cpu_subr.c revision 1.32 1 1.32 xtraeme /* $NetBSD: cpu_subr.c,v 1.32 2007/07/01 07:37:13 xtraeme Exp $ */
2 1.1 matt
3 1.1 matt /*-
4 1.1 matt * Copyright (c) 2001 Matt Thomas.
5 1.1 matt * Copyright (c) 2001 Tsubai Masanari.
6 1.1 matt * Copyright (c) 1998, 1999, 2001 Internet Research Institute, Inc.
7 1.1 matt * All rights reserved.
8 1.1 matt *
9 1.1 matt * Redistribution and use in source and binary forms, with or without
10 1.1 matt * modification, are permitted provided that the following conditions
11 1.1 matt * are met:
12 1.1 matt * 1. Redistributions of source code must retain the above copyright
13 1.1 matt * notice, this list of conditions and the following disclaimer.
14 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 matt * notice, this list of conditions and the following disclaimer in the
16 1.1 matt * documentation and/or other materials provided with the distribution.
17 1.1 matt * 3. All advertising materials mentioning features or use of this software
18 1.1 matt * must display the following acknowledgement:
19 1.1 matt * This product includes software developed by
20 1.1 matt * Internet Research Institute, Inc.
21 1.1 matt * 4. The name of the author may not be used to endorse or promote products
22 1.1 matt * derived from this software without specific prior written permission.
23 1.1 matt *
24 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25 1.1 matt * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26 1.1 matt * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27 1.1 matt * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
28 1.1 matt * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
29 1.1 matt * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30 1.1 matt * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31 1.1 matt * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32 1.1 matt * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33 1.1 matt * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 1.1 matt */
35 1.9 lukem
36 1.9 lukem #include <sys/cdefs.h>
37 1.32 xtraeme __KERNEL_RCSID(0, "$NetBSD: cpu_subr.c,v 1.32 2007/07/01 07:37:13 xtraeme Exp $");
38 1.1 matt
39 1.1 matt #include "opt_ppcparam.h"
40 1.1 matt #include "opt_multiprocessor.h"
41 1.1 matt #include "opt_altivec.h"
42 1.1 matt #include "sysmon_envsys.h"
43 1.1 matt
44 1.1 matt #include <sys/param.h>
45 1.1 matt #include <sys/systm.h>
46 1.1 matt #include <sys/device.h>
47 1.12 matt #include <sys/malloc.h>
48 1.1 matt
49 1.1 matt #include <uvm/uvm_extern.h>
50 1.1 matt
51 1.1 matt #include <powerpc/oea/hid.h>
52 1.1 matt #include <powerpc/oea/hid_601.h>
53 1.1 matt #include <powerpc/spr.h>
54 1.1 matt
55 1.1 matt #include <dev/sysmon/sysmonvar.h>
56 1.1 matt
57 1.7 matt static void cpu_enable_l2cr(register_t);
58 1.7 matt static void cpu_enable_l3cr(register_t);
59 1.1 matt static void cpu_config_l2cr(int);
60 1.7 matt static void cpu_config_l3cr(int);
61 1.23 briggs static void cpu_probe_speed(struct cpu_info *);
62 1.20 matt static void cpu_idlespin(void);
63 1.1 matt #if NSYSMON_ENVSYS > 0
64 1.1 matt static void cpu_tau_setup(struct cpu_info *);
65 1.32 xtraeme static int cpu_tau_gtredata(struct sysmon_envsys *, envsys_data_t *);
66 1.1 matt #endif
67 1.1 matt
68 1.1 matt int cpu;
69 1.1 matt int ncpus;
70 1.1 matt
71 1.7 matt struct fmttab {
72 1.7 matt register_t fmt_mask;
73 1.7 matt register_t fmt_value;
74 1.7 matt const char *fmt_string;
75 1.7 matt };
76 1.7 matt
77 1.7 matt static const struct fmttab cpu_7450_l2cr_formats[] = {
78 1.7 matt { L2CR_L2E, 0, " disabled" },
79 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
80 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
81 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
82 1.7 matt { L2CR_L2E, ~0, " 256KB L2 cache" },
83 1.28 garbled { 0, 0, NULL }
84 1.7 matt };
85 1.7 matt
86 1.22 matt static const struct fmttab cpu_7448_l2cr_formats[] = {
87 1.22 matt { L2CR_L2E, 0, " disabled" },
88 1.22 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
89 1.22 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
90 1.22 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
91 1.22 matt { L2CR_L2E, ~0, " 1MB L2 cache" },
92 1.28 garbled { 0, 0, NULL }
93 1.22 matt };
94 1.22 matt
95 1.11 matt static const struct fmttab cpu_7457_l2cr_formats[] = {
96 1.11 matt { L2CR_L2E, 0, " disabled" },
97 1.11 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
