cpu_subr.c revision 1.26 1 1.26 perry /* $NetBSD: cpu_subr.c,v 1.26 2005/12/24 20:07:28 perry Exp $ */
2 1.1 matt
3 1.1 matt /*-
4 1.1 matt * Copyright (c) 2001 Matt Thomas.
5 1.1 matt * Copyright (c) 2001 Tsubai Masanari.
6 1.1 matt * Copyright (c) 1998, 1999, 2001 Internet Research Institute, Inc.
7 1.1 matt * All rights reserved.
8 1.1 matt *
9 1.1 matt * Redistribution and use in source and binary forms, with or without
10 1.1 matt * modification, are permitted provided that the following conditions
11 1.1 matt * are met:
12 1.1 matt * 1. Redistributions of source code must retain the above copyright
13 1.1 matt * notice, this list of conditions and the following disclaimer.
14 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 matt * notice, this list of conditions and the following disclaimer in the
16 1.1 matt * documentation and/or other materials provided with the distribution.
17 1.1 matt * 3. All advertising materials mentioning features or use of this software
18 1.1 matt * must display the following acknowledgement:
19 1.1 matt * This product includes software developed by
20 1.1 matt * Internet Research Institute, Inc.
21 1.1 matt * 4. The name of the author may not be used to endorse or promote products
22 1.1 matt * derived from this software without specific prior written permission.
23 1.1 matt *
24 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25 1.1 matt * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26 1.1 matt * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27 1.1 matt * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
28 1.1 matt * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
29 1.1 matt * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30 1.1 matt * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31 1.1 matt * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32 1.1 matt * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33 1.1 matt * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 1.1 matt */
35 1.9 lukem
36 1.9 lukem #include <sys/cdefs.h>
37 1.26 perry __KERNEL_RCSID(0, "$NetBSD: cpu_subr.c,v 1.26 2005/12/24 20:07:28 perry Exp $");
38 1.1 matt
39 1.1 matt #include "opt_ppcparam.h"
40 1.1 matt #include "opt_multiprocessor.h"
41 1.1 matt #include "opt_altivec.h"
42 1.1 matt #include "sysmon_envsys.h"
43 1.1 matt
44 1.1 matt #include <sys/param.h>
45 1.1 matt #include <sys/systm.h>
46 1.1 matt #include <sys/device.h>
47 1.12 matt #include <sys/malloc.h>
48 1.1 matt
49 1.1 matt #include <uvm/uvm_extern.h>
50 1.1 matt
51 1.1 matt #include <powerpc/oea/hid.h>
52 1.1 matt #include <powerpc/oea/hid_601.h>
53 1.1 matt #include <powerpc/spr.h>
54 1.1 matt
55 1.1 matt #include <dev/sysmon/sysmonvar.h>
56 1.1 matt
57 1.7 matt static void cpu_enable_l2cr(register_t);
58 1.7 matt static void cpu_enable_l3cr(register_t);
59 1.1 matt static void cpu_config_l2cr(int);
60 1.7 matt static void cpu_config_l3cr(int);
61 1.23 briggs static void cpu_probe_speed(struct cpu_info *);
62 1.20 matt static void cpu_idlespin(void);
63 1.1 matt #if NSYSMON_ENVSYS > 0
64 1.1 matt static void cpu_tau_setup(struct cpu_info *);
65 1.1 matt static int cpu_tau_gtredata __P((struct sysmon_envsys *,
66 1.1 matt struct envsys_tre_data *));
67 1.1 matt static int cpu_tau_streinfo __P((struct sysmon_envsys *,
68 1.1 matt struct envsys_basic_info *));
69 1.1 matt #endif
70 1.1 matt
71 1.1 matt int cpu;
72 1.1 matt int ncpus;
73 1.1 matt
74 1.7 matt struct fmttab {
75 1.7 matt register_t fmt_mask;
76 1.7 matt register_t fmt_value;
77 1.7 matt const char *fmt_string;
78 1.7 matt };
79 1.7 matt
80 1.7 matt static const struct fmttab cpu_7450_l2cr_formats[] = {
81 1.7 matt { L2CR_L2E, 0, " disabled" },
82 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
83 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
84 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
85 1.7 matt { L2CR_L2E, ~0, " 256KB L2 cache" },
86 1.7 matt { 0 }
87 1.7 matt };
88 1.7 matt
89 1.22 matt static const struct fmttab cpu_7448_l2cr_formats[] = {
90 1.22 matt { L2CR_L2E, 0, " disabled" },
91 1.22 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
92 1.22 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
93 1.22 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
