Home | History | Annotate | Line # | Download | only in oea
cpu_subr.c revision 1.8
      1  1.8      scw /*	$NetBSD: cpu_subr.c,v 1.8 2003/04/10 16:07:15 scw Exp $	*/
      2  1.1     matt 
      3  1.1     matt /*-
      4  1.1     matt  * Copyright (c) 2001 Matt Thomas.
      5  1.1     matt  * Copyright (c) 2001 Tsubai Masanari.
      6  1.1     matt  * Copyright (c) 1998, 1999, 2001 Internet Research Institute, Inc.
      7  1.1     matt  * All rights reserved.
      8  1.1     matt  *
      9  1.1     matt  * Redistribution and use in source and binary forms, with or without
     10  1.1     matt  * modification, are permitted provided that the following conditions
     11  1.1     matt  * are met:
     12  1.1     matt  * 1. Redistributions of source code must retain the above copyright
     13  1.1     matt  *    notice, this list of conditions and the following disclaimer.
     14  1.1     matt  * 2. Redistributions in binary form must reproduce the above copyright
     15  1.1     matt  *    notice, this list of conditions and the following disclaimer in the
     16  1.1     matt  *    documentation and/or other materials provided with the distribution.
     17  1.1     matt  * 3. All advertising materials mentioning features or use of this software
     18  1.1     matt  *    must display the following acknowledgement:
     19  1.1     matt  *	This product includes software developed by
     20  1.1     matt  *	Internet Research Institute, Inc.
     21  1.1     matt  * 4. The name of the author may not be used to endorse or promote products
     22  1.1     matt  *    derived from this software without specific prior written permission.
     23  1.1     matt  *
     24  1.1     matt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     25  1.1     matt  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     26  1.1     matt  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     27  1.1     matt  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     28  1.1     matt  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     29  1.1     matt  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     30  1.1     matt  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     31  1.1     matt  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     32  1.1     matt  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     33  1.1     matt  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     34  1.1     matt  */
     35  1.1     matt 
     36  1.1     matt #include "opt_ppcparam.h"
     37  1.1     matt #include "opt_multiprocessor.h"
     38  1.1     matt #include "opt_altivec.h"
     39  1.1     matt #include "sysmon_envsys.h"
     40  1.1     matt 
     41  1.1     matt #include <sys/param.h>
     42  1.1     matt #include <sys/systm.h>
     43  1.1     matt #include <sys/device.h>
     44  1.1     matt 
     45  1.1     matt #include <uvm/uvm_extern.h>
     46  1.1     matt 
     47  1.1     matt #include <powerpc/oea/hid.h>
     48  1.1     matt #include <powerpc/oea/hid_601.h>
     49  1.1     matt #include <powerpc/spr.h>
     50  1.1     matt 
     51  1.1     matt #include <dev/sysmon/sysmonvar.h>
     52  1.1     matt 
     53  1.7     matt static void cpu_enable_l2cr(register_t);
     54  1.7     matt static void cpu_enable_l3cr(register_t);
     55  1.1     matt static void cpu_config_l2cr(int);
     56  1.7     matt static void cpu_config_l3cr(int);
     57  1.1     matt static void cpu_print_speed(void);
     58  1.1     matt #if NSYSMON_ENVSYS > 0
     59  1.1     matt static void cpu_tau_setup(struct cpu_info *);
     60  1.1     matt static int cpu_tau_gtredata __P((struct sysmon_envsys *,
     61  1.1     matt     struct envsys_tre_data *));
     62  1.1     matt static int cpu_tau_streinfo __P((struct sysmon_envsys *,
     63  1.1     matt     struct envsys_basic_info *));
     64  1.1     matt #endif
     65  1.1     matt 
     66  1.1     matt int cpu;
     67  1.1     matt int ncpus;
     68  1.1     matt 
     69  1.7     matt struct fmttab {
     70  1.7     matt 	register_t fmt_mask;
     71  1.7     matt 	register_t fmt_value;
     72  1.7     matt 	const char *fmt_string;
     73  1.7     matt };
     74  1.7     matt 
     75  1.7     matt static const struct fmttab cpu_7450_l2cr_formats[] = {
     76  1.7     matt 	{ L2CR_L2E, 0, " disabled" },
     77  1.7     matt 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
     78  1.7     matt 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
     79  1.7     matt 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
     80  1.7     matt 	{ L2CR_L2E, ~0, " 256KB L2 cache" },
     81  1.7     matt 	{ 0 }
     82  1.7     matt };
     83  1.7     matt 
     84  1.7     matt static const struct fmttab cpu_7450_l3cr_formats[] = {
     85  1.7     matt 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3DO, " data-only" },
     86  1.7     matt 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3IO, " instruction-only" },
     87  1.7     matt 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3DO|L3CR_L3IO, " locked" },
     88  1.7     matt 	{ L3CR_L3SIZ, L3SIZ_2M, " 2MB" },
     89  1.7     matt 	{ L3CR_L3SIZ, L3SIZ_1M, " 1MB" },
     90  1.7     matt 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3PE|L3CR_L3APE, " parity" },
     91  1.7     matt 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3PE, " data-parity" },
     92  1.7     matt 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3APE, " address-parity" },
