cpu_subr.c revision 1.4 1 1.4 matt /* $NetBSD: cpu_subr.c,v 1.4 2003/03/15 07:22:46 matt Exp $ */
2 1.1 matt
3 1.1 matt /*-
4 1.1 matt * Copyright (c) 2001 Matt Thomas.
5 1.1 matt * Copyright (c) 2001 Tsubai Masanari.
6 1.1 matt * Copyright (c) 1998, 1999, 2001 Internet Research Institute, Inc.
7 1.1 matt * All rights reserved.
8 1.1 matt *
9 1.1 matt * Redistribution and use in source and binary forms, with or without
10 1.1 matt * modification, are permitted provided that the following conditions
11 1.1 matt * are met:
12 1.1 matt * 1. Redistributions of source code must retain the above copyright
13 1.1 matt * notice, this list of conditions and the following disclaimer.
14 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 matt * notice, this list of conditions and the following disclaimer in the
16 1.1 matt * documentation and/or other materials provided with the distribution.
17 1.1 matt * 3. All advertising materials mentioning features or use of this software
18 1.1 matt * must display the following acknowledgement:
19 1.1 matt * This product includes software developed by
20 1.1 matt * Internet Research Institute, Inc.
21 1.1 matt * 4. The name of the author may not be used to endorse or promote products
22 1.1 matt * derived from this software without specific prior written permission.
23 1.1 matt *
24 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25 1.1 matt * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26 1.1 matt * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27 1.1 matt * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
28 1.1 matt * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
29 1.1 matt * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30 1.1 matt * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31 1.1 matt * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32 1.1 matt * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33 1.1 matt * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 1.1 matt */
35 1.1 matt
36 1.1 matt #include "opt_ppcparam.h"
37 1.1 matt #include "opt_multiprocessor.h"
38 1.1 matt #include "opt_altivec.h"
39 1.1 matt #include "sysmon_envsys.h"
40 1.1 matt
41 1.1 matt #include <sys/param.h>
42 1.1 matt #include <sys/systm.h>
43 1.1 matt #include <sys/device.h>
44 1.1 matt
45 1.1 matt #include <uvm/uvm_extern.h>
46 1.1 matt
47 1.1 matt #include <powerpc/oea/hid.h>
48 1.1 matt #include <powerpc/oea/hid_601.h>
49 1.1 matt #include <powerpc/spr.h>
50 1.1 matt
51 1.1 matt #include <dev/sysmon/sysmonvar.h>
52 1.1 matt
53 1.1 matt static void cpu_config_l2cr(int);
54 1.1 matt static void cpu_print_speed(void);
55 1.1 matt #if NSYSMON_ENVSYS > 0
56 1.1 matt static void cpu_tau_setup(struct cpu_info *);
57 1.1 matt static int cpu_tau_gtredata __P((struct sysmon_envsys *,
58 1.1 matt struct envsys_tre_data *));
59 1.1 matt static int cpu_tau_streinfo __P((struct sysmon_envsys *,
60 1.1 matt struct envsys_basic_info *));
61 1.1 matt #endif
62 1.1 matt
63 1.1 matt int cpu;
64 1.1 matt int ncpus;
65 1.1 matt
66 1.1 matt #ifdef MULTIPROCESSOR
67 1.1 matt struct cpu_info cpu_info[CPU_MAXNUM];
68 1.1 matt #else
69 1.1 matt struct cpu_info cpu_info[1];
70 1.1 matt #endif
71 1.1 matt
72 1.1 matt int cpu_altivec;
73 1.1 matt char cpu_model[80];
74 1.1 matt
75 1.1 matt void
76 1.1 matt cpu_probe_cache(void)
77 1.1 matt {
78 1.1 matt u_int assoc, pvr, vers;
79 1.1 matt
80 1.1 matt pvr = mfpvr();
81 1.1 matt vers = pvr >> 16;
82 1.1 matt
83 1.1 matt switch (vers) {
84 1.1 matt #define K *1024
85 1.1 matt case IBM750FX:
86 1.1 matt case MPC601:
87 1.1 matt case MPC750:
88 1.1 matt case MPC7450:
89 1.1 matt case MPC7455:
90 1.1 matt curcpu()->ci_ci.dcache_size = 32 K;
91 1.1 matt curcpu()->ci_ci.icache_size = 32 K;
92 1.1 matt assoc = 8;
93 1.1 matt break;
94 1.1 matt case MPC603:
95 1.1 matt curcpu()->ci_ci.dcache_size = 8 K;
96 1.1 matt curcpu()->ci_ci.icache_size = 8 K;
97 1.1 matt assoc = 2;
98 1.1 matt break;
99 1.1 matt case MPC603e:
100 1.1 matt case MPC603ev:
101 1.1 matt case MPC604:
102 1.1 matt case MPC8240:
103 1.1 matt case MPC8245:
104 1.1 matt curcpu()->ci_ci.dcache_size = 16 K;
105 1.1 matt curcpu()->ci_ci.icache_size = 16 K;
106 1.1 matt assoc = 4;
107 1.1 matt break;
108 1.1 matt case MPC604ev:
109 1.1 matt curcpu()->ci_ci.dcache_size = 32 K;
110 1.1 matt curcpu()->ci_ci.icache_size = 32 K;
111 1.1 matt assoc = 4;
112 1.1 matt break;
113 1.1 matt default:
114 1.1 matt curcpu()->ci_ci.dcache_size = NBPG;
115 1.1 matt curcpu()->ci_ci.icache_size = NBPG;
116 1.1 matt assoc = 1;
117 1.1 matt #undef K
118 1.1 matt }
119 1.1 matt
120 1.1 matt /* Presently common across all implementations. */
121 1.1 matt curcpu()->ci_ci.dcache_line_size = CACHELINESIZE;
122 1.1 matt curcpu()->ci_ci.icache_line_size = CACHELINESIZE;
123 1.1 matt
124 1.1 matt /*
125 1.1 matt * Possibly recolor.