94 1.22 matt { L2CR_L2E, ~0, " 1MB L2 cache" },
95 1.22 matt { 0 }
96 1.22 matt };
97 1.22 matt
98 1.11 matt static const struct fmttab cpu_7457_l2cr_formats[] = {
99 1.11 matt { L2CR_L2E, 0, " disabled" },
100 1.11 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
101 1.11 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
102 1.11 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
103 1.11 matt { L2CR_L2E, ~0, " 512KB L2 cache" },
104 1.11 matt { 0 }
105 1.11 matt };
106 1.11 matt
107 1.7 matt static const struct fmttab cpu_7450_l3cr_formats[] = {
108 1.7 matt { L3CR_L3DO|L3CR_L3IO, L3CR_L3DO, " data-only" },
109 1.7 matt { L3CR_L3DO|L3CR_L3IO, L3CR_L3IO, " instruction-only" },
110 1.7 matt { L3CR_L3DO|L3CR_L3IO, L3CR_L3DO|L3CR_L3IO, " locked" },
111 1.7 matt { L3CR_L3SIZ, L3SIZ_2M, " 2MB" },
112 1.7 matt { L3CR_L3SIZ, L3SIZ_1M, " 1MB" },
113 1.7 matt { L3CR_L3PE|L3CR_L3APE, L3CR_L3PE|L3CR_L3APE, " parity" },
114 1.7 matt { L3CR_L3PE|L3CR_L3APE, L3CR_L3PE, " data-parity" },
115 1.7 matt { L3CR_L3PE|L3CR_L3APE, L3CR_L3APE, " address-parity" },
116 1.7 matt { L3CR_L3PE|L3CR_L3APE, 0, " no-parity" },
117 1.7 matt { L3CR_L3SIZ, ~0, " L3 cache" },
118 1.7 matt { L3CR_L3RT, L3RT_MSUG2_DDR, " (DDR SRAM)" },
119 1.7 matt { L3CR_L3RT, L3RT_PIPELINE_LATE, " (LW SRAM)" },
120 1.7 matt { L3CR_L3RT, L3RT_PB2_SRAM, " (PB2 SRAM)" },
121 1.7 matt { L3CR_L3CLK, ~0, " at" },
122 1.7 matt { L3CR_L3CLK, L3CLK_20, " 2:1" },
123 1.7 matt { L3CR_L3CLK, L3CLK_25, " 2.5:1" },
124 1.7 matt { L3CR_L3CLK, L3CLK_30, " 3:1" },
125 1.7 matt { L3CR_L3CLK, L3CLK_35, " 3.5:1" },
126 1.7 matt { L3CR_L3CLK, L3CLK_40, " 4:1" },
127 1.7 matt { L3CR_L3CLK, L3CLK_50, " 5:1" },
128 1.7 matt { L3CR_L3CLK, L3CLK_60, " 6:1" },
129 1.7 matt { L3CR_L3CLK, ~0, " ratio" },
130 1.7 matt { 0, 0 },
131 1.7 matt };
132 1.7 matt
133 1.7 matt static const struct fmttab cpu_ibm750_l2cr_formats[] = {
134 1.7 matt { L2CR_L2E, 0, " disabled" },
135 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
136 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
137 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
138 1.7 matt { 0, ~0, " 512KB" },
139 1.7 matt { L2CR_L2WT, L2CR_L2WT, " WT" },
140 1.7 matt { L2CR_L2WT, 0, " WB" },
141 1.7 matt { L2CR_L2PE, L2CR_L2PE, " with ECC" },
142 1.7 matt { 0, ~0, " L2 cache" },
143 1.7 matt { 0 }
144 1.7 matt };
145 1.7 matt
146 1.7 matt static const struct fmttab cpu_l2cr_formats[] = {
147 1.7 matt { L2CR_L2E, 0, " disabled" },
148 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
149 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
150 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
151 1.7 matt { L2CR_L2PE, L2CR_L2PE, " parity" },
152 1.7 matt { L2CR_L2PE, 0, " no-parity" },
153 1.7 matt { L2CR_L2SIZ, L2SIZ_2M, " 2MB" },
154 1.7 matt { L2CR_L2SIZ, L2SIZ_1M, " 1MB" },
155 1.7 matt { L2CR_L2SIZ, L2SIZ_512K, " 512KB" },
156 1.7 matt { L2CR_L2SIZ, L2SIZ_256K, " 256KB" },
157 1.7 matt { L2CR_L2WT, L2CR_L2WT, " WT" },
158 1.7 matt { L2CR_L2WT, 0, " WB" },
159 1.7 matt { L2CR_L2E, ~0, " L2 cache" },
160 1.7 matt { L2CR_L2RAM, L2RAM_FLOWTHRU_BURST, " (FB SRAM)" },
161 1.7 matt { L2CR_L2RAM, L2RAM_PIPELINE_LATE, " (LW SRAM)" },
162 1.7 matt { L2CR_L2RAM, L2RAM_PIPELINE_BURST, " (PB SRAM)" },
163 1.7 matt { L2CR_L2CLK, ~0, " at" },
164 1.7 matt { L2CR_L2CLK, L2CLK_10, " 1:1" },
165 1.7 matt { L2CR_L2CLK, L2CLK_15, " 1.5:1" },
166 1.7 matt { L2CR_L2CLK, L2CLK_20, " 2:1" },
167 1.7 matt { L2CR_L2CLK, L2CLK_25, " 2.5:1" },
168 1.7 matt { L2CR_L2CLK, L2CLK_30, " 3:1" },
169 1.7 matt { L2CR_L2CLK, L2CLK_35, " 3.5:1" },
170 1.7 matt { L2CR_L2CLK, L2CLK_40, " 4:1" },
171 1.7 matt { L2CR_L2CLK, ~0, " ratio" },
172 1.7 matt { 0 }
173 1.7 matt };
174 1.7 matt
175 1.7 matt static void cpu_fmttab_print(const struct fmttab *, register_t);
176 1.7 matt
177 1.7 matt struct cputab {
178 1.7 matt const char name[8];
179 1.7 matt uint16_t version;
180 1.7 matt uint16_t revfmt;
181 1.7 matt };
182 1.7 matt #define REVFMT_MAJMIN 1 /* %u.%u */
183 1.7 matt #define REVFMT_HEX 2 /* 0x%04x */
184 1.7 matt #define REVFMT_DEC 3 /* %u */
185 1.7 matt static const struct cputab models[] = {
186 1.7 matt { "601", MPC601, REVFMT_DEC },
187 1.7 matt { "602", MPC602, REVFMT_DEC },
188 1.7 matt { "603", MPC603, REVFMT_MAJMIN },