     93  1.7     matt 	{ L3CR_L3PE|L3CR_L3APE, 0, " no-parity" },
     94  1.7     matt 	{ L3CR_L3SIZ, ~0, " L3 cache" },
     95  1.7     matt 	{ L3CR_L3RT, L3RT_MSUG2_DDR, " (DDR SRAM)" },
     96  1.7     matt 	{ L3CR_L3RT, L3RT_PIPELINE_LATE, " (LW SRAM)" },
     97  1.7     matt 	{ L3CR_L3RT, L3RT_PB2_SRAM, " (PB2 SRAM)" },
     98  1.7     matt 	{ L3CR_L3CLK, ~0, " at" },
     99  1.7     matt 	{ L3CR_L3CLK, L3CLK_20, " 2:1" },
    100  1.7     matt 	{ L3CR_L3CLK, L3CLK_25, " 2.5:1" },
    101  1.7     matt 	{ L3CR_L3CLK, L3CLK_30, " 3:1" },
    102  1.7     matt 	{ L3CR_L3CLK, L3CLK_35, " 3.5:1" },
    103  1.7     matt 	{ L3CR_L3CLK, L3CLK_40, " 4:1" },
    104  1.7     matt 	{ L3CR_L3CLK, L3CLK_50, " 5:1" },
    105  1.7     matt 	{ L3CR_L3CLK, L3CLK_60, " 6:1" },
    106  1.7     matt 	{ L3CR_L3CLK, ~0, " ratio" },
    107  1.7     matt 	{ 0, 0 },
    108  1.7     matt };
    109  1.7     matt 
    110  1.7     matt static const struct fmttab cpu_ibm750_l2cr_formats[] = {
    111  1.7     matt 	{ L2CR_L2E, 0, " disabled" },
    112  1.7     matt 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
    113  1.7     matt 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
    114  1.7     matt 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
    115  1.7     matt 	{ 0, ~0, " 512KB" },
    116  1.7     matt 	{ L2CR_L2WT, L2CR_L2WT, " WT" },
    117  1.7     matt 	{ L2CR_L2WT, 0, " WB" },
    118  1.7     matt 	{ L2CR_L2PE, L2CR_L2PE, " with ECC" },
    119  1.7     matt 	{ 0, ~0, " L2 cache" },
    120  1.7     matt 	{ 0 }
    121  1.7     matt };
    122  1.7     matt 
    123  1.7     matt static const struct fmttab cpu_l2cr_formats[] = {
    124  1.7     matt 	{ L2CR_L2E, 0, " disabled" },
    125  1.7     matt 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
    126  1.7     matt 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
    127  1.7     matt 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
    128  1.7     matt 	{ L2CR_L2PE, L2CR_L2PE, " parity" },
    129  1.7     matt 	{ L2CR_L2PE, 0, " no-parity" },
    130  1.7     matt 	{ L2CR_L2SIZ, L2SIZ_2M, " 2MB" },
    131  1.7     matt 	{ L2CR_L2SIZ, L2SIZ_1M, " 1MB" },
    132  1.7     matt 	{ L2CR_L2SIZ, L2SIZ_512K, " 512KB" },
    133  1.7     matt 	{ L2CR_L2SIZ, L2SIZ_256K, " 256KB" },
    134  1.7     matt 	{ L2CR_L2WT, L2CR_L2WT, " WT" },
    135  1.7     matt 	{ L2CR_L2WT, 0, " WB" },
    136  1.7     matt 	{ L2CR_L2E, ~0, " L2 cache" },
    137  1.7     matt 	{ L2CR_L2RAM, L2RAM_FLOWTHRU_BURST, " (FB SRAM)" },
    138  1.7     matt 	{ L2CR_L2RAM, L2RAM_PIPELINE_LATE, " (LW SRAM)" },
    139  1.7     matt 	{ L2CR_L2RAM, L2RAM_PIPELINE_BURST, " (PB SRAM)" },
    140  1.7     matt 	{ L2CR_L2CLK, ~0, " at" },
    141  1.7     matt 	{ L2CR_L2CLK, L2CLK_10, " 1:1" },
    142  1.7     matt 	{ L2CR_L2CLK, L2CLK_15, " 1.5:1" },
    143  1.7     matt 	{ L2CR_L2CLK, L2CLK_20, " 2:1" },
    144  1.7     matt 	{ L2CR_L2CLK, L2CLK_25, " 2.5:1" },
    145  1.7     matt 	{ L2CR_L2CLK, L2CLK_30, " 3:1" },
    146  1.7     matt 	{ L2CR_L2CLK, L2CLK_35, " 3.5:1" },
    147  1.7     matt 	{ L2CR_L2CLK, L2CLK_40, " 4:1" },
    148  1.7     matt 	{ L2CR_L2CLK, ~0, " ratio" },
    149  1.7     matt 	{ 0 }
    150  1.7     matt };
    151  1.7     matt 
    152  1.7     matt static void cpu_fmttab_print(const struct fmttab *, register_t);
    153  1.7     matt 
    154  1.7     matt struct cputab {
    155  1.7     matt 	const char name[8];
    156  1.7     matt 	uint16_t version;
    157  1.7     matt 	uint16_t revfmt;
    158  1.7     matt };
    159  1.7     matt #define	REVFMT_MAJMIN	1		/* %u.%u */
    160  1.7     matt #define	REVFMT_HEX	2		/* 0x%04x */
    161  1.7     matt #define	REVFMT_DEC	3		/* %u */
    162  1.7     matt static const struct cputab models[] = {
    163  1.7     matt 	{ "601",	MPC601,		REVFMT_DEC },
    164  1.7     matt 	{ "602",	MPC602,		REVFMT_DEC },
    165  1.7     matt 	{ "603",	MPC603,		REVFMT_MAJMIN },
    166  1.7     matt 	{ "603e",	MPC603e,	REVFMT_MAJMIN },
    167  1.7     matt 	{ "603ev",	MPC603ev,	REVFMT_MAJMIN },
    168  1.7     matt 	{ "604",	MPC604,		REVFMT_MAJMIN },
    169  1.7     matt 	{ "604ev",	MPC604ev,	REVFMT_MAJMIN },
    170  1.7     matt 	{ "620",	MPC620,  	REVFMT_HEX },
    171  1.7     matt 	{ "750",	MPC750,		REVFMT_MAJMIN },
    172  1.7     matt 	{ "750FX",	IBM750FX,	REVFMT_MAJMIN },
    173  1.7     matt 	{ "7400",	MPC7400,	REVFMT_MAJMIN },
    174  1.7     matt 	{ "7410",	MPC7410,	REVFMT_MAJMIN },
    175  1.7     matt 	{ "7450",	MPC7450,	REVFMT_MAJMIN },
    176  1.7     matt 	{ "7455",	MPC7455,	REVFMT_MAJMIN },
    177  1.7     matt 	{ "8240",	MPC8240,	REVFMT_MAJMIN },
    178  1.7     matt 	{ "",		0,		REVFMT_HEX }
    179  1.7     matt };
    180  1.7     matt 
    181  1.7     matt 
    182  1.1     matt #ifdef MULTIPROCESSOR
    183  1.1     matt struct cpu_info cpu_info[CPU_MAXNUM];
    184  1.1     matt #else
    185  1.1     matt struct cpu_info cpu_info[1];
    186  1.1     matt #endif
    187  1.1     matt 
    188  1.1     matt int cpu_altivec;
    189  1.1     matt char cpu_model[80];
    190  1.1     matt 
    191  1.1     matt void
    192  1.7     matt cpu_fmttab_print(const struct fmttab *fmt, register_t data)
    193  1.7     matt {
    194  1.7     matt 	for (; fmt->fmt_mask != 0 || fmt->fmt_value != 0; fmt++) {
    195  1.7     matt 		if ((~fmt->fmt_mask & fmt->fmt_value) != 0 ||
    196  1.7     matt 		    (data & fmt->fmt_mask) == fmt->fmt_value)