126 1.1 matt */
127 1.1 matt uvm_page_recolor(atop(curcpu()->ci_ci.dcache_size / assoc));
128 1.1 matt }
129 1.1 matt
130 1.1 matt struct cpu_info *
131 1.1 matt cpu_attach_common(struct device *self, int id)
132 1.1 matt {
133 1.1 matt struct cpu_info *ci;
134 1.1 matt u_int pvr, vers;
135 1.1 matt
136 1.1 matt ncpus++;
137 1.1 matt ci = &cpu_info[id];
138 1.1 matt #ifndef MULTIPROCESSOR
139 1.1 matt /*
140 1.1 matt * If this isn't the primary CPU, print an error message
141 1.1 matt * and just bail out.
142 1.1 matt */
143 1.1 matt if (id != 0) {
144 1.3 matt aprint_normal(": ID %d\n", id);
145 1.3 matt aprint_normal("%s: processor off-line; multiprocessor support "
146 1.1 matt "not present in kernel\n", self->dv_xname);
147 1.1 matt return (NULL);
148 1.1 matt }
149 1.1 matt #endif
150 1.1 matt
151 1.1 matt ci->ci_cpuid = id;
152 1.1 matt ci->ci_intrdepth = -1;
153 1.1 matt ci->ci_dev = self;
154 1.1 matt
155 1.1 matt pvr = mfpvr();
156 1.1 matt vers = (pvr >> 16) & 0xffff;
157 1.1 matt
158 1.1 matt switch (id) {
159 1.1 matt case 0:
160 1.1 matt /* load my cpu_number to PIR */
161 1.1 matt switch (vers) {
162 1.1 matt case MPC601:
163 1.1 matt case MPC604:
164 1.1 matt case MPC604ev:
165 1.1 matt case MPC7400:
166 1.1 matt case MPC7410:
167 1.1 matt case MPC7450:
168 1.1 matt case MPC7455:
169 1.1 matt mtspr(SPR_PIR, id);
170 1.1 matt }
171 1.1 matt cpu_setup(self, ci);
172 1.1 matt break;
173 1.1 matt default:
174 1.1 matt if (id >= CPU_MAXNUM) {
175 1.3 matt aprint_normal(": more than %d cpus?\n", CPU_MAXNUM);
176 1.1 matt panic("cpuattach");
177 1.1 matt }
178 1.1 matt #ifndef MULTIPROCESSOR
179 1.3 matt aprint_normal(" not configured\n");
180 1.1 matt return NULL;
181 1.1 matt #endif
182 1.1 matt }
183 1.1 matt return (ci);
184 1.1 matt }
185 1.1 matt
186 1.1 matt void
187 1.1 matt cpu_setup(self, ci)
188 1.1 matt struct device *self;
189 1.1 matt struct cpu_info *ci;
190 1.1 matt {
191 1.1 matt u_int hid0, pvr, vers;
192 1.1 matt char *bitmask, hidbuf[128];
193 1.1 matt char model[80];
194 1.1 matt
195 1.1 matt pvr = mfpvr();
196 1.1 matt vers = (pvr >> 16) & 0xffff;
197 1.1 matt
198 1.1 matt cpu_identify(model, sizeof(model));
199 1.3 matt aprint_normal(": %s, ID %d%s\n", model, cpu_number(),
200 1.1 matt cpu_number() == 0 ? " (primary)" : "");
201 1.1 matt
202 1.1 matt hid0 = mfspr(SPR_HID0);
203 1.1 matt cpu_probe_cache();
204 1.1 matt
205 1.1 matt /*
206 1.1 matt * Configure power-saving mode.