189 1.7 matt { "603e", MPC603e, REVFMT_MAJMIN },
190 1.7 matt { "603ev", MPC603ev, REVFMT_MAJMIN },
191 1.7 matt { "604", MPC604, REVFMT_MAJMIN },
192 1.15 briggs { "604e", MPC604e, REVFMT_MAJMIN },
193 1.7 matt { "604ev", MPC604ev, REVFMT_MAJMIN },
194 1.7 matt { "620", MPC620, REVFMT_HEX },
195 1.7 matt { "750", MPC750, REVFMT_MAJMIN },
196 1.7 matt { "750FX", IBM750FX, REVFMT_MAJMIN },
197 1.7 matt { "7400", MPC7400, REVFMT_MAJMIN },
198 1.7 matt { "7410", MPC7410, REVFMT_MAJMIN },
199 1.7 matt { "7450", MPC7450, REVFMT_MAJMIN },
200 1.7 matt { "7455", MPC7455, REVFMT_MAJMIN },
201 1.11 matt { "7457", MPC7457, REVFMT_MAJMIN },
202 1.21 matt { "7447A", MPC7447A, REVFMT_MAJMIN },
203 1.22 matt { "7448", MPC7448, REVFMT_MAJMIN },
204 1.7 matt { "8240", MPC8240, REVFMT_MAJMIN },
205 1.7 matt { "", 0, REVFMT_HEX }
206 1.7 matt };
207 1.7 matt
208 1.7 matt
209 1.1 matt #ifdef MULTIPROCESSOR
210 1.1 matt struct cpu_info cpu_info[CPU_MAXNUM];
211 1.1 matt #else
212 1.1 matt struct cpu_info cpu_info[1];
213 1.1 matt #endif
214 1.1 matt
215 1.1 matt int cpu_altivec;
216 1.14 kleink int cpu_psluserset, cpu_pslusermod;
217 1.1 matt char cpu_model[80];
218 1.1 matt
219 1.1 matt void
220 1.7 matt cpu_fmttab_print(const struct fmttab *fmt, register_t data)
221 1.7 matt {
222 1.7 matt for (; fmt->fmt_mask != 0 || fmt->fmt_value != 0; fmt++) {
223 1.7 matt if ((~fmt->fmt_mask & fmt->fmt_value) != 0 ||
224 1.7 matt (data & fmt->fmt_mask) == fmt->fmt_value)
225 1.7 matt aprint_normal("%s", fmt->fmt_string);
226 1.7 matt }
227 1.7 matt }
228 1.7 matt
229 1.7 matt void
230 1.20 matt cpu_idlespin(void)
231 1.20 matt {
232 1.20 matt register_t msr;
233 1.20 matt
234 1.20 matt if (powersave <= 0)
235 1.20 matt return;
236 1.20 matt
237 1.26 perry __asm volatile(
238 1.20 matt "sync;"
239 1.20 matt "mfmsr %0;"
240 1.20 matt "oris %0,%0,%1@h;" /* enter power saving mode */
241 1.20 matt "mtmsr %0;"
242 1.20 matt "isync;"
243 1.20 matt : "=r"(msr)
244 1.20 matt : "J"(PSL_POW));
245 1.20 matt }
246 1.20 matt
247 1.20 matt void
248 1.1 matt cpu_probe_cache(void)
249 1.1 matt {
250 1.1 matt u_int assoc, pvr, vers;
251 1.1 matt
252 1.1 matt pvr = mfpvr();
253 1.1 matt vers = pvr >> 16;
254 1.1 matt
255 1.1 matt switch (vers) {
256 1.1 matt #define K *1024
257 1.1 matt case IBM750FX:
258 1.1 matt case MPC601:
259 1.1 matt case MPC750:
260 1.22 matt case MPC7447A:
261 1.22 matt case MPC7448:
262 1.1 matt case MPC7450:
263 1.1 matt case MPC7455:
264 1.11 matt case MPC7457:
265 1.1 matt curcpu()->ci_ci.dcache_size = 32 K;
266 1.1 matt curcpu()->ci_ci.icache_size = 32 K;
267 1.1 matt assoc = 8;
268 1.1 matt break;
269 1.1 matt case MPC603:
270 1.1 matt curcpu()->ci_ci.dcache_size = 8 K;
271 1.1 matt curcpu()->ci_ci.icache_size = 8 K;
272 1.1 matt assoc = 2;
273 1.1 matt break;
274 1.1 matt case MPC603e:
275 1.1 matt case MPC603ev:
276 1.1 matt case MPC604:
277 1.1 matt case MPC8240:
278 1.1 matt case MPC8245:
279 1.1 matt curcpu()->ci_ci.dcache_size = 16 K;
280 1.1 matt curcpu()->ci_ci.icache_size = 16 K;
281 1.1 matt assoc = 4;
282 1.1 matt break;
283 1.15 briggs case MPC604e:
284 1.1 matt case MPC604ev:
285 1.1 matt curcpu()->ci_ci.dcache_size = 32 K;
286 1.1 matt curcpu()->ci_ci.icache_size = 32 K;
287 1.1 matt assoc = 4;
288 1.1 matt break;
289 1.1 matt default:
290 1.6 thorpej curcpu()->ci_ci.dcache_size = PAGE_SIZE;
291 1.6 thorpej curcpu()->ci_ci.icache_size = PAGE_SIZE;
292 1.1 matt assoc = 1;
293 1.1 matt #undef K
294 1.1 matt }
295 1.1 matt
296 1.1 matt /* Presently common across all implementations. */
297 1.1 matt curcpu()->ci_ci.dcache_line_size = CACHELINESIZE;
298 1.1 matt curcpu()->ci_ci.icache_line_size = CACHELINESIZE;
299 1.1 matt
300 1.1 matt /*
301 1.1 matt * Possibly recolor.
302 1.1 matt */
303 1.1 matt uvm_page_recolor(atop(curcpu()->ci_ci.dcache_size / assoc));
304 1.1 matt }
305 1.1 matt
306 1.1 matt struct cpu_info *
307 1.1 matt cpu_attach_common(struct device *self, int id)
308 1.1 matt {
309 1.1 matt struct cpu_info *ci;
310 1.1 matt u_int pvr, vers;
311 1.1 matt
312 1.1 matt ncpus++;
313 1.1 matt ci = &cpu_info[id];
314 1.1 matt #ifndef MULTIPROCESSOR
315 1.1 matt /*
316 1.1 matt * If this isn't the primary CPU, print an error message
317 1.1 matt * and just bail out.