    197  1.7     matt 			aprint_normal("%s", fmt->fmt_string);
    198  1.7     matt 	}
    199  1.7     matt }
    200  1.7     matt 
    201  1.7     matt void
    202  1.1     matt cpu_probe_cache(void)
    203  1.1     matt {
    204  1.1     matt 	u_int assoc, pvr, vers;
    205  1.1     matt 
    206  1.1     matt 	pvr = mfpvr();
    207  1.1     matt 	vers = pvr >> 16;
    208  1.1     matt 
    209  1.1     matt 	switch (vers) {
    210  1.1     matt #define	K	*1024
    211  1.1     matt 	case IBM750FX:
    212  1.1     matt 	case MPC601:
    213  1.1     matt 	case MPC750:
    214  1.1     matt 	case MPC7450:
    215  1.1     matt 	case MPC7455:
    216  1.1     matt 		curcpu()->ci_ci.dcache_size = 32 K;
    217  1.1     matt 		curcpu()->ci_ci.icache_size = 32 K;
    218  1.1     matt 		assoc = 8;
    219  1.1     matt 		break;
    220  1.1     matt 	case MPC603:
    221  1.1     matt 		curcpu()->ci_ci.dcache_size = 8 K;
    222  1.1     matt 		curcpu()->ci_ci.icache_size = 8 K;
    223  1.1     matt 		assoc = 2;
    224  1.1     matt 		break;
    225  1.1     matt 	case MPC603e:
    226  1.1     matt 	case MPC603ev:
    227  1.1     matt 	case MPC604:
    228  1.1     matt 	case MPC8240:
    229  1.1     matt 	case MPC8245:
    230  1.1     matt 		curcpu()->ci_ci.dcache_size = 16 K;
    231  1.1     matt 		curcpu()->ci_ci.icache_size = 16 K;
    232  1.1     matt 		assoc = 4;
    233  1.1     matt 		break;
    234  1.1     matt 	case MPC604ev:
    235  1.1     matt 		curcpu()->ci_ci.dcache_size = 32 K;
    236  1.1     matt 		curcpu()->ci_ci.icache_size = 32 K;
    237  1.1     matt 		assoc = 4;
    238  1.1     matt 		break;
    239  1.1     matt 	default:
    240  1.6  thorpej 		curcpu()->ci_ci.dcache_size = PAGE_SIZE;
    241  1.6  thorpej 		curcpu()->ci_ci.icache_size = PAGE_SIZE;
    242  1.1     matt 		assoc = 1;
    243  1.1     matt #undef	K
    244  1.1     matt 	}
    245  1.1     matt 
    246  1.1     matt 	/* Presently common across all implementations. */
    247  1.1     matt 	curcpu()->ci_ci.dcache_line_size = CACHELINESIZE;
    248  1.1     matt 	curcpu()->ci_ci.icache_line_size = CACHELINESIZE;
    249  1.1     matt 
    250  1.1     matt 	/*
    251  1.1     matt 	 * Possibly recolor.
    252  1.1     matt 	 */
    253  1.1     matt 	uvm_page_recolor(atop(curcpu()->ci_ci.dcache_size / assoc));
    254  1.1     matt }
    255  1.1     matt 
    256  1.1     matt struct cpu_info *
    257  1.1     matt cpu_attach_common(struct device *self, int id)
    258  1.1     matt {
    259  1.1     matt 	struct cpu_info *ci;
    260  1.1     matt 	u_int pvr, vers;
    261  1.1     matt 
    262  1.1     matt 	ncpus++;
    263  1.1     matt 	ci = &cpu_info[id];
    264  1.1     matt #ifndef MULTIPROCESSOR
    265  1.1     matt 	/*
    266  1.1     matt 	 * If this isn't the primary CPU, print an error message
    267  1.1     matt 	 * and just bail out.
    268  1.1     matt 	 */
    269  1.1     matt 	if (id != 0) {
    270  1.3     matt 		aprint_normal(": ID %d\n", id);
    271  1.3     matt 		aprint_normal("%s: processor off-line; multiprocessor support "
    272  1.1     matt 		    "not present in kernel\n", self->dv_xname);
    273  1.1     matt 		return (NULL);
    274  1.1     matt 	}
    275  1.1     matt #endif
    276  1.1     matt 
    277  1.1     matt 	ci->ci_cpuid = id;
    278  1.1     matt 	ci->ci_intrdepth = -1;
    279  1.1     matt 	ci->ci_dev = self;
    280  1.1     matt 
    281  1.1     matt 	pvr = mfpvr();
    282  1.1     matt 	vers = (pvr >> 16) & 0xffff;
    283  1.1     matt 
    284  1.1     matt 	switch (id) {
    285  1.1     matt 	case 0:
    286  1.1     matt 		/* load my cpu_number to PIR */
    287  1.1     matt 		switch (vers) {
    288  1.1     matt 		case MPC601:
    289  1.1     matt 		case MPC604:
    290  1.1     matt 		case MPC604ev:
    291  1.1     matt 		case MPC7400:
    292  1.1     matt 		case MPC7410:
    293  1.1     matt 		case MPC7450:
    294  1.1     matt 		case MPC7455:
    295  1.1     matt 			mtspr(SPR_PIR, id);
    296  1.1     matt 		}
    297  1.1     matt 		cpu_setup(self, ci);
    298  1.1     matt 		break;
    299  1.1     matt 	default:
    300  1.1     matt 		if (id >= CPU_MAXNUM) {
    301  1.3     matt 			aprint_normal(": more than %d cpus?\n", CPU_MAXNUM);
    302  1.1     matt 			panic("cpuattach");
    303  1.1     matt 		}
    304  1.1     matt #ifndef MULTIPROCESSOR
    305  1.3     matt 		aprint_normal(" not configured\n");
    306  1.1     matt 		return NULL;
    307  1.1     matt #endif
    308  1.1     matt 	}
    309  1.1     matt 	return (ci);
    310  1.1     matt }
    311  1.1     matt 
    312  1.1     matt void
    313  1.1     matt cpu_setup(self, ci)
    314  1.1     matt 	struct device *self;
    315  1.1     matt 	struct cpu_info *ci;
    316  1.1     matt {
    317  1.1     matt 	u_int hid0, pvr, vers;
    318  1.1     matt 	char *bitmask, hidbuf[128];
    319  1.1     matt 	char model[80];
    320  1.1     matt 
    321  1.1     matt 	pvr = mfpvr();
    322  1.1     matt 	vers = (pvr >> 16) & 0xffff;
    323  1.1     matt 
    324  1.1     matt 	cpu_identify(model, sizeof(model));
    325  1.3     matt 	aprint_normal(": %s, ID %d%s\n", model,  cpu_number(),
    326  1.1     matt 	    cpu_number() == 0 ? " (primary)" : "");
    327  1.1     matt 
    328  1.1     matt 	hid0 = mfspr(SPR_HID0);
    329  1.1     matt 	cpu_probe_cache();
    330  1.1     matt 
    331  1.1     matt 	/*
    332  1.1     matt 	 * Configure power-saving mode.