98 1.11 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
99 1.11 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
100 1.11 matt { L2CR_L2E, ~0, " 512KB L2 cache" },
101 1.28 garbled { 0, 0, NULL }
102 1.11 matt };
103 1.11 matt
104 1.7 matt static const struct fmttab cpu_7450_l3cr_formats[] = {
105 1.7 matt { L3CR_L3DO|L3CR_L3IO, L3CR_L3DO, " data-only" },
106 1.7 matt { L3CR_L3DO|L3CR_L3IO, L3CR_L3IO, " instruction-only" },
107 1.7 matt { L3CR_L3DO|L3CR_L3IO, L3CR_L3DO|L3CR_L3IO, " locked" },
108 1.7 matt { L3CR_L3SIZ, L3SIZ_2M, " 2MB" },
109 1.7 matt { L3CR_L3SIZ, L3SIZ_1M, " 1MB" },
110 1.7 matt { L3CR_L3PE|L3CR_L3APE, L3CR_L3PE|L3CR_L3APE, " parity" },
111 1.7 matt { L3CR_L3PE|L3CR_L3APE, L3CR_L3PE, " data-parity" },
112 1.7 matt { L3CR_L3PE|L3CR_L3APE, L3CR_L3APE, " address-parity" },
113 1.7 matt { L3CR_L3PE|L3CR_L3APE, 0, " no-parity" },
114 1.7 matt { L3CR_L3SIZ, ~0, " L3 cache" },
115 1.7 matt { L3CR_L3RT, L3RT_MSUG2_DDR, " (DDR SRAM)" },
116 1.7 matt { L3CR_L3RT, L3RT_PIPELINE_LATE, " (LW SRAM)" },
117 1.7 matt { L3CR_L3RT, L3RT_PB2_SRAM, " (PB2 SRAM)" },
118 1.7 matt { L3CR_L3CLK, ~0, " at" },
119 1.7 matt { L3CR_L3CLK, L3CLK_20, " 2:1" },
120 1.7 matt { L3CR_L3CLK, L3CLK_25, " 2.5:1" },
121 1.7 matt { L3CR_L3CLK, L3CLK_30, " 3:1" },
122 1.7 matt { L3CR_L3CLK, L3CLK_35, " 3.5:1" },
123 1.7 matt { L3CR_L3CLK, L3CLK_40, " 4:1" },
124 1.7 matt { L3CR_L3CLK, L3CLK_50, " 5:1" },
125 1.7 matt { L3CR_L3CLK, L3CLK_60, " 6:1" },
126 1.7 matt { L3CR_L3CLK, ~0, " ratio" },
127 1.28 garbled { 0, 0, NULL },
128 1.7 matt };
129 1.7 matt
130 1.7 matt static const struct fmttab cpu_ibm750_l2cr_formats[] = {
131 1.7 matt { L2CR_L2E, 0, " disabled" },
132 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
133 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
134 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
135 1.7 matt { 0, ~0, " 512KB" },
136 1.7 matt { L2CR_L2WT, L2CR_L2WT, " WT" },
137 1.7 matt { L2CR_L2WT, 0, " WB" },
138 1.7 matt { L2CR_L2PE, L2CR_L2PE, " with ECC" },
139 1.7 matt { 0, ~0, " L2 cache" },
140 1.28 garbled { 0, 0, NULL }
141 1.7 matt };
142 1.7 matt
143 1.7 matt static const struct fmttab cpu_l2cr_formats[] = {
144 1.7 matt { L2CR_L2E, 0, " disabled" },
145 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
146 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
147 1.7 matt { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
148 1.7 matt { L2CR_L2PE, L2CR_L2PE, " parity" },
149 1.7 matt { L2CR_L2PE, 0, " no-parity" },
150 1.7 matt { L2CR_L2SIZ, L2SIZ_2M, " 2MB" },
151 1.7 matt { L2CR_L2SIZ, L2SIZ_1M, " 1MB" },
152 1.7 matt { L2CR_L2SIZ, L2SIZ_512K, " 512KB" },
153 1.7 matt { L2CR_L2SIZ, L2SIZ_256K, " 256KB" },
154 1.7 matt { L2CR_L2WT, L2CR_L2WT, " WT" },
155 1.7 matt { L2CR_L2WT, 0, " WB" },
156 1.7 matt { L2CR_L2E, ~0, " L2 cache" },
157 1.7 matt { L2CR_L2RAM, L2RAM_FLOWTHRU_BURST, " (FB SRAM)" },
158 1.7 matt { L2CR_L2RAM, L2RAM_PIPELINE_LATE, " (LW SRAM)" },
159 1.7 matt { L2CR_L2RAM, L2RAM_PIPELINE_BURST, " (PB SRAM)" },
160 1.7 matt { L2CR_L2CLK, ~0, " at" },
161 1.7 matt { L2CR_L2CLK, L2CLK_10, " 1:1" },
162 1.7 matt { L2CR_L2CLK, L2CLK_15, " 1.5:1" },
163 1.7 matt { L2CR_L2CLK, L2CLK_20, " 2:1" },
164 1.7 matt { L2CR_L2CLK, L2CLK_25, " 2.5:1" },
165 1.7 matt { L2CR_L2CLK, L2CLK_30, " 3:1" },
166 1.7 matt { L2CR_L2CLK, L2CLK_35, " 3.5:1" },
167 1.7 matt { L2CR_L2CLK, L2CLK_40, " 4:1" },
168 1.7 matt { L2CR_L2CLK, ~0, " ratio" },
169 1.28 garbled { 0, 0, NULL }
170 1.7 matt };
171 1.7 matt
172 1.7 matt static void cpu_fmttab_print(const struct fmttab *, register_t);
173 1.7 matt
174 1.7 matt struct cputab {
175 1.7 matt const char name[8];
176 1.7 matt uint16_t version;
177 1.7 matt uint16_t revfmt;
178 1.7 matt };
179 1.7 matt #define REVFMT_MAJMIN 1 /* %u.%u */
180 1.7 matt #define REVFMT_HEX 2 /* 0x%04x */
181 1.7 matt #define REVFMT_DEC 3 /* %u */
182 1.7 matt static const struct cputab models[] = {
183 1.7 matt { "601", MPC601, REVFMT_DEC },
184 1.7 matt { "602", MPC602, REVFMT_DEC },
185 1.7 matt { "603", MPC603, REVFMT_MAJMIN },
186 1.7 matt { "603e", MPC603e, REVFMT_MAJMIN },
187 1.7 matt { "603ev", MPC603ev, REVFMT_MAJMIN },
188 1.31 aymeric { "G2", MPCG2, REVFMT_MAJMIN },
189 1.7 matt { "604", MPC604, REVFMT_MAJMIN },
190 1.15 briggs { "604e", MPC604e, REVFMT_MAJMIN },
191 1.7 matt { "604ev", MPC604ev, REVFMT_MAJMIN },
192 1.7 matt { "620", MPC620, REVFMT_HEX },
193 1.7 matt { "750", MPC750, REVFMT_MAJMIN },