318 1.1 matt */
319 1.1 matt if (id != 0) {
320 1.3 matt aprint_normal(": ID %d\n", id);
321 1.3 matt aprint_normal("%s: processor off-line; multiprocessor support "
322 1.1 matt "not present in kernel\n", self->dv_xname);
323 1.1 matt return (NULL);
324 1.1 matt }
325 1.1 matt #endif
326 1.1 matt
327 1.1 matt ci->ci_cpuid = id;
328 1.1 matt ci->ci_intrdepth = -1;
329 1.1 matt ci->ci_dev = self;
330 1.20 matt ci->ci_idlespin = cpu_idlespin;
331 1.1 matt
332 1.1 matt pvr = mfpvr();
333 1.1 matt vers = (pvr >> 16) & 0xffff;
334 1.1 matt
335 1.1 matt switch (id) {
336 1.1 matt case 0:
337 1.1 matt /* load my cpu_number to PIR */
338 1.1 matt switch (vers) {
339 1.1 matt case MPC601:
340 1.1 matt case MPC604:
341 1.15 briggs case MPC604e:
342 1.1 matt case MPC604ev:
343 1.1 matt case MPC7400:
344 1.1 matt case MPC7410:
345 1.22 matt case MPC7447A:
346 1.22 matt case MPC7448:
347 1.1 matt case MPC7450:
348 1.1 matt case MPC7455:
349 1.11 matt case MPC7457:
350 1.1 matt mtspr(SPR_PIR, id);
351 1.1 matt }
352 1.1 matt cpu_setup(self, ci);
353 1.1 matt break;
354 1.1 matt default:
355 1.1 matt if (id >= CPU_MAXNUM) {
356 1.3 matt aprint_normal(": more than %d cpus?\n", CPU_MAXNUM);
357 1.1 matt panic("cpuattach");
358 1.1 matt }
359 1.1 matt #ifndef MULTIPROCESSOR
360 1.3 matt aprint_normal(" not configured\n");
361 1.1 matt return NULL;
362 1.1 matt #endif
363 1.1 matt }
364 1.1 matt return (ci);
365 1.1 matt }
366 1.1 matt
367 1.1 matt void
368 1.1 matt cpu_setup(self, ci)
369 1.1 matt struct device *self;
370 1.1 matt struct cpu_info *ci;
371 1.1 matt {
372 1.1 matt u_int hid0, pvr, vers;
373 1.24 he const char *bitmask;
374 1.24 he char hidbuf[128];
375 1.1 matt char model[80];
376 1.1 matt
377 1.1 matt pvr = mfpvr();
378 1.1 matt vers = (pvr >> 16) & 0xffff;
379 1.1 matt
380 1.1 matt cpu_identify(model, sizeof(model));
381 1.3 matt aprint_normal(": %s, ID %d%s\n", model, cpu_number(),
382 1.1 matt cpu_number() == 0 ? " (primary)" : "");
383 1.1 matt
384 1.1 matt hid0 = mfspr(SPR_HID0);
385 1.1 matt cpu_probe_cache();
386 1.1 matt
387 1.1 matt /*
388 1.1 matt * Configure power-saving mode.
389 1.1 matt */
390 1.1 matt switch (vers) {
391 1.18 briggs case MPC604:
392 1.18 briggs case MPC604e:
393 1.18 briggs case MPC604ev:
394 1.18 briggs /*
395 1.18 briggs * Do not have HID0 support settings, but can support
396 1.18 briggs * MSR[POW] off
397 1.18 briggs */
398 1.18 briggs powersave = 1;
399 1.18 briggs break;
400 1.18 briggs
401 1.1 matt case MPC603:
402 1.1 matt case MPC603e:
403 1.1 matt case MPC603ev:
404 1.1 matt case MPC750:
405 1.1 matt case IBM750FX:
406 1.1 matt case MPC7400:
407 1.1 matt case MPC7410:
408 1.1 matt case MPC8240:
409 1.1 matt case MPC8245:
410 1.1 matt /* Select DOZE mode. */
411 1.1 matt hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
412 1.1 matt hid0 |= HID0_DOZE | HID0_DPM;
413 1.1 matt powersave = 1;
414 1.1 matt break;
415 1.1 matt
416 1.22 matt case MPC7447A:
417 1.22 matt case MPC7448:
418 1.11 matt case MPC7457:
419 1.1 matt case MPC7455:
420 1.1 matt case MPC7450:
421 1.5 matt /* Enable the 7450 branch caches */
422 1.5 matt hid0 |= HID0_SGE | HID0_BTIC;
423 1.5 matt hid0 |= HID0_LRSTK | HID0_FOLD | HID0_BHT;
424 1.1 matt /* Disable BTIC on 7450 Rev 2.0 or earlier */
425 1.5 matt if (vers == MPC7450 && (pvr & 0xFFFF) <= 0x0200)
426 1.1 matt hid0 &= ~HID0_BTIC;
427 1.1 matt /* Select NAP mode. */
428 1.19 chs hid0 &= ~(HID0_HIGH_BAT_EN | HID0_SLEEP);
429 1.22 matt hid0 |= HID0_NAP | HID0_DPM /* | HID0_XBSEN */;
430 1.19 chs powersave = 1;
431 1.1 matt break;
432 1.1 matt
433 1.1 matt default:
434 1.1 matt /* No power-saving mode is available. */ ;
435 1.1 matt }
436 1.1 matt
437 1.1 matt #ifdef NAPMODE
438 1.1 matt switch (vers) {
439 1.1 matt case IBM750FX:
440 1.1 matt case MPC750:
441 1.1 matt case MPC7400:
442 1.1 matt /* Select NAP mode. */
443 1.1 matt hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
444 1.1 matt hid0 |= HID0_NAP;
445 1.1 matt break;
446 1.1 matt }
447 1.1 matt #endif
448 1.1 matt
449 1.1 matt switch (vers) {
450 1.1 matt case IBM750FX:
451 1.1 matt case MPC750:
452 1.1 matt hid0 &= ~HID0_DBP; /* XXX correct? */
453 1.1 matt hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
454 1.1 matt break;
455 1.1 matt
456 1.1 matt case MPC7400:
457 1.1 matt case MPC7410:
458 1.1 matt hid0 &= ~HID0_SPD;
459 1.1 matt hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
460 1.1 matt hid0 |= HID0_EIEC;
461 1.1 matt break;
462 1.1 matt }
463 1.1 matt
464 1.1 matt mtspr(SPR_HID0, hid0);
465 1.26 perry __asm volatile("sync;isync");
466 1.1 matt
467 1.1 matt switch (vers) {
468 1.1 matt case MPC601:
469 1.1 matt bitmask = HID0_601_BITMASK;
470 1.1 matt break;
471 1.1 matt case MPC7450:
472 1.1 matt case MPC7455:
473 1.11 matt case MPC7457:
474 1.1 matt bitmask = HID0_7450_BITMASK;
475 1.1 matt break;
476 1.1 matt default:
477 1.1 matt bitmask = HID0_BITMASK;
478 1.1 matt break;
479 1.1 matt }
480 1.1 matt bitmask_snprintf(hid0, bitmask, hidbuf, sizeof hidbuf);
481 1.3 matt aprint_normal("%s: HID0 %s\n", self->dv_xname, hidbuf);
482 1.1 matt
483 1.23 briggs ci->ci_khz = 0;
484 1.23 briggs
485 1.1 matt /*
486 1.1 matt * Display speed and cache configuration.