207 1.1 matt */
208 1.1 matt switch (vers) {
209 1.1 matt case MPC603:
210 1.1 matt case MPC603e:
211 1.1 matt case MPC603ev:
212 1.1 matt case MPC604ev:
213 1.1 matt case MPC750:
214 1.1 matt case IBM750FX:
215 1.1 matt case MPC7400:
216 1.1 matt case MPC7410:
217 1.1 matt case MPC8240:
218 1.1 matt case MPC8245:
219 1.1 matt /* Select DOZE mode. */
220 1.1 matt hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
221 1.1 matt hid0 |= HID0_DOZE | HID0_DPM;
222 1.1 matt powersave = 1;
223 1.1 matt break;
224 1.1 matt
225 1.1 matt case MPC7455:
226 1.1 matt case MPC7450:
227 1.1 matt /* Disable BTIC on 7450 Rev 2.0 or earlier */
228 1.1 matt if ((pvr >> 16) == MPC7450 && (pvr & 0xFFFF) <= 0x0200)
229 1.1 matt hid0 &= ~HID0_BTIC;
230 1.1 matt /* Select NAP mode. */
231 1.1 matt hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
232 1.1 matt hid0 |= HID0_NAP | HID0_DPM;
233 1.1 matt powersave = 0; /* but don't use it */
234 1.1 matt break;
235 1.1 matt
236 1.1 matt default:
237 1.1 matt /* No power-saving mode is available. */ ;
238 1.1 matt }
239 1.1 matt
240 1.1 matt #ifdef NAPMODE
241 1.1 matt switch (vers) {
242 1.1 matt case IBM750FX:
243 1.1 matt case MPC750:
244 1.1 matt case MPC7400:
245 1.1 matt /* Select NAP mode. */
246 1.1 matt hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
247 1.1 matt hid0 |= HID0_NAP;
248 1.1 matt break;
249 1.1 matt }
250 1.1 matt #endif
251 1.1 matt
252 1.1 matt switch (vers) {
253 1.1 matt case IBM750FX:
254 1.1 matt case MPC750:
255 1.1 matt hid0 &= ~HID0_DBP; /* XXX correct? */
256 1.1 matt hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
257 1.1 matt break;
258 1.1 matt
259 1.1 matt case MPC7400:
260 1.1 matt case MPC7410:
261 1.1 matt hid0 &= ~HID0_SPD;
262 1.1 matt hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
263 1.1 matt hid0 |= HID0_EIEC;
264 1.1 matt break;
265 1.1 matt }
266 1.1 matt
267 1.1 matt mtspr(SPR_HID0, hid0);
268 1.1 matt
269 1.1 matt switch (vers) {
270 1.1 matt case MPC601:
271 1.1 matt bitmask = HID0_601_BITMASK;
272 1.1 matt break;
273 1.1 matt case MPC7450:
274 1.1 matt case MPC7455:
275 1.1 matt bitmask = HID0_7450_BITMASK;
276 1.1 matt break;
277 1.1 matt default:
278 1.1 matt bitmask = HID0_BITMASK;
279 1.1 matt break;
280 1.1 matt }
281 1.1 matt bitmask_snprintf(hid0, bitmask, hidbuf, sizeof hidbuf);
282 1.3 matt aprint_normal("%s: HID0 %s\n", self->dv_xname, hidbuf);
283 1.1 matt
284 1.1 matt /*
285 1.1 matt * Display speed and cache configuration.
286 1.1 matt */
287 1.1 matt if (vers == MPC750 || vers == MPC7400 || vers == IBM750FX ||
288 1.1 matt vers == MPC7410 || vers == MPC7450 || vers == MPC7455) {
289 1.3 matt aprint_normal("%s", self->dv_xname);
290 1.1 matt cpu_print_speed();
291 1.3 matt aprint_normal("%s", self->dv_xname);
292 1.1 matt cpu_config_l2cr(vers);
293 1.1 matt }
294 1.1 matt
295 1.1 matt #if NSYSMON_ENVSYS > 0
296 1.1 matt /*
297 1.1 matt * Attach MPC750 temperature sensor to the envsys subsystem.
298 1.1 matt * XXX the 74xx series also has this sensor, but it is not
299 1.1 matt * XXX supported by Motorola and may return values that are off by
300 1.1 matt * XXX 35-55 degrees C.