    333  1.1     matt 	 */
    334  1.1     matt 	switch (vers) {
    335  1.1     matt 	case MPC603:
    336  1.1     matt 	case MPC603e:
    337  1.1     matt 	case MPC603ev:
    338  1.1     matt 	case MPC604ev:
    339  1.1     matt 	case MPC750:
    340  1.1     matt 	case IBM750FX:
    341  1.1     matt 	case MPC7400:
    342  1.1     matt 	case MPC7410:
    343  1.1     matt 	case MPC8240:
    344  1.1     matt 	case MPC8245:
    345  1.1     matt 		/* Select DOZE mode. */
    346  1.1     matt 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
    347  1.1     matt 		hid0 |= HID0_DOZE | HID0_DPM;
    348  1.1     matt 		powersave = 1;
    349  1.1     matt 		break;
    350  1.1     matt 
    351  1.1     matt 	case MPC7455:
    352  1.1     matt 	case MPC7450:
    353  1.5     matt 		/* Enable the 7450 branch caches */
    354  1.5     matt 		hid0 |= HID0_SGE | HID0_BTIC;
    355  1.5     matt 		hid0 |= HID0_LRSTK | HID0_FOLD | HID0_BHT;
    356  1.1     matt 		/* Disable BTIC on 7450 Rev 2.0 or earlier */
    357  1.5     matt 		if (vers == MPC7450 && (pvr & 0xFFFF) <= 0x0200)
    358  1.1     matt 			hid0 &= ~HID0_BTIC;
    359  1.1     matt 		/* Select NAP mode. */
    360  1.1     matt 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
    361  1.1     matt 		hid0 |= HID0_NAP | HID0_DPM;
    362  1.1     matt 		powersave = 0;		/* but don't use it */
    363  1.1     matt 		break;
    364  1.1     matt 
    365  1.1     matt 	default:
    366  1.1     matt 		/* No power-saving mode is available. */ ;
    367  1.1     matt 	}
    368  1.1     matt 
    369  1.1     matt #ifdef NAPMODE
    370  1.1     matt 	switch (vers) {
    371  1.1     matt 	case IBM750FX:
    372  1.1     matt 	case MPC750:
    373  1.1     matt 	case MPC7400:
    374  1.1     matt 		/* Select NAP mode. */
    375  1.1     matt 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
    376  1.1     matt 		hid0 |= HID0_NAP;
    377  1.1     matt 		break;
    378  1.1     matt 	}
    379  1.1     matt #endif
    380  1.1     matt 
    381  1.1     matt 	switch (vers) {
    382  1.1     matt 	case IBM750FX:
    383  1.1     matt 	case MPC750:
    384  1.1     matt 		hid0 &= ~HID0_DBP;		/* XXX correct? */
    385  1.1     matt 		hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
    386  1.1     matt 		break;
    387  1.1     matt 
    388  1.1     matt 	case MPC7400:
    389  1.1     matt 	case MPC7410:
    390  1.1     matt 		hid0 &= ~HID0_SPD;
    391  1.1     matt 		hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
    392  1.1     matt 		hid0 |= HID0_EIEC;
    393  1.1     matt 		break;
    394  1.1     matt 	}
    395  1.1     matt 
    396  1.1     matt 	mtspr(SPR_HID0, hid0);
    397  1.1     matt 
    398  1.1     matt 	switch (vers) {
    399  1.1     matt 	case MPC601:
    400  1.1     matt 		bitmask = HID0_601_BITMASK;
    401  1.1     matt 		break;
    402  1.1     matt 	case MPC7450:
    403  1.1     matt 	case MPC7455:
    404  1.1     matt 		bitmask = HID0_7450_BITMASK;
    405  1.1     matt 		break;
    406  1.1     matt 	default:
    407  1.1     matt 		bitmask = HID0_BITMASK;
    408  1.1     matt 		break;
    409  1.1     matt 	}
    410  1.1     matt 	bitmask_snprintf(hid0, bitmask, hidbuf, sizeof hidbuf);
    411  1.3     matt 	aprint_normal("%s: HID0 %s\n", self->dv_xname, hidbuf);
    412  1.1     matt 
    413  1.1     matt 	/*
    414  1.1     matt 	 * Display speed and cache configuration.
    415  1.1     matt 	 */
    416  1.1     matt 	if (vers == MPC750 || vers == MPC7400 || vers == IBM750FX ||
    417  1.1     matt 	    vers == MPC7410 || vers == MPC7450 || vers == MPC7455) {
    418  1.7     matt 		aprint_normal("%s: ", self->dv_xname);
    419  1.1     matt 		cpu_print_speed();
    420  1.7     matt 		if (vers == MPC7450 || vers == MPC7455) {
    421  1.7     matt 			cpu_config_l3cr(vers);
    422  1.7     matt 		} else {
    423  1.7     matt 			cpu_config_l2cr(pvr);
    424  1.7     matt 		}
    425  1.7     matt 		aprint_normal("\n");
    426  1.1     matt 	}
    427  1.1     matt 
    428  1.1     matt #if NSYSMON_ENVSYS > 0
    429  1.1     matt 	/*
    430  1.1     matt 	 * Attach MPC750 temperature sensor to the envsys subsystem.
