 			snprintf(str + n, len - n, "0x%04x)", rev);
    622   1.1      matt 			break;
    623   1.1      matt 		case REVFMT_DEC:
    624   1.1      matt 			snprintf(str + n, len - n, "%u)", rev);
    625   1.1      matt 			break;
    626   1.1      matt 		}
    627   1.1      matt 	}
    628   1.1      matt }
    629   1.1      matt 
    630   1.1      matt #ifdef L2CR_CONFIG
    631   1.1      matt u_int l2cr_config = L2CR_CONFIG;
    632   1.1      matt #else
    633   1.1      matt u_int l2cr_config = 0;
    634   1.1      matt #endif
    635   1.1      matt 
    636   1.2     jklos #ifdef L3CR_CONFIG
    637   1.2     jklos u_int l3cr_config = L3CR_CONFIG;
    638   1.2     jklos #else
    639   1.2     jklos u_int l3cr_config = 0;
    640   1.2     jklos #endif
    641   1.2     jklos 
    642   1.1      matt void
    643   1.7      matt cpu_enable_l2cr(register_t l2cr)
    644   1.7      matt {
    645   1.7      matt 	register_t msr, x;
    646   1.7      matt 
    647   1.7      matt 	/* Disable interrupts and set the cache config bits. */
    648   1.7      matt 	msr = mfmsr();
    649   1.7      matt 	mtmsr(msr & ~PSL_EE);
    650   1.7      matt #ifdef ALTIVEC
    651   1.7      matt 	if (cpu_altivec)
    652   1.7      matt 		__asm __volatile("dssall");
    653   1.7      matt #endif
    654   1.7      matt 	__asm __volatile("sync");
    655   1.7      matt 	mtspr(SPR_L2CR, l2cr & ~L2CR_L2E);
    656   1.7      matt 	__asm __volatile("sync");
    657   1.7      matt 
    658   1.7      matt 	/* Wait for L2 clock to be stable (640 L2 clocks). */
    659   1.7      matt 	delay(100);
    660   1.7      matt 
    661   1.7      matt 	/* Invalidate all L2 contents. */
    662   1.7      matt 	mtspr(SPR_L2CR, l2cr | L2CR_L2I);
    663   1.7      matt 	do {
    664   1.7      matt 		x = mfspr(SPR_L2CR);
    665   1.7      matt 	} while (x & L2CR_L2IP);
    666   1.7      matt 
    667   1.7      matt 	/* Enable L2 cache. */
    668   1.7      matt 	l2cr |= L2CR_L2E;
    669   1.7      matt 	mtspr(SPR_L2CR, l2cr);
    670   1.7      matt 	mtmsr(msr);
    671   1.7      matt }
    672   1.7      matt 
    673   1.7      matt void
    674   1.7      matt cpu_enable_l3cr(register_t l3cr)
    675   1.1      matt {
    676   1.7      matt 	register_t x;
    677   1.7      matt 
    678   1.7      matt 	/* By The Book (numbered steps from section 3.7.1.3 of MPC7450UM) */
    679   1.7      matt 
    680   1.7      matt 	/*
    681   1.7      matt 	 * 1: Set all L3CR bits for final config except L3E, L3I, L3PE, and
    682   1.7      matt 	 *    L3CLKEN.  (also mask off reserved bits in case they were included
    683   1.7      matt 	 *    in L3CR_CONFIG)
    684   1.7      matt 	 */
    685   1.7      matt 	l3cr &= ~(L3CR_L3E|L3CR_L3I|L3CR_L3PE|L3CR_L3CLKEN|L3CR_RESERVED);
    686   1.7      matt 	mtspr(SPR_L3CR, l3cr);
    687   1.7      matt 
    688   1.7      matt 	/* 2: Set L3CR[5] (otherwise reserved bit) to 1 */
    689   1.7      matt 	l3cr |= 0x04000000;
    690   1.7      matt 	mtspr(SPR_L3CR, l3cr);
    691   1.7      matt 
    692   1.7      matt 	/* 3: Set L3CLKEN to 1*/
    693   1.7      matt 	l3cr |= L3CR_L3CLKEN;
    694   1.7      matt 	mtspr(SPR_L3CR, l3cr);
    695   1.7      matt 
    696   1.7      matt 	/* 4/5: Perform a global cache invalidate (ref section 3.7.3.6) */
    697   1.7      matt 	__asm __volatile("dssall;sync");
    698   1.7      matt 	/* L3 cache is already disabled, no need to clear L3E */
    699   1.7      matt 	mtspr(SPR_L3CR, l3cr|L3CR_L3I);
    700   1.7      matt 	do {