194 1.7 matt { "750FX", IBM750FX, REVFMT_MAJMIN },
195 1.7 matt { "7400", MPC7400, REVFMT_MAJMIN },
196 1.7 matt { "7410", MPC7410, REVFMT_MAJMIN },
197 1.7 matt { "7450", MPC7450, REVFMT_MAJMIN },
198 1.7 matt { "7455", MPC7455, REVFMT_MAJMIN },
199 1.11 matt { "7457", MPC7457, REVFMT_MAJMIN },
200 1.21 matt { "7447A", MPC7447A, REVFMT_MAJMIN },
201 1.22 matt { "7448", MPC7448, REVFMT_MAJMIN },
202 1.7 matt { "8240", MPC8240, REVFMT_MAJMIN },
203 1.30 nisimura { "8245", MPC8245, REVFMT_MAJMIN },
204 1.27 sanjayl { "970", IBM970, REVFMT_MAJMIN },
205 1.27 sanjayl { "970FX", IBM970FX, REVFMT_MAJMIN },
206 1.7 matt { "", 0, REVFMT_HEX }
207 1.7 matt };
208 1.7 matt
209 1.7 matt
210 1.1 matt #ifdef MULTIPROCESSOR
211 1.1 matt struct cpu_info cpu_info[CPU_MAXNUM];
212 1.1 matt #else
213 1.1 matt struct cpu_info cpu_info[1];
214 1.1 matt #endif
215 1.1 matt
216 1.1 matt int cpu_altivec;
217 1.14 kleink int cpu_psluserset, cpu_pslusermod;
218 1.1 matt char cpu_model[80];
219 1.1 matt
220 1.1 matt void
221 1.7 matt cpu_fmttab_print(const struct fmttab *fmt, register_t data)
222 1.7 matt {
223 1.7 matt for (; fmt->fmt_mask != 0 || fmt->fmt_value != 0; fmt++) {
224 1.7 matt if ((~fmt->fmt_mask & fmt->fmt_value) != 0 ||
225 1.7 matt (data & fmt->fmt_mask) == fmt->fmt_value)
226 1.7 matt aprint_normal("%s", fmt->fmt_string);
227 1.7 matt }
228 1.7 matt }
229 1.7 matt
230 1.7 matt void
231 1.20 matt cpu_idlespin(void)
232 1.20 matt {
233 1.20 matt register_t msr;
234 1.20 matt
235 1.20 matt if (powersave <= 0)
236 1.20 matt return;
237 1.20 matt
238 1.26 perry __asm volatile(
239 1.20 matt "sync;"
240 1.20 matt "mfmsr %0;"
241 1.20 matt "oris %0,%0,%1@h;" /* enter power saving mode */
242 1.20 matt "mtmsr %0;"
243 1.20 matt "isync;"
244 1.20 matt : "=r"(msr)
245 1.20 matt : "J"(PSL_POW));
246 1.20 matt }
247 1.20 matt
248 1.20 matt void
249 1.1 matt cpu_probe_cache(void)
250 1.1 matt {
251 1.1 matt u_int assoc, pvr, vers;
252 1.1 matt
253 1.1 matt pvr = mfpvr();
254 1.1 matt vers = pvr >> 16;
255 1.1 matt
256 1.27 sanjayl
257 1.27 sanjayl /* Presently common across almost all implementations. */
258 1.27 sanjayl curcpu()->ci_ci.dcache_line_size = CACHELINESIZE;
259 1.27 sanjayl curcpu()->ci_ci.icache_line_size = CACHELINESIZE;
260 1.27 sanjayl
261 1.27 sanjayl
262 1.1 matt switch (vers) {
263 1.1 matt #define K *1024
264 1.1 matt case IBM750FX:
265 1.1 matt case MPC601:
266 1.1 matt case MPC750:
267 1.22 matt case MPC7447A:
268 1.22 matt case MPC7448:
269 1.1 matt case MPC7450:
270 1.1 matt case MPC7455:
271 1.11 matt case MPC7457:
272 1.1 matt curcpu()->ci_ci.dcache_size = 32 K;
273 1.1 matt curcpu()->ci_ci.icache_size = 32 K;
274 1.1 matt assoc = 8;
275 1.1 matt break;
276 1.1 matt case MPC603:
277 1.1 matt curcpu()->ci_ci.dcache_size = 8 K;
278 1.1 matt curcpu()->ci_ci.icache_size = 8 K;
279 1.1 matt assoc = 2;
280 1.1 matt break;
281 1.1 matt case MPC603e:
282 1.1 matt case MPC603ev:
283 1.1 matt case MPC604:
284 1.1 matt case MPC8240:
285 1.1 matt case MPC8245:
286 1.31 aymeric case MPCG2:
287 1.1 matt curcpu()->ci_ci.dcache_size = 16 K;
288 1.1 matt curcpu()->ci_ci.icache_size = 16 K;
289 1.1 matt assoc = 4;
290 1.1 matt break;
291 1.15 briggs case MPC604e:
292 1.1 matt case MPC604ev:
293 1.1 matt curcpu()->ci_ci.dcache_size = 32 K;
294 1.1 matt curcpu()->ci_ci.icache_size = 32 K;
295 1.1 matt assoc = 4;
296 1.1 matt break;
297 1.27 sanjayl case IBM970:
298 1.27 sanjayl case IBM970FX:
299 1.27 sanjayl curcpu()->ci_ci.dcache_size = 32 K;
300 1.27 sanjayl curcpu()->ci_ci.icache_size = 64 K;
301 1.27 sanjayl curcpu()->ci_ci.dcache_line_size = 128;
302 1.27 sanjayl curcpu()->ci_ci.icache_line_size = 128;
303 1.27 sanjayl assoc = 2;
304 1.27 sanjayl break;
305 1.27 sanjayl
306 1.1 matt default:
307 1.6 thorpej curcpu()->ci_ci.dcache_size = PAGE_SIZE;
308 1.6 thorpej curcpu()->ci_ci.icache_size = PAGE_SIZE;
309 1.1 matt assoc = 1;
310 1.1 matt #undef K
311 1.1 matt }
312 1.1 matt
313 1.1 matt /*
314 1.1 matt * Possibly recolor.
315 1.1 matt */
316 1.1 matt uvm_page_recolor(atop(curcpu()->ci_ci.dcache_size / assoc));
317 1.1 matt }
318 1.1 matt
319 1.1 matt struct cpu_info *
320 1.1 matt cpu_attach_common(struct device *self, int id)
321 1.1 matt {
322 1.1 matt struct cpu_info *ci;
323 1.1 matt u_int pvr, vers;
324 1.1 matt
325 1.1 matt ci = &cpu_info[id];
326 1.1 matt #ifndef MULTIPROCESSOR
327 1.1 matt /*
328 1.1 matt * If this isn't the primary CPU, print an error message
329 1.1 matt * and just bail out.