301 1.1 matt */
302 1.1 matt if (vers == MPC750 || vers == IBM750FX)
303 1.1 matt cpu_tau_setup(ci);
304 1.1 matt #endif
305 1.1 matt
306 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
307 1.1 matt NULL, self->dv_xname, "clock");
308 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_softclock, EVCNT_TYPE_INTR,
309 1.1 matt NULL, self->dv_xname, "soft clock");
310 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_softnet, EVCNT_TYPE_INTR,
311 1.1 matt NULL, self->dv_xname, "soft net");
312 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_softserial, EVCNT_TYPE_INTR,
313 1.1 matt NULL, self->dv_xname, "soft serial");
314 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
315 1.1 matt NULL, self->dv_xname, "traps");
316 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
317 1.1 matt &ci->ci_ev_traps, self->dv_xname, "kernel DSI traps");
318 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
319 1.1 matt &ci->ci_ev_traps, self->dv_xname, "user DSI traps");
320 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
321 1.1 matt &ci->ci_ev_udsi, self->dv_xname, "user DSI failures");
322 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
323 1.1 matt &ci->ci_ev_traps, self->dv_xname, "user ISI traps");
324 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
325 1.1 matt &ci->ci_ev_isi, self->dv_xname, "user ISI failures");
326 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
327 1.1 matt &ci->ci_ev_traps, self->dv_xname, "system call traps");
328 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
329 1.1 matt &ci->ci_ev_traps, self->dv_xname, "PGM traps");
330 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
331 1.1 matt &ci->ci_ev_traps, self->dv_xname, "FPU unavailable traps");
332 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_fpusw, EVCNT_TYPE_TRAP,
333 1.1 matt &ci->ci_ev_fpu, self->dv_xname, "FPU context switches");
334 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
335 1.1 matt &ci->ci_ev_traps, self->dv_xname, "user alignment traps");
336 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
337 1.1 matt &ci->ci_ev_ali, self->dv_xname, "user alignment traps");
338 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
339 1.1 matt &ci->ci_ev_umchk, self->dv_xname, "user MCHK failures");
340 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
341 1.1 matt &ci->ci_ev_traps, self->dv_xname, "AltiVec unavailable");
342 1.1 matt #ifdef ALTIVEC
343 1.1 matt if (cpu_altivec) {
344 1.1 matt evcnt_attach_dynamic(&ci->ci_ev_vecsw, EVCNT_TYPE_TRAP,
345 1.1 matt &ci->ci_ev_vec, self->dv_xname, "AltiVec context switches");
346 1.1 matt }
347 1.1 matt #endif
348 1.1 matt }
349 1.1 matt
350 1.1 matt struct cputab {
351 1.1 matt const char name[8];
352 1.1 matt uint16_t version;
353 1.1 matt uint16_t revfmt;
354 1.1 matt };
355 1.1 matt #define REVFMT_MAJMIN 1 /* %u.%u */
356 1.1 matt #define REVFMT_HEX 2 /* 0x%04x */
357 1.1 matt #define REVFMT_DEC 3 /* %u */
358 1.1 matt static const struct cputab models[] = {
359 1.1 matt { "601", MPC601, REVFMT_DEC },
360 1.1 matt { "602", MPC602, REVFMT_DEC },
361 1.1 matt { "603", MPC603, REVFMT_MAJMIN },
362 1.1 matt { "603e", MPC603e, REVFMT_MAJMIN },
363 1.1 matt { "603ev", MPC603ev, REVFMT_MAJMIN },
364 1.1 matt { "604", MPC604, REVFMT_MAJMIN },
365 1.1 matt { "604ev", MPC604ev, REVFMT_MAJMIN },
366 1.1 matt { "620", MPC620, REVFMT_HEX },
367 1.1 matt { "750", MPC750, REVFMT_MAJMIN },
368 1.1 matt { "750FX", IBM750FX, REVFMT_MAJMIN },
369 1.1 matt { "7400", MPC7400, REVFMT_MAJMIN },
370 1.1 matt { "7410", MPC7410, REVFMT_MAJMIN },
371 1.1 matt { "7450", MPC7450, REVFMT_MAJMIN },
372 1.1 matt { "7455", MPC7455, REVFMT_MAJMIN },
373 1.1 matt { "8240", MPC8240, REVFMT_MAJMIN },
374 1.1 matt { "", 0, REVFMT_HEX }
375 1.1 matt };
376 1.1 matt
377 1.1 matt void
378 1.1 matt cpu_identify(char *str, size_t len)
379 1.1 matt {