    701   1.7      matt 		x = mfspr(SPR_L3CR);
    702   1.7      matt 	} while (x & L3CR_L3I);
    703   1.7      matt 
    704   1.7      matt 	/* 6: Clear L3CLKEN to 0 */
    705   1.7      matt 	l3cr &= ~L3CR_L3CLKEN;
    706   1.7      matt 	mtspr(SPR_L3CR, l3cr);
    707   1.7      matt 
    708   1.7      matt 	/* 7: Perform a 'sync' and wait at least 100 CPU cycles */
    709   1.7      matt 	__asm __volatile("sync");
    710   1.7      matt 	delay(100);
    711   1.7      matt 
    712   1.7      matt 	/* 8: Set L3E and L3CLKEN */
    713   1.7      matt 	l3cr |= (L3CR_L3E|L3CR_L3CLKEN);
    714   1.7      matt 	mtspr(SPR_L3CR, l3cr);
    715   1.7      matt 
    716   1.7      matt 	/* 9: Perform a 'sync' and wait at least 100 CPU cycles */
    717   1.7      matt 	__asm __volatile("sync");
    718   1.7      matt 	delay(100);
    719   1.7      matt }
    720   1.7      matt 
    721   1.7      matt void
    722   1.7      matt cpu_config_l2cr(int pvr)
    723   1.7      matt {
    724   1.7      matt 	register_t l2cr;
    725   1.1      matt 
    726   1.1      matt 	l2cr = mfspr(SPR_L2CR);
    727   1.1      matt 
    728   1.1      matt 	/*
    729   1.1      matt 	 * For MP systems, the firmware may only configure the L2 cache
    730   1.1      matt 	 * on the first CPU.  In this case, assume that the other CPUs
    731   1.1      matt 	 * should use the same value for L2CR.
    732   1.1      matt 	 */
    733   1.1      matt 	if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
    734   1.1      matt 		l2cr_config = l2cr;
    735   1.1      matt 	}
    736   1.1      matt 
    737   1.1      matt 	/*
    738   1.1      matt 	 * Configure L2 cache if not enabled.
    739   1.1      matt 	 */
    740   1.8       scw 	if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
    741   1.7      matt 		cpu_enable_l2cr(l2cr_config);
    742   1.8       scw 		l2cr = mfspr(SPR_L2CR);
    743   1.8       scw 	}
    744   1.7      matt 
    745  1.15    briggs 	if ((l2cr & L2CR_L2E) == 0) {
    746  1.15    briggs 		aprint_normal(" L2 cache present but not enabled ");
    747   1.7      matt 		return;
    748  1.15    briggs 	}
    749   1.1      matt 
    750   1.7      matt 	aprint_normal(",");
    751   1.7      matt 	if ((pvr >> 16) == IBM750FX ||
    752   1.7      matt 	    (pvr & 0xffffff00) == 0x00082200 /* IBM750CX */ ||
    753   1.7      matt 	    (pvr & 0xffffef00) == 0x00082300 /* IBM750CXe */) {
    754   1.7      matt 		cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
    755   1.7      matt 	} else {
    756   1.7      matt 		cpu_fmttab_print(cpu_l2cr_formats, l2cr);
    757   1.1      matt 	}
    758   1.7      matt }
    759   1.1      matt 
    760   1.7      matt void
    761   1.7      matt cpu_config_l3cr(int vers)
    762   1.7      matt {
    763   1.7      matt 	register_t l2cr;
    764   1.7      matt 	register_t l3cr;
    765   1.7      matt 
    766   1.7      matt 	l2cr = mfspr(SPR_L2CR);
    767   1.1      matt 
    768   1.7      matt 	/*
    769   1.7      matt 	 * For MP systems, the firmware may only configure the L2 cache
    770   1.7      matt 	 * on the first CPU.  In this case, assume that the other CPUs
    771   1.7      matt 	 * should use the same value for L2CR.
    772   1.7      matt 	 */
    773   1.7      matt 	if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
    774   1.7      matt 		l2cr_config = l2cr;
    775   1.7      matt 	}
    776   1.1      matt 
    777   1.7      matt 	/*
    778   1.7      matt 	 * Configure L2 cache if not enabled.