487 1.1 matt */
488 1.15 briggs switch (vers) {
489 1.15 briggs case MPC604:
490 1.15 briggs case MPC604e:
491 1.15 briggs case MPC604ev:
492 1.15 briggs case MPC750:
493 1.15 briggs case IBM750FX:
494 1.16 briggs case MPC7400:
495 1.15 briggs case MPC7410:
496 1.22 matt case MPC7447A:
497 1.22 matt case MPC7448:
498 1.16 briggs case MPC7450:
499 1.16 briggs case MPC7455:
500 1.16 briggs case MPC7457:
501 1.7 matt aprint_normal("%s: ", self->dv_xname);
502 1.23 briggs cpu_probe_speed(ci);
503 1.23 briggs aprint_normal("%u.%02u MHz",
504 1.23 briggs ci->ci_khz / 1000, (ci->ci_khz / 10) % 100);
505 1.15 briggs
506 1.17 briggs if (vers == IBM750FX || vers == MPC750 ||
507 1.17 briggs vers == MPC7400 || vers == MPC7410 || MPC745X_P(vers)) {
508 1.15 briggs if (MPC745X_P(vers)) {
509 1.15 briggs cpu_config_l3cr(vers);
510 1.15 briggs } else {
511 1.15 briggs cpu_config_l2cr(pvr);
512 1.15 briggs }
513 1.7 matt }
514 1.7 matt aprint_normal("\n");
515 1.15 briggs break;
516 1.1 matt }
517 1.1 matt
518 1.1 matt #if NSYSMON_ENVSYS > 0
519 1.1 matt /*
520 1.1 matt * Attach MPC750 temperature sensor to the envsys subsystem.
521 1.1 matt * XXX the 74xx series also has this sensor, but it is not
522 1.1 matt * XXX supported by Motorola and may return values that are off by
523 1.1 matt * XXX 35-55 degrees C.
524 1.1 matt */
525 1.1 matt if (vers == MPC750 || vers == IBM750FX)
526 1.1 matt cpu_tau_setup(ci);
527 1.1 matt #endif
528 1.1 matt
529 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
530 1.1 matt NULL, self->dv_xname, "clock");
531 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_softclock, EVCNT_TYPE_INTR,
532 1.1 matt NULL, self->dv_xname, "soft clock");
533 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_softnet, EVCNT_TYPE_INTR,
534 1.1 matt NULL, self->dv_xname, "soft net");
535 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_softserial, EVCNT_TYPE_INTR,
536 1.1 matt NULL, self->dv_xname, "soft serial");
537 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
538 1.1 matt NULL, self->dv_xname, "traps");
539 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
540 1.1 matt &ci->ci_ev_traps, self->dv_xname, "kernel DSI traps");
541 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
542 1.1 matt &ci->ci_ev_traps, self->dv_xname, "user DSI traps");
543 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
544 1.1 matt &ci->ci_ev_udsi, self->dv_xname, "user DSI failures");
545 1.10 matt evcnt_attach_dynamic(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP,
546 1.10 matt &ci->ci_ev_traps, self->dv_xname, "kernel ISI traps");
547 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
548 1.1 matt &ci->ci_ev_traps, self->dv_xname, "user ISI traps");
549 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
550 1.1 matt &ci->ci_ev_isi, self->dv_xname, "user ISI failures");
551 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
552 1.1 matt &ci->ci_ev_traps, self->dv_xname, "system call traps");
553 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
554 1.1 matt &ci->ci_ev_traps, self->dv_xname, "PGM traps");
555 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
556 1.1 matt &ci->ci_ev_traps, self->dv_xname, "FPU unavailable traps");
557 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_fpusw, EVCNT_TYPE_TRAP,
558 1.1 matt &ci->ci_ev_fpu, self->dv_xname, "FPU context switches");
559 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
560 1.1 matt &ci->ci_ev_traps, self->dv_xname, "user alignment traps");
561 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
562 1.1 matt &ci->ci_ev_ali, self->dv_xname, "user alignment traps");
563 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
564 1.1 matt &ci->ci_ev_umchk, self->dv_xname, "user MCHK failures");
565 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
566 1.1 matt &ci->ci_ev_traps, self->dv_xname, "AltiVec unavailable");
567 1.1 matt #ifdef ALTIVEC
568 1.1 matt if (cpu_altivec) {
569 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_vecsw, EVCNT_TYPE_TRAP,
570 1.1 matt &ci->ci_ev_vec, self->dv_xname, "AltiVec context switches");
571 1.1 matt }
572 1.1 matt #endif
573 1.1 matt }
574 1.1 matt
575 1.1 matt void
576 1.1 matt cpu_identify(char *str, size_t len)
577 1.1 matt {
578 1.24 he u_int pvr, major, minor;
579 1.1 matt uint16_t vers, rev, revfmt;
580 1.1 matt const struct cputab *cp;
581 1.1 matt const char *name;
582 1.1 matt size_t n;
583 1.1 matt
584 1.1 matt pvr = mfpvr();
585 1.1 matt vers = pvr >> 16;
586 1.1 matt rev = pvr;
587 1.1 matt switch (vers) {
588 1.1 matt case MPC7410:
589 1.24 he minor = (pvr >> 0) & 0xff;
590 1.24 he major = minor <= 4 ? 1 : 2;
591 1.1 matt break;
592 1.1 matt default:
593 1.24 he major = (pvr >> 8) & 0xf;
594 1.24 he minor = (pvr >> 0) & 0xf;
595 1.1 matt }
596 1.1 matt
597 1.1 matt for (cp = models; cp->name[0] != '\0'; cp++) {
598 1.1 matt if (cp->version == vers)
599 1.1 matt break;
600 1.1 matt }
601 1.1 matt
602 1.1 matt if (str == NULL) {
603 1.1 matt str = cpu_model;
604 1.1 matt len = sizeof(cpu_model);
605 1.1 matt cpu = vers;
606 1.1 matt }
607 1.1 matt
608 1.1 matt revfmt = cp->revfmt;
609 1.1 matt name = cp->name;
610 1.1 matt if (rev == MPC750 && pvr == 15) {
611 1.1 matt name = "755";
612 1.1 matt revfmt = REVFMT_HEX;
613 1.1 matt }
614 1.1 matt
615 1.1 matt if (cp->name[0] != '\0') {
616 1.1 matt n = snprintf(str, len, "%s (Revision ", cp->name);
617 1.1 matt } else {
618 1.1 matt n = snprintf(str, len, "Version %#x (Revision ", vers);
619 1.1 matt }
620 1.1 matt if (len > n) {
621 1.1 matt switch (revfmt) {
622 1.1 matt case REVFMT_MAJMIN:
623 1.24 he snprintf(str + n, len - n, "%u.%u)", major, minor);
624 1.1 matt break;
625 1.1 matt case REVFMT_HEX:
626 1.1 matt snprintf(str + n, len - n, "0x%04x)", rev);
627 1.1 matt break;
628 1.1 matt case REVFMT_DEC:
629 1.1 matt snprintf(str + n, len - n, "%u)", rev);
630 1.1 matt break;
631 1.1 matt }
632 1.1 matt }
633 1.1 matt }
634 1.1 matt
635 1.1 matt #ifdef L2CR_CONFIG
636 1.1 matt u_int l2cr_config = L2CR_CONFIG;
637 1.1 matt #else
638 1.1 matt u_int l2cr_config = 0;
639 1.1 matt #endif
640 1.1 matt
641 1.2 jklos #ifdef L3CR_CONFIG
642 1.2 jklos u_int l3cr_config = L3CR_CONFIG;
643 1.2 jklos #else
644 1.2 jklos u_int l3cr_config = 0;
645 1.2 jklos #endif
646 1.2 jklos
647 1.1 matt void
648 1.7 matt cpu_enable_l2cr(register_t l2cr)
649 1.7 matt {
650 1.7 matt register_t msr, x;
651 1.7 matt
652 1.7 matt /* Disable interrupts and set the cache config bits. */
653 1.7 matt msr = mfmsr();
654 1.7 matt mtmsr(msr & ~PSL_EE);
655 1.7 matt #ifdef ALTIVEC
656 1.7 matt if (cpu_altivec)
657 1.26 perry __asm volatile("dssall");
658 1.7 matt #endif
659 1.26 perry __asm volatile("sync");
660 1.7 matt mtspr(SPR_L2CR, l2cr & ~L2CR_L2E);
661 1.26 perry __asm volatile("sync");
662 1.7 matt
663 1.7 matt /* Wait for L2 clock to be stable (640 L2 clocks). */
664 1.7 matt delay(100);
665 1.7 matt
666 1.7 matt /* Invalidate all L2 contents. */
667 1.7 matt mtspr(SPR_L2CR, l2cr | L2CR_L2I);
668 1.7 matt do {
669 1.7 matt x = mfspr(SPR_L2CR);
670 1.7 matt } while (x & L2CR_L2IP);
671 1.7 matt
672 1.7 matt /* Enable L2 cache. */
673 1.7 matt l2cr |= L2CR_L2E;
674 1.7 matt mtspr(SPR_L2CR, l2cr);
675 1.7 matt mtmsr(msr);
676 1.7 matt }
677 1.7 matt
678 1.7 matt void
679 1.7 matt cpu_enable_l3cr(register_t l3cr)
680 1.1 matt {
681 1.7 matt register_t x;
682 1.7 matt
683 1.7 matt /* By The Book (numbered steps from section 3.7.1.3 of MPC7450UM) */
684 1.7 matt
685 1.7 matt /*
686 1.7 matt * 1: Set all L3CR bits for final config except L3E, L3I, L3PE, and
687 1.7 matt * L3CLKEN. (also mask off reserved bits in case they were included
688 1.7 matt * in L3CR_CONFIG)
689 1.7 matt */
690 1.7 matt l3cr &= ~(L3CR_L3E|L3CR_L3I|L3CR_L3PE|L3CR_L3CLKEN|L3CR_RESERVED);
691 1.7 matt mtspr(SPR_L3CR, l3cr);
692 1.7 matt
693 1.7 matt /* 2: Set L3CR[5] (otherwise reserved bit) to 1 */
694 1.7 matt l3cr |= 0x04000000;
695 1.7 matt mtspr(SPR_L3CR, l3cr);
696 1.7 matt
697 1.7 matt /* 3: Set L3CLKEN to 1*/
698 1.7 matt l3cr |= L3CR_L3CLKEN;
699 1.7 matt mtspr(SPR_L3CR, l3cr);
700 1.7 matt
701 1.7 matt /* 4/5: Perform a global cache invalidate (ref section 3.7.3.6) */
702 1.26 perry __asm volatile("dssall;sync");
703 1.7 matt /* L3 cache is already disabled, no need to clear L3E */
704 1.7 matt mtspr(SPR_L3CR, l3cr|L3CR_L3I);
705 1.7 matt do {
706 1.7 matt x = mfspr(SPR_L3CR);
707 1.7 matt } while (x & L3CR_L3I);
708 1.7 matt
709 1.7 matt /* 6: Clear L3CLKEN to 0 */
710 1.7 matt l3cr &= ~L3CR_L3CLKEN;
711 1.7 matt mtspr(SPR_L3CR, l3cr);
712 1.7 matt
713 1.7 matt /* 7: Perform a 'sync' and wait at least 100 CPU cycles */
714 1.26 perry __asm volatile("sync");
715 1.7 matt delay(100);
716 1.7 matt
717 1.7 matt /* 8: Set L3E and L3CLKEN */
718 1.7 matt l3cr |= (L3CR_L3E|L3CR_L3CLKEN);
719 1.7 matt mtspr(SPR_L3CR, l3cr);
720 1.7 matt
721 1.7 matt /* 9: Perform a 'sync' and wait at least 100 CPU cycles */
722 1.26 perry __asm volatile("sync");
723 1.7 matt delay(100);
724 1.7 matt }
725 1.7 matt
726 1.7 matt void
727 1.7 matt cpu_config_l2cr(int pvr)
728 1.7 matt {
729 1.7 matt register_t l2cr;
730 1.1 matt
731 1.1 matt l2cr = mfspr(SPR_L2CR);
732 1.1 matt
733 1.1 matt /*
734 1.1 matt * For MP systems, the firmware may only configure the L2 cache
735 1.1 matt * on the first CPU. In this case, assume that the other CPUs
736 1.1 matt * should use the same value for L2CR.