    431  1.1     matt 	 * XXX the 74xx series also has this sensor, but it is not
    432  1.1     matt 	 * XXX supported by Motorola and may return values that are off by
    433  1.1     matt 	 * XXX 35-55 degrees C.
    434  1.1     matt 	 */
    435  1.1     matt 	if (vers == MPC750 || vers == IBM750FX)
    436  1.1     matt 		cpu_tau_setup(ci);
    437  1.1     matt #endif
    438  1.1     matt 
    439  1.1     matt 	evcnt_attach_dynamic(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
    440  1.1     matt 		NULL, self->dv_xname, "clock");
    441  1.1     matt 	evcnt_attach_dynamic(&ci->ci_ev_softclock, EVCNT_TYPE_INTR,
    442  1.1     matt 		NULL, self->dv_xname, "soft clock");
    443  1.1     matt 	evcnt_attach_dynamic(&ci->ci_ev_softnet, EVCNT_TYPE_INTR,
    444  1.1     matt 		NULL, self->dv_xname, "soft net");
    445  1.1     matt 	evcnt_attach_dynamic(&ci->ci_ev_softserial, EVCNT_TYPE_INTR,
    446  1.1     matt 		NULL, self->dv_xname, "soft serial");
    447  1.1     matt 	evcnt_attach_dynamic(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
    448  1.1     matt 		NULL, self->dv_xname, "traps");
    449  1.1     matt 	evcnt_attach_dynamic(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
    450  1.1     matt 		&ci->ci_ev_traps, self->dv_xname, "kernel DSI traps");
    451  1.1     matt 	evcnt_attach_dynamic(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
    452  1.1     matt 		&ci->ci_ev_traps, self->dv_xname, "user DSI traps");
    453  1.1     matt 	evcnt_attach_dynamic(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
    454  1.1     matt 		&ci->ci_ev_udsi, self->dv_xname, "user DSI failures");
    455  1.1     matt 	evcnt_attach_dynamic(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
    456  1.1     matt 		&ci->ci_ev_traps, self->dv_xname, "user ISI traps");
    457  1.1     matt 	evcnt_attach_dynamic(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
    458  1.1     matt 		&ci->ci_ev_isi, self->dv_xname, "user ISI failures");
    459  1.1     matt 	evcnt_attach_dynamic(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
    460  1.1     matt 		&ci->ci_ev_traps, self->dv_xname, "system call traps");
    461  1.1     matt 	evcnt_attach_dynamic(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
    462  1.1     matt 		&ci->ci_ev_traps, self->dv_xname, "PGM traps");
    463  1.1     matt 	evcnt_attach_dynamic(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
    464  1.1     matt 		&ci->ci_ev_traps, self->dv_xname, "FPU unavailable traps");
    465  1.1     matt 	evcnt_attach_dynamic(&ci->ci_ev_fpusw, EVCNT_TYPE_TRAP,
    466  1.1     matt 		&ci->ci_ev_fpu, self->dv_xname, "FPU context switches");
    467  1.1     matt 	evcnt_attach_dynamic(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
    468  1.1     matt 		&ci->ci_ev_traps, self->dv_xname, "user alignment traps");
    469  1.1     matt 	evcnt_attach_dynamic(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
    470  1.1     matt 		&ci->ci_ev_ali, self->dv_xname, "user alignment traps");
    471  1.1     matt 	evcnt_attach_dynamic(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
    472  1.1     matt 		&ci->ci_ev_umchk, self->dv_xname, "user MCHK failures");
    473  1.1     matt 	evcnt_attach_dynamic(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
    474  1.1     matt 		&ci->ci_ev_traps, self->dv_xname, "AltiVec unavailable");
    475  1.1     matt #ifdef ALTIVEC
    476  1.1     matt 	if (cpu_altivec) {
    477  1.1     matt 		evcnt_attach_dynamic(&ci->ci_ev_vecsw, EVCNT_TYPE_TRAP,
    478  1.1     matt 		    &ci->ci_ev_vec, self->dv_xname, "AltiVec context switches");
    479  1.1     matt 	}
    480  1.1     matt #endif
    481  1.1     matt }
    482  1.1     matt 
    483  1.1     matt void
    484  1.1     matt cpu_identify(char *str, size_t len)
    485  1.1     matt {
    486  1.1     matt 	u_int pvr, maj, min;
    487  1.1     matt 	uint16_t vers, rev, revfmt;
    488  1.1     matt 	const struct cputab *cp;
    489  1.1     matt 	const char *name;
    490  1.1     matt 	size_t n;
    491  1.1     matt 
    492  1.1     matt 	pvr = mfpvr();
    493  1.1     matt 	vers = pvr >> 16;
    494  1.1     matt 	rev = pvr;
    495  1.1     matt 	switch (vers) {
    496  1.1     matt 	case MPC7410:
    497  1.1     matt 		min = (pvr >> 0) & 0xff;
    498  1.1     matt 		maj = min <= 4 ? 1 : 2;
    499  1.1     matt 		break;
    500  1.1     matt 	default:
    501  1.1     matt 		maj = (pvr >>  8) & 0xf;
    502  1.1     matt 		min = (pvr >>  0) & 0xf;
    503  1.1     matt 	}
    504  1.1     matt 
    505  1.1     matt 	for (cp = models; cp->name[0] != '\0'; cp++) {
    506  1.1     matt 		if (cp->version == vers)
    507  1.1     matt 			break;
    508  1.1     matt 	}
    509  1.1     matt 
    510  1.1     matt 	if (str == NULL) {
    511  1.1     matt 		str = cpu_model;
    512  1.1     matt 		len = sizeof(cpu_model);
    513  1.1     matt 		cpu = vers;
    514  1.1     matt 	}
    515  1.1     matt 
    516  1.1     matt 	revfmt = cp->revfmt;
    517  1.1     matt 	name = cp->name;
    518  1.1     matt 	if (rev == MPC750 && pvr == 15) {
    519  1.1     matt 		name = "755";
    520  1.1     matt 		revfmt = REVFMT_HEX;
    521  1.1     matt 	}
    522  1.1     matt 