380 1.1 matt u_int pvr, maj, min;
381 1.1 matt uint16_t vers, rev, revfmt;
382 1.1 matt const struct cputab *cp;
383 1.1 matt const char *name;
384 1.1 matt size_t n;
385 1.1 matt
386 1.1 matt pvr = mfpvr();
387 1.1 matt vers = pvr >> 16;
388 1.1 matt rev = pvr;
389 1.1 matt switch (vers) {
390 1.1 matt case MPC7410:
391 1.1 matt min = (pvr >> 0) & 0xff;
392 1.1 matt maj = min <= 4 ? 1 : 2;
393 1.1 matt break;
394 1.1 matt default:
395 1.1 matt maj = (pvr >> 8) & 0xf;
396 1.1 matt min = (pvr >> 0) & 0xf;
397 1.1 matt }
398 1.1 matt
399 1.1 matt for (cp = models; cp->name[0] != '\0'; cp++) {
400 1.1 matt if (cp->version == vers)
401 1.1 matt break;
402 1.1 matt }
403 1.1 matt
404 1.1 matt if (str == NULL) {
405 1.1 matt str = cpu_model;
406 1.1 matt len = sizeof(cpu_model);
407 1.1 matt cpu = vers;
408 1.1 matt }
409 1.1 matt
410 1.1 matt revfmt = cp->revfmt;
411 1.1 matt name = cp->name;
412 1.1 matt if (rev == MPC750 && pvr == 15) {
413 1.1 matt name = "755";
414 1.1 matt revfmt = REVFMT_HEX;
415 1.1 matt }
416 1.1 matt
417 1.1 matt if (cp->name[0] != '\0') {
418 1.1 matt n = snprintf(str, len, "%s (Revision ", cp->name);
419 1.1 matt } else {
420 1.1 matt n = snprintf(str, len, "Version %#x (Revision ", vers);
421 1.1 matt }
422 1.1 matt if (len > n) {
423 1.1 matt switch (revfmt) {
424 1.1 matt case REVFMT_MAJMIN:
425 1.1 matt snprintf(str + n, len - n, "%u.%u)", maj, min);
426 1.1 matt break;
427 1.1 matt case REVFMT_HEX:
428 1.1 matt snprintf(str + n, len - n, "0x%04x)", rev);
429 1.1 matt break;
430 1.1 matt case REVFMT_DEC:
431 1.1 matt snprintf(str + n, len - n, "%u)", rev);
432 1.1 matt break;
433 1.1 matt }
434 1.1 matt }
435 1.1 matt }
436 1.1 matt
437 1.1 matt #ifdef L2CR_CONFIG
438 1.1 matt u_int l2cr_config = L2CR_CONFIG;
439 1.1 matt #else
440 1.1 matt u_int l2cr_config = 0;
441 1.1 matt #endif
442 1.1 matt
443 1.2 jklos #ifdef L3CR_CONFIG
444 1.2 jklos u_int l3cr_config = L3CR_CONFIG;
445 1.2 jklos #else
446 1.2 jklos u_int l3cr_config = 0;
447 1.2 jklos #endif
448 1.2 jklos
449 1.1 matt void
450 1.1 matt cpu_config_l2cr(int vers)
451 1.1 matt {
452 1.1 matt u_int l2cr, x, msr;
453 1.1 matt
454 1.1 matt l2cr = mfspr(SPR_L2CR);
455 1.1 matt
456 1.1 matt /*
457 1.1 matt * For MP systems, the firmware may only configure the L2 cache
458 1.1 matt * on the first CPU. In this case, assume that the other CPUs
459 1.1 matt * should use the same value for L2CR.
460 1.1 matt */
461 1.1 matt if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
462 1.1 matt l2cr_config = l2cr;
463 1.1 matt }
464 1.1 matt
465 1.1 matt /*
466 1.1 matt * Configure L2 cache if not enabled.
467 1.1 matt */
468 1.1 matt if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
469 1.1 matt l2cr = l2cr_config;
470 1.1 matt
471 1.1 matt /* Disable interrupts and set the cache config bits. */
472 1.1 matt msr = mfmsr();
473 1.1 matt mtmsr(msr & ~PSL_EE);
474 1.1 matt #ifdef ALTIVEC
475 1.1 matt if (cpu_altivec)
476 1.1 matt __asm __volatile("dssall");
477 1.1 matt #endif
478 1.1 matt __asm __volatile("sync");
479 1.1 matt mtspr(SPR_L2CR, l2cr & ~L2CR_L2E);
480 1.1 matt __asm __volatile("sync");
481 1.1 matt
482 1.1 matt /* Wait for L2 clock to be stable (640 L2 clocks). */
483 1.1 matt delay(100);
484 1.1 matt
485 1.1 matt /* Invalidate all L2 contents. */
486 1.1 matt mtspr(SPR_L2CR, l2cr | L2CR_L2I);
487 1.1 matt do {
488 1.1 matt x = mfspr(SPR_L2CR);
489 1.1 matt } while (x & L2CR_L2IP);
490 1.1 matt
491 1.1 matt /* Enable L2 cache. */
492 1.1 matt l2cr |= L2CR_L2E;
493 1.1 matt mtspr(SPR_L2CR, l2cr);
494 1.1 matt mtmsr(msr);
495 1.1 matt }
496 1.1 matt
497 1.1 matt if (l2cr & L2CR_L2E) {
498 1.1 matt if (vers == MPC7450 || vers == MPC7455) {
499 1.1 matt u_int l3cr;
500 1.1 matt
501 1.3 matt aprint_normal(": 256KB L2 cache");
502 1.1 matt
503 1.1 matt l3cr = mfspr(SPR_L3CR);
504 1.2 jklos
505 1.2 jklos /*
506 1.2 jklos * Configure L3 cache if not enabled.