330 1.1 matt */
331 1.1 matt if (id != 0) {
332 1.3 matt aprint_normal(": ID %d\n", id);
333 1.3 matt aprint_normal("%s: processor off-line; multiprocessor support "
334 1.1 matt "not present in kernel\n", self->dv_xname);
335 1.1 matt return (NULL);
336 1.1 matt }
337 1.1 matt #endif
338 1.1 matt
339 1.1 matt ci->ci_cpuid = id;
340 1.1 matt ci->ci_intrdepth = -1;
341 1.1 matt ci->ci_dev = self;
342 1.20 matt ci->ci_idlespin = cpu_idlespin;
343 1.1 matt
344 1.1 matt pvr = mfpvr();
345 1.1 matt vers = (pvr >> 16) & 0xffff;
346 1.1 matt
347 1.1 matt switch (id) {
348 1.1 matt case 0:
349 1.1 matt /* load my cpu_number to PIR */
350 1.1 matt switch (vers) {
351 1.1 matt case MPC601:
352 1.1 matt case MPC604:
353 1.15 briggs case MPC604e:
354 1.1 matt case MPC604ev:
355 1.1 matt case MPC7400:
356 1.1 matt case MPC7410:
357 1.22 matt case MPC7447A:
358 1.22 matt case MPC7448:
359 1.1 matt case MPC7450:
360 1.1 matt case MPC7455:
361 1.11 matt case MPC7457:
362 1.1 matt mtspr(SPR_PIR, id);
363 1.1 matt }
364 1.1 matt cpu_setup(self, ci);
365 1.1 matt break;
366 1.1 matt default:
367 1.1 matt if (id >= CPU_MAXNUM) {
368 1.3 matt aprint_normal(": more than %d cpus?\n", CPU_MAXNUM);
369 1.1 matt panic("cpuattach");
370 1.1 matt }
371 1.1 matt #ifndef MULTIPROCESSOR
372 1.3 matt aprint_normal(" not configured\n");
373 1.1 matt return NULL;
374 1.29 yamt #else
375 1.29 yamt mi_cpu_attach(ci);
376 1.29 yamt break;
377 1.1 matt #endif
378 1.1 matt }
379 1.1 matt return (ci);
380 1.1 matt }
381 1.1 matt
382 1.1 matt void
383 1.1 matt cpu_setup(self, ci)
384 1.1 matt struct device *self;
385 1.1 matt struct cpu_info *ci;
386 1.1 matt {
387 1.1 matt u_int hid0, pvr, vers;
388 1.24 he const char *bitmask;
389 1.24 he char hidbuf[128];
390 1.1 matt char model[80];
391 1.1 matt
392 1.1 matt pvr = mfpvr();
393 1.1 matt vers = (pvr >> 16) & 0xffff;
394 1.1 matt
395 1.1 matt cpu_identify(model, sizeof(model));
396 1.3 matt aprint_normal(": %s, ID %d%s\n", model, cpu_number(),
397 1.1 matt cpu_number() == 0 ? " (primary)" : "");
398 1.1 matt
399 1.27 sanjayl #if defined (PPC_OEA) || defined (PPC_OEA64)
400 1.1 matt hid0 = mfspr(SPR_HID0);
401 1.27 sanjayl #elif defined (PPC_OEA64_BRIDGE)
402 1.27 sanjayl hid0 = mfspr(SPR_HID0);
403 1.27 sanjayl #endif
404 1.27 sanjayl
405 1.1 matt cpu_probe_cache();
406 1.1 matt
407 1.1 matt /*
408 1.1 matt * Configure power-saving mode.
409 1.1 matt */
410 1.1 matt switch (vers) {
411 1.18 briggs case MPC604:
412 1.18 briggs case MPC604e:
413 1.18 briggs case MPC604ev:
414 1.18 briggs /*
415 1.18 briggs * Do not have HID0 support settings, but can support
416 1.18 briggs * MSR[POW] off
417 1.18 briggs */
418 1.18 briggs powersave = 1;
419 1.18 briggs break;
420 1.18 briggs
421 1.1 matt case MPC603:
422 1.1 matt case MPC603e:
423 1.1 matt case MPC603ev:
424 1.1 matt case MPC750:
425 1.1 matt case IBM750FX:
426 1.1 matt case MPC7400:
427 1.1 matt case MPC7410:
428 1.1 matt case MPC8240:
429 1.1 matt case MPC8245:
430 1.31 aymeric case MPCG2:
431 1.1 matt /* Select DOZE mode. */
432 1.1 matt hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
433 1.1 matt hid0 |= HID0_DOZE | HID0_DPM;
434 1.1 matt powersave = 1;
435 1.1 matt break;
436 1.1 matt
437 1.22 matt case MPC7447A:
438 1.22 matt case MPC7448:
439 1.11 matt case MPC7457:
440 1.1 matt case MPC7455:
441 1.1 matt case MPC7450:
442 1.5 matt /* Enable the 7450 branch caches */
443 1.5 matt hid0 |= HID0_SGE | HID0_BTIC;
444 1.5 matt hid0 |= HID0_LRSTK | HID0_FOLD | HID0_BHT;
445 1.1 matt /* Disable BTIC on 7450 Rev 2.0 or earlier */
446 1.5 matt if (vers == MPC7450 && (pvr & 0xFFFF) <= 0x0200)
447 1.1 matt hid0 &= ~HID0_BTIC;
448 1.1 matt /* Select NAP mode. */
449 1.19 chs hid0 &= ~(HID0_HIGH_BAT_EN | HID0_SLEEP);
450 1.22 matt hid0 |= HID0_NAP | HID0_DPM /* | HID0_XBSEN */;
451 1.19 chs powersave = 1;
452 1.1 matt break;
453 1.1 matt
454 1.27 sanjayl case IBM970:
455 1.27 sanjayl case IBM970FX:
456 1.1 matt default:
457 1.1 matt /* No power-saving mode is available. */ ;
458 1.1 matt }
459 1.1 matt
460 1.1 matt #ifdef NAPMODE
461 1.1 matt switch (vers) {
462 1.1 matt case IBM750FX:
463 1.1 matt case MPC750:
464 1.1 matt case MPC7400:
465 1.1 matt /* Select NAP mode. */
466 1.1 matt hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
467 1.1 matt hid0 |= HID0_NAP;
468 1.1 matt break;
469 1.1 matt }
470 1.1 matt #endif
471 1.1 matt
472 1.1 matt switch (vers) {
473 1.1 matt case IBM750FX:
474 1.1 matt case MPC750:
475 1.1 matt hid0 &= ~HID0_DBP; /* XXX correct? */
476 1.1 matt hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
477 1.1 matt break;
478 1.1 matt
479 1.1 matt case MPC7400:
480 1.1 matt case MPC7410:
481 1.1 matt hid0 &= ~HID0_SPD;
482 1.1 matt hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
483 1.1 matt hid0 |= HID0_EIEC;
484 1.1 matt break;
485 1.1 matt }
486 1.1 matt
487 1.27 sanjayl #if defined (PPC_OEA)
488 1.1 matt mtspr(SPR_HID0, hid0);
489 1.26 perry __asm volatile("sync;isync");
490 1.27 sanjayl #endif
491 1.1 matt
492 1.1 matt switch (vers) {
493 1.1 matt case MPC601:
494 1.1 matt bitmask = HID0_601_BITMASK;
495 1.1 matt break;
496 1.1 matt case MPC7450:
497 1.1 matt case MPC7455:
498 1.11 matt case MPC7457:
499 1.1 matt bitmask = HID0_7450_BITMASK;
500 1.1 matt break;
501 1.27 sanjayl case IBM970:
502 1.27 sanjayl case IBM970FX:
503 1.27 sanjayl bitmask = 0;
504 1.27 sanjayl break;
505 1.1 matt default:
506 1.1 matt bitmask = HID0_BITMASK;
507 1.1 matt break;
508 1.1 matt }
509 1.1 matt bitmask_snprintf(hid0, bitmask, hidbuf, sizeof hidbuf);
510 1.27 sanjayl aprint_normal("%s: HID0 %s, powersave: %d\n", self->dv_xname, hidbuf, powersave);
511 1.1 matt
512 1.23 briggs ci->ci_khz = 0;
513 1.23 briggs
514 1.1 matt /*
515 1.1 matt * Display speed and cache configuration.
516 1.1 matt */
517 1.15 briggs switch (vers) {
518 1.15 briggs case MPC604:
519 1.15 briggs case MPC604e:
520 1.15 briggs case MPC604ev:
521 1.15 briggs case MPC750:
522 1.15 briggs case IBM750FX:
523 1.16 briggs case MPC7400:
524 1.15 briggs case MPC7410:
525 1.22 matt case MPC7447A:
526 1.22 matt case MPC7448:
527 1.16 briggs case MPC7450:
528 1.16 briggs case MPC7455:
529 1.16 briggs case MPC7457:
530 1.7 matt aprint_normal("%s: ", self->dv_xname);
531 1.23 briggs cpu_probe_speed(ci);
532 1.23 briggs aprint_normal("%u.%02u MHz",
533 1.23 briggs ci->ci_khz / 1000, (ci->ci_khz / 10) % 100);
534 1.15 briggs
535 1.17 briggs if (vers == IBM750FX || vers == MPC750 ||
536 1.17 briggs vers == MPC7400 || vers == MPC7410 || MPC745X_P(vers)) {
537 1.15 briggs if (MPC745X_P(vers)) {
538 1.15 briggs cpu_config_l3cr(vers);
539 1.15 briggs } else {
540 1.15 briggs cpu_config_l2cr(pvr);
541 1.15 briggs }
542 1.7 matt }
543 1.7 matt aprint_normal("\n");
544 1.15 briggs break;
545 1.1 matt }
546 1.1 matt
547 1.1 matt #if NSYSMON_ENVSYS > 0
548 1.1 matt /*
549 1.1 matt * Attach MPC750 temperature sensor to the envsys subsystem.
550 1.1 matt * XXX the 74xx series also has this sensor, but it is not
551 1.1 matt * XXX supported by Motorola and may return values that are off by
552 1.1 matt * XXX 35-55 degrees C.
553 1.1 matt */
554 1.1 matt if (vers == MPC750 || vers == IBM750FX)
555 1.1 matt cpu_tau_setup(ci);
556 1.1 matt #endif
557 1.1 matt
558 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
559 1.1 matt NULL, self->dv_xname, "clock");
560 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_softclock, EVCNT_TYPE_INTR,
561 1.1 matt NULL, self->dv_xname, "soft clock");
562 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_softnet, EVCNT_TYPE_INTR,
563 1.1 matt NULL, self->dv_xname, "soft net");
564 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_softserial, EVCNT_TYPE_INTR,
565 1.1 matt NULL, self->dv_xname, "soft serial");
566 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
567 1.1 matt NULL, self->dv_xname, "traps");
568 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
569 1.1 matt &ci->ci_ev_traps, self->dv_xname, "kernel DSI traps");
570 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
571 1.1 matt &ci->ci_ev_traps, self->dv_xname, "user DSI traps");
572 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
573 1.1 matt &ci->ci_ev_udsi, self->dv_xname, "user DSI failures");
574 1.10 matt evcnt_attach_dynamic(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP,
575 1.10 matt &ci->ci_ev_traps, self->dv_xname, "kernel ISI traps");
576 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
577 1.1 matt &ci->ci_ev_traps, self->dv_xname, "user ISI traps");
578 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
579 1.1 matt &ci->ci_ev_isi, self->dv_xname, "user ISI failures");
580 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
581 1.1 matt &ci->ci_ev_traps, self->dv_xname, "system call traps");
582 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
583 1.1 matt &ci->ci_ev_traps, self->dv_xname, "PGM traps");
584 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