    523  1.1     matt 	if (cp->name[0] != '\0') {
    524  1.1     matt 		n = snprintf(str, len, "%s (Revision ", cp->name);
    525  1.1     matt 	} else {
    526  1.1     matt 		n = snprintf(str, len, "Version %#x (Revision ", vers);
    527  1.1     matt 	}
    528  1.1     matt 	if (len > n) {
    529  1.1     matt 		switch (revfmt) {
    530  1.1     matt 		case REVFMT_MAJMIN:
    531  1.1     matt 			snprintf(str + n, len - n, "%u.%u)", maj, min);
    532  1.1     matt 			break;
    533  1.1     matt 		case REVFMT_HEX:
    534  1.1     matt 			snprintf(str + n, len - n, "0x%04x)", rev);
    535  1.1     matt 			break;
    536  1.1     matt 		case REVFMT_DEC:
    537  1.1     matt 			snprintf(str + n, len - n, "%u)", rev);
    538  1.1     matt 			break;
    539  1.1     matt 		}
    540  1.1     matt 	}
    541  1.1     matt }
    542  1.1     matt 
    543  1.1     matt #ifdef L2CR_CONFIG
    544  1.1     matt u_int l2cr_config = L2CR_CONFIG;
    545  1.1     matt #else
    546  1.1     matt u_int l2cr_config = 0;
    547  1.1     matt #endif
    548  1.1     matt 
    549  1.2    jklos #ifdef L3CR_CONFIG
    550  1.2    jklos u_int l3cr_config = L3CR_CONFIG;
    551  1.2    jklos #else
    552  1.2    jklos u_int l3cr_config = 0;
    553  1.2    jklos #endif
    554  1.2    jklos 
    555  1.1     matt void
    556  1.7     matt cpu_enable_l2cr(register_t l2cr)
    557  1.7     matt {
    558  1.7     matt 	register_t msr, x;
    559  1.7     matt 
    560  1.7     matt 	/* Disable interrupts and set the cache config bits. */
    561  1.7     matt 	msr = mfmsr();
    562  1.7     matt 	mtmsr(msr & ~PSL_EE);
    563  1.7     matt #ifdef ALTIVEC
    564  1.7     matt 	if (cpu_altivec)
    565  1.7     matt 		__asm __volatile("dssall");
    566  1.7     matt #endif
    567  1.7     matt 	__asm __volatile("sync");
    568  1.7     matt 	mtspr(SPR_L2CR, l2cr & ~L2CR_L2E);
    569  1.7     matt 	__asm __volatile("sync");
    570  1.7     matt 
    571  1.7     matt 	/* Wait for L2 clock to be stable (640 L2 clocks). */
    572  1.7     matt 	delay(100);
    573  1.7     matt 
    574  1.7     matt 	/* Invalidate all L2 contents. */
    575  1.7     matt 	mtspr(SPR_L2CR, l2cr | L2CR_L2I);
    576  1.7     matt 	do {
    577  1.7     matt 		x = mfspr(SPR_L2CR);
    578  1.7     matt 	} while (x & L2CR_L2IP);
    579  1.7     matt 
    580  1.7     matt 	/* Enable L2 cache. */
    581  1.7     matt 	l2cr |= L2CR_L2E;
    582  1.7     matt 	mtspr(SPR_L2CR, l2cr);
    583  1.7     matt 	mtmsr(msr);
    584  1.7     matt }
    585  1.7     matt 
    586  1.7     matt void
    587  1.7     matt cpu_enable_l3cr(register_t l3cr)
    588  1.1     matt {
    589  1.7     matt 	register_t x;
    590  1.7     matt 
    591  1.7     matt 	/* By The Book (numbered steps from section 3.7.1.3 of MPC7450UM) */
    592  1.7     matt 
    593  1.7     matt 	/*
    594  1.7     matt 	 * 1: Set all L3CR bits for final config except L3E, L3I, L3PE, and
    595  1.7     matt 	 *    L3CLKEN.  (also mask off reserved bits in case they were included
    596  1.7     matt 	 *    in L3CR_CONFIG)
    597  1.7     matt 	 */
    598  1.7     matt 	l3cr &= ~(L3CR_L3E|L3CR_L3I|L3CR_L3PE|L3CR_L3CLKEN|L3CR_RESERVED);
    599  1.7     matt 	mtspr(SPR_L3CR, l3cr);
    600  1.7     matt 
    601  1.7     matt 	/* 2: Set L3CR[5] (otherwise reserved bit) to 1 */
    602  1.7     matt 	l3cr |= 0x04000000;
    603  1.7     matt 	mtspr(SPR_L3CR, l3cr);
    604  1.7     matt 
    605  1.7     matt 	/* 3: Set L3CLKEN to 1*/
    606  1.7     matt 	l3cr |= L3CR_L3CLKEN;
    607  1.7     matt 	mtspr(SPR_L3CR, l3cr);
    608  1.7     matt 
    609  1.7     matt 	/* 4/5: Perform a global cache invalidate (ref section 3.7.3.6) */
    610  1.7     matt 	__asm __volatile("dssall;sync");
    611  1.7     matt 	/* L3 cache is already disabled, no need to clear L3E */
    612  1.7     matt 	mtspr(SPR_L3CR, l3cr|L3CR_L3I);
    613  1.7     matt 	do {
    614  1.7     matt 		x = mfspr(SPR_L3CR);
    615  1.7     matt 	} while (x & L3CR_L3I);
    616  1.7     matt 
    617  1.7     matt 	/* 6: Clear L3CLKEN to 0 */
    618  1.7     matt 	l3cr &= ~L3CR_L3CLKEN;
    619  1.7     matt 	mtspr(SPR_L3CR, l3cr);
    620  1.7     matt 
    621  1.7     matt 	/* 7: Perform a 'sync' and wait at least 100 CPU cycles */
    622  1.7     matt 	__asm __volatile("sync");
    623  1.7     matt 	delay(100);
    624  1.7     matt 
    625  1.7     matt 	/* 8: Set L3E and L3CLKEN */
    626  1.7     matt 	l3cr |= (L3CR_L3E|L3CR_L3CLKEN);
    627  1.7     matt 	mtspr(SPR_L3CR, l3cr);
    628  1.7     matt 
    629  1.7     matt 	/* 9: Perform a 'sync' and wait at least 100 CPU cycles */
    630  1.7     matt 	__asm __volatile("sync");
    631  1.7     matt 	delay(100);
    632  1.7     matt }
    633  1.7     matt 
    634  1.7     matt void
    635  1.7     matt cpu_config_l2cr(int pvr)
    636  1.7     matt {
    637  1.7     matt 	register_t l2cr;
    638  1.1     matt 
    639  1.1     matt 	l2cr = mfspr(SPR_L2CR);
    640  1.1     matt 
    641  1.1     matt 	/*
    642  1.1     matt 	 * For MP systems, the firmware may only configure the L2 cache
    643  1.1     matt 	 * on the first CPU.  In this case, assume that the other CPUs
    644  1.1     matt 	 * should use the same value for L2CR.