    779   1.7      matt 	 */
    780   1.7      matt 	if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
    781   1.7      matt 		cpu_enable_l2cr(l2cr_config);
    782   1.7      matt 		l2cr = mfspr(SPR_L2CR);
    783   1.7      matt 	}
    784   1.7      matt 
    785   1.7      matt 	aprint_normal(",");
    786  1.22      matt 	switch (vers) {
    787  1.22      matt 	case MPC7447A:
    788  1.22      matt 	case MPC7457:
    789  1.22      matt 		cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
    790  1.22      matt 		return;
    791  1.22      matt 	case MPC7448:
    792  1.22      matt 		cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
    793  1.22      matt 		return;
    794  1.22      matt 	default:
    795  1.22      matt 		cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
    796  1.22      matt 		break;
    797  1.22      matt 	}
    798   1.2     jklos 
    799   1.7      matt 	l3cr = mfspr(SPR_L3CR);
    800   1.1      matt 
    801   1.7      matt 	/*
    802   1.7      matt 	 * For MP systems, the firmware may only configure the L3 cache
    803   1.7      matt 	 * on the first CPU.  In this case, assume that the other CPUs
    804   1.7      matt 	 * should use the same value for L3CR.
    805   1.7      matt 	 */
    806   1.7      matt 	if ((l3cr & L3CR_L3E) != 0 && l3cr_config == 0) {
    807   1.7      matt 		l3cr_config = l3cr;
    808   1.7      matt 	}
    809   1.1      matt 
    810   1.7      matt 	/*
    811   1.7      matt 	 * Configure L3 cache if not enabled.
    812   1.7      matt 	 */
    813   1.7      matt 	if ((l3cr & L3CR_L3E) == 0 && l3cr_config != 0) {
    814   1.7      matt 		cpu_enable_l3cr(l3cr_config);
    815   1.7      matt 		l3cr = mfspr(SPR_L3CR);
    816   1.7      matt 	}
    817   1.7      matt 
    818   1.7      matt 	if (l3cr & L3CR_L3E) {
    819   1.7      matt 		aprint_normal(",");
    820   1.7      matt 		cpu_fmttab_print(cpu_7450_l3cr_formats, l3cr);
    821   1.7      matt 	}
    822   1.1      matt }
    823   1.1      matt 
    824   1.1      matt void
    825   1.1      matt cpu_print_speed(void)
    826   1.1      matt {
    827   1.1      matt 	uint64_t cps;
    828   1.1      matt 
    829   1.7      matt 	mtspr(SPR_MMCR0, MMCR0_FC);
    830   1.1      matt 	mtspr(SPR_PMC1, 0);
    831   1.7      matt 	mtspr(SPR_MMCR0, MMCR0_PMC1SEL(PMCN_CYCLES));
    832   1.1      matt 	delay(100000);
    833   1.1      matt 	cps = (mfspr(SPR_PMC1) * 10) + 4999;
    834   1.1      matt 
    835  1.15    briggs 	mtspr(SPR_MMCR0, MMCR0_FC);
    836  1.15    briggs 
    837   1.7      matt 	aprint_normal("%lld.%02lld MHz", cps / 1000000, (cps / 10000) % 100);
    838   1.1      matt }
    839   1.1      matt 
    840   1.1      matt #if NSYSMON_ENVSYS > 0
    841   1.1      matt const struct envsys_range cpu_tau_ranges[] = {
    842   1.1      matt 	{ 0, 0, ENVSYS_STEMP}
    843   1.1      matt };
    844   1.1      matt 
    845   1.1      matt struct envsys_basic_info cpu_tau_info[] = {
    846   1.1      matt 	{ 0, ENVSYS_STEMP, "CPU temp", 0, 0, ENVSYS_FVALID}
    847   1.1      matt };
    848   1.1      matt 
    849   1.1      matt void
    850   1.1      matt cpu_tau_setup(struct cpu_info *ci)
    851   1.1      matt {
    852  1.12      matt 	struct {
    853  1.12      matt 		struct sysmon_envsys sme;
    854  1.12      matt 		struct envsys_tre_data tau_info;
    855  1.12      matt 	} *datap;
    856   1.1      matt 	int error;
    857   1.1      matt 
    858  1.13  christos 	datap = malloc(sizeof(*datap), M_DEVBUF, M_WAITOK | M_ZERO);
    859  1.12      matt 
    860  1.12      matt 	ci->ci_sysmon_cookie = &datap->sme;
    861  1.12      matt 	datap->sme.sme_nsensors = 1;
    862  1.12      matt 	datap->sme.sme_envsys_version = 1000;
    863  1.12      matt 	datap->sme.sme_ranges = cpu_tau_ranges;
    864  1.12      matt 	datap->sme.sme_sensor_info = cpu_tau_info;
    865  1.12      matt 	datap->sme.sme_sensor_data = &datap->tau_info;
    866   1.1      matt 
    867  1.12      matt 	datap->sme.sme_sensor_data->sensor = 0;