585 1.1 matt &ci->ci_ev_traps, self->dv_xname, "FPU unavailable traps");
586 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_fpusw, EVCNT_TYPE_TRAP,
587 1.1 matt &ci->ci_ev_fpu, self->dv_xname, "FPU context switches");
588 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
589 1.1 matt &ci->ci_ev_traps, self->dv_xname, "user alignment traps");
590 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
591 1.1 matt &ci->ci_ev_ali, self->dv_xname, "user alignment traps");
592 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
593 1.1 matt &ci->ci_ev_umchk, self->dv_xname, "user MCHK failures");
594 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
595 1.1 matt &ci->ci_ev_traps, self->dv_xname, "AltiVec unavailable");
596 1.1 matt #ifdef ALTIVEC
597 1.1 matt if (cpu_altivec) {
598 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_vecsw, EVCNT_TYPE_TRAP,
599 1.1 matt &ci->ci_ev_vec, self->dv_xname, "AltiVec context switches");
600 1.1 matt }
601 1.1 matt #endif
602 1.1 matt }
603 1.1 matt
604 1.1 matt void
605 1.1 matt cpu_identify(char *str, size_t len)
606 1.1 matt {
607 1.24 he u_int pvr, major, minor;
608 1.1 matt uint16_t vers, rev, revfmt;
609 1.1 matt const struct cputab *cp;
610 1.1 matt const char *name;
611 1.1 matt size_t n;
612 1.1 matt
613 1.1 matt pvr = mfpvr();
614 1.1 matt vers = pvr >> 16;
615 1.1 matt rev = pvr;
616 1.27 sanjayl
617 1.1 matt switch (vers) {
618 1.1 matt case MPC7410:
619 1.24 he minor = (pvr >> 0) & 0xff;
620 1.24 he major = minor <= 4 ? 1 : 2;
621 1.1 matt break;
622 1.1 matt default:
623 1.31 aymeric major = (pvr >> 4) & 0xf;
624 1.24 he minor = (pvr >> 0) & 0xf;
625 1.1 matt }
626 1.1 matt
627 1.1 matt for (cp = models; cp->name[0] != '\0'; cp++) {
628 1.1 matt if (cp->version == vers)
629 1.1 matt break;
630 1.1 matt }
631 1.1 matt
632 1.1 matt if (str == NULL) {
633 1.1 matt str = cpu_model;
634 1.1 matt len = sizeof(cpu_model);
635 1.1 matt cpu = vers;
636 1.1 matt }
637 1.1 matt
638 1.1 matt revfmt = cp->revfmt;
639 1.1 matt name = cp->name;
640 1.1 matt if (rev == MPC750 && pvr == 15) {
641 1.1 matt name = "755";
642 1.1 matt revfmt = REVFMT_HEX;
643 1.1 matt }
644 1.1 matt
645 1.1 matt if (cp->name[0] != '\0') {
646 1.1 matt n = snprintf(str, len, "%s (Revision ", cp->name);
647 1.1 matt } else {
648 1.1 matt n = snprintf(str, len, "Version %#x (Revision ", vers);
649 1.1 matt }
650 1.1 matt if (len > n) {
651 1.1 matt switch (revfmt) {
652 1.1 matt case REVFMT_MAJMIN:
653 1.24 he snprintf(str + n, len - n, "%u.%u)", major, minor);
654 1.1 matt break;
655 1.1 matt case REVFMT_HEX:
656 1.1 matt snprintf(str + n, len - n, "0x%04x)", rev);
657 1.1 matt break;
658 1.1 matt case REVFMT_DEC:
659 1.1 matt snprintf(str + n, len - n, "%u)", rev);
660 1.1 matt break;
661 1.1 matt }
662 1.1 matt }
663 1.1 matt }
664 1.1 matt
665 1.1 matt #ifdef L2CR_CONFIG
666 1.1 matt u_int l2cr_config = L2CR_CONFIG;
667 1.1 matt #else
668 1.1 matt u_int l2cr_config = 0;
669 1.1 matt #endif
670 1.1 matt
671 1.2 jklos #ifdef L3CR_CONFIG
672 1.2 jklos u_int l3cr_config = L3CR_CONFIG;
673 1.2 jklos #else
674 1.2 jklos u_int l3cr_config = 0;
675 1.2 jklos #endif
676 1.2 jklos
677 1.1 matt void
678 1.7 matt cpu_enable_l2cr(register_t l2cr)
679 1.7 matt {
680 1.7 matt register_t msr, x;
681 1.7 matt
682 1.7 matt /* Disable interrupts and set the cache config bits. */
683 1.7 matt msr = mfmsr();
684 1.7 matt mtmsr(msr & ~PSL_EE);
685 1.7 matt #ifdef ALTIVEC
686 1.7 matt if (cpu_altivec)
687 1.26 perry __asm volatile("dssall");
688 1.7 matt #endif
689 1.26 perry __asm volatile("sync");
690 1.7 matt mtspr(SPR_L2CR, l2cr & ~L2CR_L2E);
691 1.26 perry __asm volatile("sync");
692 1.7 matt
693 1.7 matt /* Wait for L2 clock to be stable (640 L2 clocks). */
694 1.7 matt delay(100);
695 1.7 matt
696 1.7 matt /* Invalidate all L2 contents. */
697 1.7 matt mtspr(SPR_L2CR, l2cr | L2CR_L2I);
698 1.7 matt do {
699 1.7 matt x = mfspr(SPR_L2CR);
700 1.7 matt } while (x & L2CR_L2IP);
701 1.7 matt
702 1.7 matt /* Enable L2 cache. */
703 1.7 matt l2cr |= L2CR_L2E;
704 1.7 matt mtspr(SPR_L2CR, l2cr);
705 1.7 matt mtmsr(msr);
706 1.7 matt }
707 1.7 matt
708 1.7 matt void
709 1.7 matt cpu_enable_l3cr(register_t l3cr)
710 1.1 matt {
711 1.7 matt register_t x;
712 1.7 matt
713 1.7 matt /* By The Book (numbered steps from section 3.7.1.3 of MPC7450UM) */
714 1.7 matt
715 1.7 matt /*
716 1.7 matt * 1: Set all L3CR bits for final config except L3E, L3I, L3PE, and
717 1.7 matt * L3CLKEN. (also mask off reserved bits in case they were included