507 1.2 jklos */
508 1.2 jklos if ((l3cr & L3CR_L3E) == 0 && l3cr_config != 0) {
509 1.2 jklos /* By The Book (numbered steps from section 3.7.1.3 of MPC7450UM) */
510 1.2 jklos
511 1.2 jklos /* 1: Set all L3CR bits for final config except L3E, L3I, L3PE, and L3CLKEN */
512 1.2 jklos /* (also mask off reserved bits in case they were included in L3CR_CONFIG) */
513 1.2 jklos l3cr = l3cr_config & ~(L3CR_L3E|L3CR_L3I|L3CR_L3PE|L3CR_L3CLKEN|L3CR_RESERVED);
514 1.2 jklos mtspr(SPR_L3CR, l3cr);
515 1.2 jklos
516 1.2 jklos /* 2: Set L3CR[5] (otherwise reserved bit) to 1 */
517 1.2 jklos l3cr |= 0x04000000;
518 1.2 jklos mtspr(SPR_L3CR, l3cr);
519 1.2 jklos
520 1.2 jklos /* 3: Set L3CLKEN to 1*/
521 1.2 jklos l3cr |= L3CR_L3CLKEN;
522 1.2 jklos mtspr(SPR_L3CR, l3cr);
523 1.2 jklos
524 1.2 jklos /* 4/5: Perform a global cache invalidate (ref section 3.7.3.6) */
525 1.2 jklos __asm __volatile("dssall;sync");
526 1.2 jklos /* L3 cache is already disabled, no need to clear L3E */
527 1.2 jklos mtspr(SPR_L3CR, l3cr|L3CR_L3I);
528 1.2 jklos do {
529 1.2 jklos x = mfspr(SPR_L3CR);
530 1.2 jklos } while (x & L3CR_L3I);
531 1.2 jklos
532 1.2 jklos /* 6: Clear L3CLKEN to 0 */
533 1.2 jklos l3cr &= ~L3CR_L3CLKEN;
534 1.2 jklos mtspr(SPR_L3CR, l3cr);
535 1.2 jklos
536 1.2 jklos /* 7: Perform a 'sync' and wait at least 100 CPU cycles */
537 1.2 jklos __asm __volatile("sync");
538 1.2 jklos delay(100);
539 1.2 jklos
540 1.2 jklos /* 8: Set L3E and L3CLKEN */
541 1.2 jklos l3cr |= (L3CR_L3E|L3CR_L3CLKEN);
542 1.2 jklos mtspr(SPR_L3CR, l3cr);
543 1.2 jklos
544 1.2 jklos /* 9: Perform a 'sync' and wait at least 100 CPU cycles */
545 1.2 jklos __asm __volatile("sync");
546 1.2 jklos delay(100);
547 1.2 jklos }
548 1.2 jklos
549 1.2 jklos if (l3cr & L3CR_L3E) {
550 1.4 matt aprint_normal(", %cMB L3 cache at ",
551 1.1 matt l3cr & L3CR_L3SIZ ? '2' : '1');
552 1.2 jklos switch (l3cr & L3CR_L3CLK) {
553 1.2 jklos case L3CLK_20:
554 1.3 matt aprint_normal("2:1 ratio");
555 1.2 jklos break;
556 1.2 jklos case L3CLK_25:
557 1.3 matt aprint_normal("2.5:1 ratio");
558 1.2 jklos break;
559 1.2 jklos case L3CLK_30:
560 1.3 matt aprint_normal("3:1 ratio");
561 1.2 jklos break;
562 1.2 jklos case L3CLK_35:
563 1.3 matt aprint_normal("3.5:1 ratio");
564 1.2 jklos break;
565 1.2 jklos case L3CLK_40:
566 1.3 matt aprint_normal("4:1 ratio");
567 1.2 jklos break;
568 1.2 jklos case L3CLK_50:
569 1.3 matt aprint_normal("5:1 ratio");
570 1.2 jklos break;
571 1.2 jklos case L3CLK_60:
572 1.3 matt aprint_normal("6:1 ratio");
573 1.2 jklos break;
574 1.2 jklos default:
575 1.3 matt aprint_normal("unknown ratio");
576 1.2 jklos break;
577 1.2 jklos }
578 1.2 jklos }
579 1.3 matt aprint_normal("\n");
580 1.1 matt return;
581 1.1 matt }
582 1.1 matt if (vers == IBM750FX) {
583 1.3 matt aprint_normal(": 512KB L2 cache\n");
584 1.1 matt return;
585 1.1 matt }
586 1.1 matt switch (l2cr & L2CR_L2SIZ) {
587 1.1 matt case L2SIZ_256K:
588 1.3 matt aprint_normal(": 256KB");
589 1.1 matt break;
590 1.1 matt case L2SIZ_512K:
591 1.3 matt aprint_normal(": 512KB");