737 1.1 matt */
738 1.1 matt if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
739 1.1 matt l2cr_config = l2cr;
740 1.1 matt }
741 1.1 matt
742 1.1 matt /*
743 1.1 matt * Configure L2 cache if not enabled.
744 1.1 matt */
745 1.8 scw if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
746 1.7 matt cpu_enable_l2cr(l2cr_config);
747 1.8 scw l2cr = mfspr(SPR_L2CR);
748 1.8 scw }
749 1.7 matt
750 1.15 briggs if ((l2cr & L2CR_L2E) == 0) {
751 1.15 briggs aprint_normal(" L2 cache present but not enabled ");
752 1.7 matt return;
753 1.15 briggs }
754 1.1 matt
755 1.7 matt aprint_normal(",");
756 1.7 matt if ((pvr >> 16) == IBM750FX ||
757 1.7 matt (pvr & 0xffffff00) == 0x00082200 /* IBM750CX */ ||
758 1.7 matt (pvr & 0xffffef00) == 0x00082300 /* IBM750CXe */) {
759 1.7 matt cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
760 1.7 matt } else {
761 1.7 matt cpu_fmttab_print(cpu_l2cr_formats, l2cr);
762 1.1 matt }
763 1.7 matt }
764 1.1 matt
765 1.7 matt void
766 1.7 matt cpu_config_l3cr(int vers)
767 1.7 matt {
768 1.7 matt register_t l2cr;
769 1.7 matt register_t l3cr;
770 1.7 matt
771 1.7 matt l2cr = mfspr(SPR_L2CR);
772 1.1 matt
773 1.7 matt /*
774 1.7 matt * For MP systems, the firmware may only configure the L2 cache
775 1.7 matt * on the first CPU. In this case, assume that the other CPUs
776 1.7 matt * should use the same value for L2CR.
777 1.7 matt */
778 1.7 matt if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
779 1.7 matt l2cr_config = l2cr;
780 1.7 matt }
781 1.1 matt
782 1.7 matt /*
783 1.7 matt * Configure L2 cache if not enabled.
784 1.7 matt */
785 1.7 matt if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
786 1.7 matt cpu_enable_l2cr(l2cr_config);
787 1.7 matt l2cr = mfspr(SPR_L2CR);
788 1.7 matt }
789 1.7 matt
790 1.7 matt aprint_normal(",");
791 1.22 matt switch (vers) {
792 1.22 matt case MPC7447A:
793 1.22 matt case MPC7457:
794 1.22 matt cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
795 1.22 matt return;
796 1.22 matt case MPC7448:
797 1.22 matt cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
798 1.22 matt return;
799 1.22 matt default:
800 1.22 matt cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
801 1.22 matt break;
802 1.22 matt }
803 1.2 jklos
804 1.7 matt l3cr = mfspr(SPR_L3CR);
805 1.1 matt
806 1.7 matt /*
807 1.7 matt * For MP systems, the firmware may only configure the L3 cache
808 1.7 matt * on the first CPU. In this case, assume that the other CPUs
809 1.7 matt * should use the same value for L3CR.
810 1.7 matt */
811 1.7 matt if ((l3cr & L3CR_L3E) != 0 && l3cr_config == 0) {
812 1.7 matt l3cr_config = l3cr;
813 1.7 matt }
814 1.1 matt
815 1.7 matt /*
816 1.7 matt * Configure L3 cache if not enabled.