718 1.7 matt * in L3CR_CONFIG)
719 1.7 matt */
720 1.7 matt l3cr &= ~(L3CR_L3E|L3CR_L3I|L3CR_L3PE|L3CR_L3CLKEN|L3CR_RESERVED);
721 1.7 matt mtspr(SPR_L3CR, l3cr);
722 1.7 matt
723 1.7 matt /* 2: Set L3CR[5] (otherwise reserved bit) to 1 */
724 1.7 matt l3cr |= 0x04000000;
725 1.7 matt mtspr(SPR_L3CR, l3cr);
726 1.7 matt
727 1.7 matt /* 3: Set L3CLKEN to 1*/
728 1.7 matt l3cr |= L3CR_L3CLKEN;
729 1.7 matt mtspr(SPR_L3CR, l3cr);
730 1.7 matt
731 1.7 matt /* 4/5: Perform a global cache invalidate (ref section 3.7.3.6) */
732 1.26 perry __asm volatile("dssall;sync");
733 1.7 matt /* L3 cache is already disabled, no need to clear L3E */
734 1.7 matt mtspr(SPR_L3CR, l3cr|L3CR_L3I);
735 1.7 matt do {
736 1.7 matt x = mfspr(SPR_L3CR);
737 1.7 matt } while (x & L3CR_L3I);
738 1.7 matt
739 1.7 matt /* 6: Clear L3CLKEN to 0 */
740 1.7 matt l3cr &= ~L3CR_L3CLKEN;
741 1.7 matt mtspr(SPR_L3CR, l3cr);
742 1.7 matt
743 1.7 matt /* 7: Perform a 'sync' and wait at least 100 CPU cycles */
744 1.26 perry __asm volatile("sync");
745 1.7 matt delay(100);
746 1.7 matt
747 1.7 matt /* 8: Set L3E and L3CLKEN */
748 1.7 matt l3cr |= (L3CR_L3E|L3CR_L3CLKEN);
749 1.7 matt mtspr(SPR_L3CR, l3cr);
750 1.7 matt
751 1.7 matt /* 9: Perform a 'sync' and wait at least 100 CPU cycles */
752 1.26 perry __asm volatile("sync");
753 1.7 matt delay(100);
754 1.7 matt }
755 1.7 matt
756 1.7 matt void
757 1.7 matt cpu_config_l2cr(int pvr)
758 1.7 matt {
759 1.7 matt register_t l2cr;
760 1.1 matt
761 1.1 matt l2cr = mfspr(SPR_L2CR);
762 1.1 matt
763 1.1 matt /*
764 1.1 matt * For MP systems, the firmware may only configure the L2 cache
765 1.1 matt * on the first CPU. In this case, assume that the other CPUs
766 1.1 matt * should use the same value for L2CR.
767 1.1 matt */
768 1.1 matt if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
769 1.1 matt l2cr_config = l2cr;
770 1.1 matt }
771 1.1 matt
772 1.1 matt /*
773 1.1 matt * Configure L2 cache if not enabled.
774 1.1 matt */
775 1.8 scw if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
776 1.7 matt cpu_enable_l2cr(l2cr_config);
777 1.8 scw l2cr = mfspr(SPR_L2CR);
778 1.8 scw }
779 1.7 matt
780 1.15 briggs if ((l2cr & L2CR_L2E) == 0) {
781 1.15 briggs aprint_normal(" L2 cache present but not enabled ");
782 1.7 matt return;
783 1.15 briggs }
784 1.1 matt
785 1.7 matt aprint_normal(",");
786 1.7 matt if ((pvr >> 16) == IBM750FX ||
787 1.7 matt (pvr & 0xffffff00) == 0x00082200 /* IBM750CX */ ||
788 1.7 matt (pvr & 0xffffef00) == 0x00082300 /* IBM750CXe */) {
789 1.7 matt cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
790 1.7 matt } else {
791 1.7 matt cpu_fmttab_print(cpu_l2cr_formats, l2cr);
792 1.1 matt }
793 1.7 matt }
794 1.1 matt
795 1.7 matt void
796 1.7 matt cpu_config_l3cr(int vers)
797 1.7 matt {
798 1.7 matt register_t l2cr;
799 1.7 matt register_t l3cr;
800 1.7 matt
801 1.7 matt l2cr = mfspr(SPR_L2CR);
802 1.1 matt
803 1.7 matt /*
804 1.7 matt * For MP systems, the firmware may only configure the L2 cache
805 1.7 matt * on the first CPU. In this case, assume that the other CPUs
806 1.7 matt * should use the same value for L2CR.
807 1.7 matt */
808 1.7 matt if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
809 1.7 matt l2cr_config = l2cr;
810 1.7 matt }
811 1.1 matt
812 1.7 matt /*
813 1.7 matt * Configure L2 cache if not enabled.
814 1.7 matt */
815 1.7 matt if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
816 1.7 matt cpu_enable_l2cr(l2cr_config);
817 1.7 matt l2cr = mfspr(SPR_L2CR);
818 1.7 matt }
819 1.7 matt
820 1.7 matt aprint_normal(",");
821 1.22 matt switch (vers) {
822 1.22 matt case MPC7447A:
823 1.22 matt case MPC7457:
824 1.22 matt cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
825 1.22 matt return;
826 1.22 matt case MPC7448:
827 1.22 matt cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
828 1.22 matt return;
829 1.22 matt default:
830 1.22 matt cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
831 1.22 matt break;
832 1.22 matt }
833 1.2 jklos
834 1.7 matt l3cr = mfspr(SPR_L3CR);
835 1.1 matt
836 1.7 matt /*
837 1.7 matt * For MP systems, the firmware may only configure the L3 cache
838 1.7 matt * on the first CPU. In this case, assume that the other CPUs
839 1.7 matt * should use the same value for L3CR.
840 1.7 matt */
841 1.7 matt if ((l3cr & L3CR_L3E) != 0 && l3cr_config == 0) {
842 1.7 matt l3cr_config = l3cr;
843 1.7 matt }
844 1.1 matt
845 1.7 matt /*
846 1.7 matt * Configure L3 cache if not enabled.