592 1.1 matt break;
593 1.1 matt case L2SIZ_1M:
594 1.3 matt aprint_normal(": 1MB");
595 1.1 matt break;
596 1.3 matt case 0:
597 1.3 matt if (vers == MPC7410) {
598 1.3 matt aprint_normal(": 2MB");
599 1.3 matt break;
600 1.3 matt }
601 1.3 matt /* FALLTHROUGH */
602 1.1 matt default:
603 1.3 matt aprint_normal(": unknown size");
604 1.3 matt break;
605 1.1 matt }
606 1.1 matt if (l2cr & L2CR_L2WT) {
607 1.3 matt aprint_normal(" write-through");
608 1.1 matt } else {
609 1.3 matt aprint_normal(" write-back");
610 1.1 matt }
611 1.4 matt switch (l2cr & (L2CR_L2DO|L2CR_L2IO)) {
612 1.4 matt case L2CR_L2DO|L2CR_L2IO:
613 1.4 matt aprint_normal(" locked");
614 1.4 matt break;
615 1.4 matt case L2CR_L2DO:
616 1.4 matt aprint_normal(" data-only");
617 1.4 matt break;
618 1.4 matt case L2CR_L2IO:
619 1.4 matt aprint_normal(" instruction-only");
620 1.4 matt break;
621 1.4 matt case 0:
622 1.4 matt break;
623 1.4 matt }
624 1.1 matt switch (l2cr & L2CR_L2RAM) {
625 1.1 matt case L2RAM_FLOWTHRU_BURST:
626 1.3 matt aprint_normal(" Flow-through synchronous burst SRAM");
627 1.1 matt break;
628 1.1 matt case L2RAM_PIPELINE_BURST:
629 1.3 matt aprint_normal(" Pipelined synchronous burst SRAM");
630 1.1 matt break;
631 1.1 matt case L2RAM_PIPELINE_LATE:
632 1.3 matt aprint_normal(" Pipelined synchronous late-write SRAM");
633 1.1 matt break;
634 1.1 matt default:
635 1.3 matt aprint_normal(" unknown type");
636 1.1 matt }
637 1.1 matt
638 1.1 matt if (l2cr & L2CR_L2PE)
639 1.3 matt aprint_normal(" with parity");
640 1.4 matt aprint_normal(" L2 cache");
641 1.1 matt } else
642 1.3 matt aprint_normal(": L2 cache not enabled");
643 1.1 matt
644 1.3 matt aprint_normal("\n");
645 1.1 matt }
646 1.1 matt
647 1.1 matt void
648 1.1 matt cpu_print_speed(void)
649 1.1 matt {
650 1.1 matt uint64_t cps;
651 1.1 matt
652 1.1 matt mtspr(SPR_MMCR0, SPR_MMCR0_FC);
653 1.1 matt mtspr(SPR_PMC1, 0);
654 1.1 matt mtspr(SPR_MMCR0, SPR_MMCR0_PMC1SEL(PMCN_CYCLES));
655 1.1 matt delay(100000);
656 1.1 matt cps = (mfspr(SPR_PMC1) * 10) + 4999;
657 1.1 matt
658 1.3 matt aprint_normal(": %lld.%02lld MHz\n", cps / 1000000, (cps / 10000) % 100);
659 1.1 matt }
660 1.1 matt
661 1.1 matt #if NSYSMON_ENVSYS > 0
662 1.1 matt const struct envsys_range cpu_tau_ranges[] = {
663 1.1 matt { 0, 0, ENVSYS_STEMP}
664 1.1 matt };
665 1.1 matt
666 1.1 matt struct envsys_basic_info cpu_tau_info[] = {
667 1.1 matt { 0, ENVSYS_STEMP, "CPU temp", 0, 0, ENVSYS_FVALID}
668 1.1 matt };
669 1.1 matt
670 1.1 matt void
671 1.1 matt cpu_tau_setup(struct cpu_info *ci)
672 1.1 matt {
673 1.1 matt struct sysmon_envsys *sme;
674 1.1 matt int error;
675 1.1 matt
676 1.1 matt sme = &ci->ci_sysmon;
677 1.1 matt sme->sme_nsensors = 1;
678 1.1 matt sme->sme_envsys_version = 1000;
679 1.1 matt sme->sme_ranges = cpu_tau_ranges;
680 1.1 matt sme->sme_sensor_info = cpu_tau_info;
681 1.1 matt sme->sme_sensor_data = &ci->ci_tau_info;
682 1.1 matt
683 1.1 matt sme->sme_sensor_data->sensor = 0;
684 1.1 matt sme->sme_sensor_data->warnflags = ENVSYS_WARN_OK;