    645  1.1     matt 	 */
    646  1.1     matt 	if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
    647  1.1     matt 		l2cr_config = l2cr;
    648  1.1     matt 	}
    649  1.1     matt 
    650  1.1     matt 	/*
    651  1.1     matt 	 * Configure L2 cache if not enabled.
    652  1.1     matt 	 */
    653  1.8      scw 	if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
    654  1.7     matt 		cpu_enable_l2cr(l2cr_config);
    655  1.8      scw 		l2cr = mfspr(SPR_L2CR);
    656  1.8      scw 	}
    657  1.7     matt 
    658  1.7     matt 	if ((l2cr & L2CR_L2E) == 0)
    659  1.7     matt 		return;
    660  1.1     matt 
    661  1.7     matt 	aprint_normal(",");
    662  1.7     matt 	if ((pvr >> 16) == IBM750FX ||
    663  1.7     matt 	    (pvr & 0xffffff00) == 0x00082200 /* IBM750CX */ ||
    664  1.7     matt 	    (pvr & 0xffffef00) == 0x00082300 /* IBM750CXe */) {
    665  1.7     matt 		cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
    666  1.7     matt 	} else {
    667  1.7     matt 		cpu_fmttab_print(cpu_l2cr_formats, l2cr);
    668  1.1     matt 	}
    669  1.7     matt }
    670  1.1     matt 
    671  1.7     matt void
    672  1.7     matt cpu_config_l3cr(int vers)
    673  1.7     matt {
    674  1.7     matt 	register_t l2cr;
    675  1.7     matt 	register_t l3cr;
    676  1.7     matt 
    677  1.7     matt 	l2cr = mfspr(SPR_L2CR);
    678  1.1     matt 
    679  1.7     matt 	/*
    680  1.7     matt 	 * For MP systems, the firmware may only configure the L2 cache
    681  1.7     matt 	 * on the first CPU.  In this case, assume that the other CPUs
    682  1.7     matt 	 * should use the same value for L2CR.
    683  1.7     matt 	 */
    684  1.7     matt 	if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
    685  1.7     matt 		l2cr_config = l2cr;
    686  1.7     matt 	}
    687  1.1     matt 
    688  1.7     matt 	/*
    689  1.7     matt 	 * Configure L2 cache if not enabled.
    690  1.7     matt 	 */
    691  1.7     matt 	if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
    692  1.7     matt 		cpu_enable_l2cr(l2cr_config);
    693  1.7     matt 		l2cr = mfspr(SPR_L2CR);
    694  1.7     matt 	}
    695  1.7     matt 
    696  1.7     matt 	aprint_normal(",");
    697  1.7     matt 	cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
    698  1.2    jklos 
    699  1.7     matt 	l3cr = mfspr(SPR_L3CR);
    700  1.1     matt 
    701  1.7     matt 	/*
    702  1.7     matt 	 * For MP systems, the firmware may only configure the L3 cache
    703  1.7     matt 	 * on the first CPU.  In this case, assume that the other CPUs
    704  1.7     matt 	 * should use the same value for L3CR.
    705  1.7     matt 	 */
    706  1.7     matt 	if ((l3cr & L3CR_L3E) != 0 && l3cr_config == 0) {
    707  1.7     matt 		l3cr_config = l3cr;
    708  1.7     matt 	}
    709  1.1     matt 
    710  1.7     matt 	/*
    711  1.7     matt 	 * Configure L3 cache if not enabled.