    868  1.12      matt 	datap->sme.sme_sensor_data->warnflags = ENVSYS_WARN_OK;
    869  1.12      matt 	datap->sme.sme_sensor_data->validflags = ENVSYS_FVALID|ENVSYS_FCURVALID;
    870  1.12      matt 	datap->sme.sme_cookie = ci;
    871  1.12      matt 	datap->sme.sme_gtredata = cpu_tau_gtredata;
    872  1.12      matt 	datap->sme.sme_streinfo = cpu_tau_streinfo;
    873  1.13  christos 	datap->sme.sme_flags = 0;
    874   1.1      matt 
    875  1.12      matt 	if ((error = sysmon_envsys_register(&datap->sme)) != 0)
    876   1.3      matt 		aprint_error("%s: unable to register with sysmon (%d)\n",
    877   1.1      matt 		    ci->ci_dev->dv_xname, error);
    878   1.1      matt }
    879   1.1      matt 
    880   1.1      matt 
    881   1.1      matt /* Find the temperature of the CPU. */
    882   1.1      matt int
    883  1.12      matt cpu_tau_gtredata(struct sysmon_envsys *sme, struct envsys_tre_data *tred)
    884   1.1      matt {
    885   1.1      matt 	int i, threshold, count;
    886   1.1      matt 
    887   1.1      matt 	if (tred->sensor != 0) {
    888   1.1      matt 		tred->validflags = 0;
    889   1.1      matt 		return 0;
    890   1.1      matt 	}
    891   1.1      matt 
    892   1.1      matt 	threshold = 64; /* Half of the 7-bit sensor range */
    893   1.1      matt 	mtspr(SPR_THRM1, 0);
    894   1.1      matt 	mtspr(SPR_THRM2, 0);
    895   1.1      matt 	/* XXX This counter is supposed to be "at least 20 microseonds, in
    896   1.1      matt 	 * XXX units of clock cycles". Since we don't have convenient
    897   1.1      matt 	 * XXX access to the CPU speed, set it to a conservative value,
    898   1.1      matt 	 * XXX that is, assuming a fast (1GHz) G3 CPU (As of February 2002,
    899   1.1      matt 	 * XXX the fastest G3 processor is 700MHz) . The cost is that
    900   1.1      matt 	 * XXX measuring the temperature takes a bit longer.
    901   1.1      matt 	 */
    902   1.1      matt         mtspr(SPR_THRM3, SPR_THRM_TIMER(20000) | SPR_THRM_ENABLE);
    903   1.1      matt 
    904   1.1      matt 	/* Successive-approximation code adapted from Motorola
    905   1.1      matt 	 * application note AN1800/D, "Programming the Thermal Assist
    906   1.1      matt 	 * Unit in the MPC750 Microprocessor".
    907   1.1      matt 	 */
    908   1.1      matt 	for (i = 4; i >= 0 ; i--) {
    909   1.1      matt 		mtspr(SPR_THRM1,
    910   1.1      matt 		    SPR_THRM_THRESHOLD(threshold) | SPR_THRM_VALID);
    911   1.1      matt 		count = 0;
    912   1.1      matt 		while ((count < 100) &&
    913   1.1      matt 		    ((mfspr(SPR_THRM1) & SPR_THRM_TIV) == 0)) {
    914   1.1      matt 			count++;
    915   1.1      matt 			delay(1);
    916   1.1      matt 		}
    917   1.1      matt 		if (mfspr(SPR_THRM1) & SPR_THRM_TIN) {
    918   1.1      matt 			/* The interrupt bit was set, meaning the
    919   1.1      matt 			 * temperature was above the threshold
    920   1.1      matt 			 */
    921   1.1      matt 			threshold += 2 << i;
    922   1.1      matt 		} else {
    923   1.1      matt 			/* Temperature was below the threshold */
    924   1.1      matt 			threshold -= 2 << i;
    925   1.1      matt 		}
    926   1.1      matt 	}
    927   1.1      matt 	threshold += 2;
    928   1.1      matt 
    929   1.1      matt 	/* Convert the temperature in degrees C to microkelvin */
    930  1.12      matt 	sme->sme_sensor_data->cur.data_us = (threshold * 1000000) + 273150000;
    931   1.1      matt 
    932  1.12      matt 	*tred = *sme->sme_sensor_data;
    933   1.1      matt 
    934   1.1      matt 	return 0;
    935   1.1      matt }
    936   1.1      matt 
    937   1.1      matt int
    938  1.12      matt cpu_tau_streinfo(struct sysmon_envsys *sme, struct envsys_basic_info *binfo)
    939   1.1      matt {
    940   1.1      matt 
    941   1.1      matt 	/* There is nothing to set here. */
    942   1.1      matt 	return (EINVAL);
    943   1.1      matt }
    944   1.1      matt #endif /* NSYSMON_ENVSYS > 0 */
    945