685 1.1 matt sme->sme_sensor_data->validflags = ENVSYS_FVALID|ENVSYS_FCURVALID;
686 1.1 matt sme->sme_cookie = ci;
687 1.1 matt sme->sme_gtredata = cpu_tau_gtredata;
688 1.1 matt sme->sme_streinfo = cpu_tau_streinfo;
689 1.1 matt
690 1.1 matt if ((error = sysmon_envsys_register(sme)) != 0)
691 1.3 matt aprint_error("%s: unable to register with sysmon (%d)\n",
692 1.1 matt ci->ci_dev->dv_xname, error);
693 1.1 matt }
694 1.1 matt
695 1.1 matt
696 1.1 matt /* Find the temperature of the CPU. */
697 1.1 matt int
698 1.1 matt cpu_tau_gtredata(sme, tred)
699 1.1 matt struct sysmon_envsys *sme;
700 1.1 matt struct envsys_tre_data *tred;
701 1.1 matt {
702 1.1 matt struct cpu_info *ci;
703 1.1 matt int i, threshold, count;
704 1.1 matt
705 1.1 matt if (tred->sensor != 0) {
706 1.1 matt tred->validflags = 0;
707 1.1 matt return 0;
708 1.1 matt }
709 1.1 matt
710 1.1 matt threshold = 64; /* Half of the 7-bit sensor range */
711 1.1 matt mtspr(SPR_THRM1, 0);
712 1.1 matt mtspr(SPR_THRM2, 0);
713 1.1 matt /* XXX This counter is supposed to be "at least 20 microseonds, in
714 1.1 matt * XXX units of clock cycles". Since we don't have convenient
715 1.1 matt * XXX access to the CPU speed, set it to a conservative value,
716 1.1 matt * XXX that is, assuming a fast (1GHz) G3 CPU (As of February 2002,
717 1.1 matt * XXX the fastest G3 processor is 700MHz) . The cost is that
718 1.1 matt * XXX measuring the temperature takes a bit longer.
719 1.1 matt */
720 1.1 matt mtspr(SPR_THRM3, SPR_THRM_TIMER(20000) | SPR_THRM_ENABLE);
721 1.1 matt
722 1.1 matt /* Successive-approximation code adapted from Motorola
723 1.1 matt * application note AN1800/D, "Programming the Thermal Assist
724 1.1 matt * Unit in the MPC750 Microprocessor".
725 1.1 matt */
726 1.1 matt for (i = 4; i >= 0 ; i--) {
727 1.1 matt mtspr(SPR_THRM1,
728 1.1 matt SPR_THRM_THRESHOLD(threshold) | SPR_THRM_VALID);
729 1.1 matt count = 0;
730 1.1 matt while ((count < 100) &&
731 1.1 matt ((mfspr(SPR_THRM1) & SPR_THRM_TIV) == 0)) {
732 1.1 matt count++;
733 1.1 matt delay(1);
734 1.1 matt }
735 1.1 matt if (mfspr(SPR_THRM1) & SPR_THRM_TIN) {
736 1.1 matt /* The interrupt bit was set, meaning the
737 1.1 matt * temperature was above the threshold
738 1.1 matt */
739 1.1 matt threshold += 2 << i;
740 1.1 matt } else {
741 1.1 matt /* Temperature was below the threshold */
742 1.1 matt threshold -= 2 << i;
743 1.1 matt }
744 1.1 matt }
745 1.1 matt threshold += 2;
746 1.1 matt
747 1.1 matt ci = (struct cpu_info *)sme->sme_cookie;
748 1.1 matt /* Convert the temperature in degrees C to microkelvin */
749 1.1 matt ci->ci_tau_info.cur.data_us = (threshold * 1000000) + 273150000;
750 1.1 matt
751 1.1 matt *tred = ci->ci_tau_info;
752 1.1 matt
753 1.1 matt return 0;
754 1.1 matt }
755 1.1 matt
756 1.1 matt int
757 1.1 matt cpu_tau_streinfo(sme, binfo)
758 1.1 matt struct sysmon_envsys *sme;
759 1.1 matt struct envsys_basic_info *binfo;
760 1.1 matt {
761 1.1 matt
762 1.1 matt /* There is nothing to set here. */
763 1.1 matt return (EINVAL);
764 1.1 matt }
765 1.1 matt #endif /* NSYSMON_ENVSYS > 0 */
766