817 1.7 matt */
818 1.7 matt if ((l3cr & L3CR_L3E) == 0 && l3cr_config != 0) {
819 1.7 matt cpu_enable_l3cr(l3cr_config);
820 1.7 matt l3cr = mfspr(SPR_L3CR);
821 1.7 matt }
822 1.7 matt
823 1.7 matt if (l3cr & L3CR_L3E) {
824 1.7 matt aprint_normal(",");
825 1.7 matt cpu_fmttab_print(cpu_7450_l3cr_formats, l3cr);
826 1.7 matt }
827 1.1 matt }
828 1.1 matt
829 1.1 matt void
830 1.23 briggs cpu_probe_speed(struct cpu_info *ci)
831 1.1 matt {
832 1.1 matt uint64_t cps;
833 1.1 matt
834 1.7 matt mtspr(SPR_MMCR0, MMCR0_FC);
835 1.1 matt mtspr(SPR_PMC1, 0);
836 1.7 matt mtspr(SPR_MMCR0, MMCR0_PMC1SEL(PMCN_CYCLES));
837 1.1 matt delay(100000);
838 1.1 matt cps = (mfspr(SPR_PMC1) * 10) + 4999;
839 1.1 matt
840 1.15 briggs mtspr(SPR_MMCR0, MMCR0_FC);
841 1.15 briggs
842 1.23 briggs ci->ci_khz = cps / 1000;
843 1.1 matt }
844 1.1 matt
845 1.1 matt #if NSYSMON_ENVSYS > 0
846 1.1 matt const struct envsys_range cpu_tau_ranges[] = {
847 1.1 matt { 0, 0, ENVSYS_STEMP}
848 1.1 matt };
849 1.1 matt
850 1.1 matt struct envsys_basic_info cpu_tau_info[] = {
851 1.1 matt { 0, ENVSYS_STEMP, "CPU temp", 0, 0, ENVSYS_FVALID}
852 1.1 matt };
853 1.1 matt
854 1.1 matt void
855 1.1 matt cpu_tau_setup(struct cpu_info *ci)
856 1.1 matt {
857 1.12 matt struct {
858 1.12 matt struct sysmon_envsys sme;
859 1.12 matt struct envsys_tre_data tau_info;
860 1.12 matt } *datap;
861 1.1 matt int error;
862 1.1 matt
863 1.13 christos datap = malloc(sizeof(*datap), M_DEVBUF, M_WAITOK | M_ZERO);
864 1.12 matt
865 1.12 matt ci->ci_sysmon_cookie = &datap->sme;
866 1.12 matt datap->sme.sme_nsensors = 1;
867 1.12 matt datap->sme.sme_envsys_version = 1000;
868 1.12 matt datap->sme.sme_ranges = cpu_tau_ranges;
869 1.12 matt datap->sme.sme_sensor_info = cpu_tau_info;
870 1.12 matt datap->sme.sme_sensor_data = &datap->tau_info;
871 1.1 matt
872 1.12 matt datap->sme.sme_sensor_data->sensor = 0;
873 1.12 matt datap->sme.sme_sensor_data->warnflags = ENVSYS_WARN_OK;
874 1.12 matt datap->sme.sme_sensor_data->validflags = ENVSYS_FVALID|ENVSYS_FCURVALID;
875 1.12 matt datap->sme.sme_cookie = ci;
876 1.12 matt datap->sme.sme_gtredata = cpu_tau_gtredata;
877 1.12 matt datap->sme.sme_streinfo = cpu_tau_streinfo;
878 1.13 christos datap->sme.sme_flags = 0;
879 1.1 matt
880 1.12 matt if ((error = sysmon_envsys_register(&datap->sme)) != 0)
881 1.3 matt aprint_error("%s: unable to register with sysmon (%d)\n",
882 1.1 matt ci->ci_dev->dv_xname, error);
883 1.1 matt }
884 1.1 matt
885 1.1 matt
886 1.1 matt /* Find the temperature of the CPU. */
887 1.1 matt int
888 1.12 matt cpu_tau_gtredata(struct sysmon_envsys *sme, struct envsys_tre_data *tred)
889 1.1 matt {
890 1.1 matt int i, threshold, count;
891 1.1 matt
892 1.1 matt if (tred->sensor != 0) {
893 1.1 matt tred->validflags = 0;
894 1.1 matt return 0;
895 1.1 matt }
896 1.1 matt
897 1.1 matt threshold = 64; /* Half of the 7-bit sensor range */
898 1.1 matt mtspr(SPR_THRM1, 0);
899 1.1 matt mtspr(SPR_THRM2, 0);
900 1.1 matt /* XXX This counter is supposed to be "at least 20 microseonds, in
901 1.1 matt * XXX units of clock cycles". Since we don't have convenient
902 1.1 matt * XXX access to the CPU speed, set it to a conservative value,
903 1.1 matt * XXX that is, assuming a fast (1GHz) G3 CPU (As of February 2002,
904 1.1 matt * XXX the fastest G3 processor is 700MHz) . The cost is that
905 1.1 matt * XXX measuring the temperature takes a bit longer.
906 1.1 matt */
907 1.1 matt mtspr(SPR_THRM3, SPR_THRM_TIMER(20000) | SPR_THRM_ENABLE);
908 1.1 matt
909 1.1 matt /* Successive-approximation code adapted from Motorola
910 1.1 matt * application note AN1800/D, "Programming the Thermal Assist
911 1.1 matt * Unit in the MPC750 Microprocessor".
912 1.1 matt */
913 1.1 matt for (i = 4; i >= 0 ; i--) {
914 1.1 matt mtspr(SPR_THRM1,
915 1.1 matt SPR_THRM_THRESHOLD(threshold) | SPR_THRM_VALID);
916 1.1 matt count = 0;
917 1.1 matt while ((count < 100) &&
918 1.1 matt ((mfspr(SPR_THRM1) & SPR_THRM_TIV) == 0)) {
919 1.1 matt count++;
920 1.1 matt delay(1);
921 1.1 matt }
922 1.1 matt if (mfspr(SPR_THRM1) & SPR_THRM_TIN) {
923 1.1 matt /* The interrupt bit was set, meaning the
924 1.1 matt * temperature was above the threshold
925 1.1 matt */
926 1.1 matt threshold += 2 << i;
927 1.1 matt } else {
928 1.1 matt /* Temperature was below the threshold */
929 1.1 matt threshold -= 2 << i;
930 1.1 matt }
931 1.1 matt }
932 1.1 matt threshold += 2;
933 1.1 matt
934 1.1 matt /* Convert the temperature in degrees C to microkelvin */
935 1.12 matt sme->sme_sensor_data->cur.data_us = (threshold * 1000000) + 273150000;
936 1.1 matt
937 1.12 matt *tred = *sme->sme_sensor_data;
938 1.1 matt
939 1.1 matt return 0;
940 1.1 matt }
941 1.1 matt
942 1.1 matt int
943 1.12 matt cpu_tau_streinfo(struct sysmon_envsys *sme, struct envsys_basic_info *binfo)
944 1.1 matt {
945 1.1 matt
946 1.1 matt /* There is nothing to set here. */
947 1.1 matt return (EINVAL);
948 1.1 matt }
949 1.1 matt #endif /* NSYSMON_ENVSYS > 0 */
950