847 1.7 matt */
848 1.7 matt if ((l3cr & L3CR_L3E) == 0 && l3cr_config != 0) {
849 1.7 matt cpu_enable_l3cr(l3cr_config);
850 1.7 matt l3cr = mfspr(SPR_L3CR);
851 1.7 matt }
852 1.7 matt
853 1.7 matt if (l3cr & L3CR_L3E) {
854 1.7 matt aprint_normal(",");
855 1.7 matt cpu_fmttab_print(cpu_7450_l3cr_formats, l3cr);
856 1.7 matt }
857 1.1 matt }
858 1.1 matt
859 1.1 matt void
860 1.23 briggs cpu_probe_speed(struct cpu_info *ci)
861 1.1 matt {
862 1.1 matt uint64_t cps;
863 1.1 matt
864 1.7 matt mtspr(SPR_MMCR0, MMCR0_FC);
865 1.1 matt mtspr(SPR_PMC1, 0);
866 1.7 matt mtspr(SPR_MMCR0, MMCR0_PMC1SEL(PMCN_CYCLES));
867 1.1 matt delay(100000);
868 1.1 matt cps = (mfspr(SPR_PMC1) * 10) + 4999;
869 1.1 matt
870 1.15 briggs mtspr(SPR_MMCR0, MMCR0_FC);
871 1.15 briggs
872 1.23 briggs ci->ci_khz = cps / 1000;
873 1.1 matt }
874 1.1 matt
875 1.1 matt #if NSYSMON_ENVSYS > 0
876 1.1 matt void
877 1.1 matt cpu_tau_setup(struct cpu_info *ci)
878 1.1 matt {
879 1.12 matt struct {
880 1.12 matt struct sysmon_envsys sme;
881 1.32 xtraeme envsys_data_t edata;
882 1.12 matt } *datap;
883 1.1 matt int error;
884 1.1 matt
885 1.13 christos datap = malloc(sizeof(*datap), M_DEVBUF, M_WAITOK | M_ZERO);
886 1.12 matt
887 1.32 xtraeme datap->edata.sensor = 0;
888 1.32 xtraeme datap->edata.units = ENVSYS_STEMP;
889 1.32 xtraeme datap->edata.state = ENVSYS_SVALID;
890 1.32 xtraeme (void)strlcpy(datap->edata.desc, "CPU Temp",
891 1.32 xtraeme sizeof(datap->edata.desc));
892 1.32 xtraeme
893 1.12 matt ci->ci_sysmon_cookie = &datap->sme;
894 1.12 matt datap->sme.sme_nsensors = 1;
895 1.32 xtraeme datap->sme.sme_sensor_data = &datap->edata;
896 1.32 xtraeme datap->sme.sme_name = ci->ci_dev->dv_xname;
897 1.12 matt datap->sme.sme_cookie = ci;
898 1.12 matt datap->sme.sme_gtredata = cpu_tau_gtredata;
899 1.1 matt
900 1.12 matt if ((error = sysmon_envsys_register(&datap->sme)) != 0)
901 1.3 matt aprint_error("%s: unable to register with sysmon (%d)\n",
902 1.1 matt ci->ci_dev->dv_xname, error);
903 1.1 matt }
904 1.1 matt
905 1.1 matt
906 1.1 matt /* Find the temperature of the CPU. */
907 1.1 matt int
908 1.32 xtraeme cpu_tau_gtredata(struct sysmon_envsys *sme, envsys_data_t *edata)
909 1.1 matt {
910 1.1 matt int i, threshold, count;
911 1.1 matt
912 1.32 xtraeme if (edata->sensor != 0) {
913 1.32 xtraeme edata->state = ENVSYS_SINVALID;
914 1.1 matt return 0;
915 1.1 matt }
916 1.1 matt
917 1.1 matt threshold = 64; /* Half of the 7-bit sensor range */
918 1.1 matt mtspr(SPR_THRM1, 0);
919 1.1 matt mtspr(SPR_THRM2, 0);
920 1.1 matt /* XXX This counter is supposed to be "at least 20 microseonds, in
921 1.1 matt * XXX units of clock cycles". Since we don't have convenient
922 1.1 matt * XXX access to the CPU speed, set it to a conservative value,
923 1.1 matt * XXX that is, assuming a fast (1GHz) G3 CPU (As of February 2002,
924 1.1 matt * XXX the fastest G3 processor is 700MHz) . The cost is that
925 1.1 matt * XXX measuring the temperature takes a bit longer.
926 1.1 matt */
927 1.1 matt mtspr(SPR_THRM3, SPR_THRM_TIMER(20000) | SPR_THRM_ENABLE);
928 1.1 matt
929 1.1 matt /* Successive-approximation code adapted from Motorola
930 1.1 matt * application note AN1800/D, "Programming the Thermal Assist
931 1.1 matt * Unit in the MPC750 Microprocessor".
932 1.1 matt */
933 1.1 matt for (i = 4; i >= 0 ; i--) {
934 1.1 matt mtspr(SPR_THRM1,
935 1.1 matt SPR_THRM_THRESHOLD(threshold) | SPR_THRM_VALID);
936 1.1 matt count = 0;
937 1.1 matt while ((count < 100) &&
938 1.1 matt ((mfspr(SPR_THRM1) & SPR_THRM_TIV) == 0)) {
939 1.1 matt count++;
940 1.1 matt delay(1);
941 1.1 matt }
942 1.1 matt if (mfspr(SPR_THRM1) & SPR_THRM_TIN) {
943 1.1 matt /* The interrupt bit was set, meaning the
944 1.1 matt * temperature was above the threshold
945 1.1 matt */
946 1.1 matt threshold += 2 << i;
947 1.1 matt } else {
948 1.1 matt /* Temperature was below the threshold */
949 1.1 matt threshold -= 2 << i;
950 1.1 matt }
951 1.1 matt }
952 1.1 matt threshold += 2;
953 1.1 matt
954 1.1 matt /* Convert the temperature in degrees C to microkelvin */
955 1.32 xtraeme sme->sme_sensor_data->value_cur = (threshold * 1000000) + 273150000;
956 1.1 matt
957 1.1 matt return 0;
958 1.1 matt }
959 1.1 matt #endif /* NSYSMON_ENVSYS > 0 */
960