    712  1.7     matt 	 */
    713  1.7     matt 	if ((l3cr & L3CR_L3E) == 0 && l3cr_config != 0) {
    714  1.7     matt 		cpu_enable_l3cr(l3cr_config);
    715  1.7     matt 		l3cr = mfspr(SPR_L3CR);
    716  1.7     matt 	}
    717  1.7     matt 
    718  1.7     matt 	if (l3cr & L3CR_L3E) {
    719  1.7     matt 		aprint_normal(",");
    720  1.7     matt 		cpu_fmttab_print(cpu_7450_l3cr_formats, l3cr);
    721  1.7     matt 	}
    722  1.1     matt }
    723  1.1     matt 
    724  1.1     matt void
    725  1.1     matt cpu_print_speed(void)
    726  1.1     matt {
    727  1.1     matt 	uint64_t cps;
    728  1.1     matt 
    729  1.7     matt 	mtspr(SPR_MMCR0, MMCR0_FC);
    730  1.1     matt 	mtspr(SPR_PMC1, 0);
    731  1.7     matt 	mtspr(SPR_MMCR0, MMCR0_PMC1SEL(PMCN_CYCLES));
    732  1.1     matt 	delay(100000);
    733  1.1     matt 	cps = (mfspr(SPR_PMC1) * 10) + 4999;
    734  1.1     matt 
    735  1.7     matt 	aprint_normal("%lld.%02lld MHz", cps / 1000000, (cps / 10000) % 100);
    736  1.1     matt }
    737  1.1     matt 
    738  1.1     matt #if NSYSMON_ENVSYS > 0
    739  1.1     matt const struct envsys_range cpu_tau_ranges[] = {
    740  1.1     matt 	{ 0, 0, ENVSYS_STEMP}
    741  1.1     matt };
    742  1.1     matt 
    743  1.1     matt struct envsys_basic_info cpu_tau_info[] = {
    744  1.1     matt 	{ 0, ENVSYS_STEMP, "CPU temp", 0, 0, ENVSYS_FVALID}
    745  1.1     matt };
    746  1.1     matt 
    747  1.1     matt void
    748  1.1     matt cpu_tau_setup(struct cpu_info *ci)
    749  1.1     matt {
    750  1.1     matt 	struct sysmon_envsys *sme;
    751  1.1     matt 	int error;
    752  1.1     matt 
    753  1.1     matt 	sme = &ci->ci_sysmon;
    754  1.1     matt 	sme->sme_nsensors = 1;
    755  1.1     matt 	sme->sme_envsys_version = 1000;
    756  1.1     matt 	sme->sme_ranges = cpu_tau_ranges;
    757  1.1     matt 	sme->sme_sensor_info = cpu_tau_info;
    758  1.1     matt 	sme->sme_sensor_data = &ci->ci_tau_info;
    759  1.1     matt 
    760  1.1     matt 	sme->sme_sensor_data->sensor = 0;
    761  1.1     matt 	sme->sme_sensor_data->warnflags = ENVSYS_WARN_OK;
    762  1.1     matt 	sme->sme_sensor_data->validflags = ENVSYS_FVALID|ENVSYS_FCURVALID;
    763  1.1     matt 	sme->sme_cookie = ci;
    764  1.1     matt 	sme->sme_gtredata = cpu_tau_gtredata;
    765  1.1     matt 	sme->sme_streinfo = cpu_tau_streinfo;
    766  1.1     matt 
    767  1.1     matt 	if ((error = sysmon_envsys_register(sme)) != 0)
    768  1.3     matt 		aprint_error("%s: unable to register with sysmon (%d)\n",
    769  1.1     matt 		    ci->ci_dev->dv_xname, error);
    770  1.1     matt }
    771  1.1     matt 
    772  1.1     matt 
    773  1.1     matt /* Find the temperature of the CPU. */
    774  1.1     matt int
    775  1.1     matt cpu_tau_gtredata(sme, tred)
    776  1.1     matt 	 struct sysmon_envsys *sme;
    777  1.1     matt 	 struct envsys_tre_data *tred;
    778  1.1     matt {
    779  1.1     matt 	struct cpu_info *ci;
    780  1.1     matt 	int i, threshold, count;
    781  1.1     matt 
    782  1.1     matt 	if (tred->sensor != 0) {
    783  1.1     matt 		tred->validflags = 0;
    784  1.1     matt 		return 0;
    785  1.1     matt 	}
    786  1.1     matt 
    787  1.1     matt 	threshold = 64; /* Half of the 7-bit sensor range */
    788  1.1     matt 	mtspr(SPR_THRM1, 0);
    789  1.1     matt 	mtspr(SPR_THRM2, 0);
    790  1.1     matt 	/* XXX This counter is supposed to be "at least 20 microseonds, in
    791  1.1     matt 	 * XXX units of clock cycles". Since we don't have convenient
    792  1.1     matt 	 * XXX access to the CPU speed, set it to a conservative value,
    793  1.1     matt 	 * XXX that is, assuming a fast (1GHz) G3 CPU (As of February 2002,
    794  1.1     matt 	 * XXX the fastest G3 processor is 700MHz) . The cost is that
    795  1.1     matt 	 * XXX measuring the temperature takes a bit longer.
    796  1.1     matt 	 */
    797  1.1     matt         mtspr(SPR_THRM3, SPR_THRM_TIMER(20000) | SPR_THRM_ENABLE);
    798  1.1     matt 
    799  1.1     matt 	/* Successive-approximation code adapted from Motorola
    800  1.1     matt 	 * application note AN1800/D, "Programming the Thermal Assist
    801  1.1     matt 	 * Unit in the MPC750 Microprocessor".
    802  1.1     matt 	 */
    803  1.1     matt 	for (i = 4; i >= 0 ; i--) {
    804  1.1     matt 		mtspr(SPR_THRM1,
    805  1.1     matt 		    SPR_THRM_THRESHOLD(threshold) | SPR_THRM_VALID);
    806  1.1     matt 		count = 0;
    807  1.1     matt 		while ((count < 100) &&
    808  1.1     matt 		    ((mfspr(SPR_THRM1) & SPR_THRM_TIV) == 0)) {
    809  1.1     matt 			count++;
    810  1.1     matt 			delay(1);
    811  1.1     matt 		}
    812  1.1     matt 		if (mfspr(SPR_THRM1) & SPR_THRM_TIN) {
    813  1.1     matt 			/* The interrupt bit was set, meaning the
    814  1.1     matt 			 * temperature was above the threshold
    815  1.1     matt 			 */
    816  1.1     matt 			threshold += 2 << i;
    817  1.1     matt 		} else {
    818  1.1     matt 			/* Temperature was below the threshold */
    819  1.1     matt 			threshold -= 2 << i;
    820  1.1     matt 		}
    821  1.1     matt 	}
    822  1.1     matt 	threshold += 2;
    823  1.1     matt 
    824  1.1     matt 	ci = (struct cpu_info *)sme->sme_cookie;
    825  1.1     matt 	/* Convert the temperature in degrees C to microkelvin */
    826  1.1     matt 	ci->ci_tau_info.cur.data_us = (threshold * 1000000) + 273150000;
    827  1.1     matt 
    828  1.1     matt 	*tred = ci->ci_tau_info;
    829  1.1     matt 
    830  1.1     matt 	return 0;
    831  1.1     matt }
    832  1.1     matt 
    833  1.1     matt int
    834  1.1     matt cpu_tau_streinfo(sme, binfo)
    835  1.1     matt 	 struct sysmon_envsys *sme;
    836  1.1     matt 	 struct envsys_basic_info *binfo;
    837  1.1     matt {
    838  1.1     matt 
    839  1.1     matt 	/* There is nothing to set here. */
    840  1.1     matt 	return (EINVAL);
    841  1.1     matt }
    842  1.1     matt #endif /* NSYSMON_ENVSYS > 0 */
    843