cpu_subr.c revision 1.101 1 /* $NetBSD: cpu_subr.c,v 1.101 2019/09/20 21:27:29 macallan Exp $ */
2
3 /*-
4 * Copyright (c) 2001 Matt Thomas.
5 * Copyright (c) 2001 Tsubai Masanari.
6 * Copyright (c) 1998, 1999, 2001 Internet Research Institute, Inc.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by
20 * Internet Research Institute, Inc.
21 * 4. The name of the author may not be used to endorse or promote products
22 * derived from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
29 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: cpu_subr.c,v 1.101 2019/09/20 21:27:29 macallan Exp $");
38
39 #include "opt_ppcparam.h"
40 #include "opt_ppccache.h"
41 #include "opt_multiprocessor.h"
42 #include "opt_altivec.h"
43 #include "sysmon_envsys.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/device.h>
48 #include <sys/types.h>
49 #include <sys/lwp.h>
50 #include <sys/xcall.h>
51
52 #include <uvm/uvm.h>
53
54 #include <powerpc/pcb.h>
55 #include <powerpc/psl.h>
56 #include <powerpc/spr.h>
57 #include <powerpc/oea/hid.h>
58 #include <powerpc/oea/hid_601.h>
59 #include <powerpc/oea/spr.h>
60 #include <powerpc/oea/cpufeat.h>
61
62 #include <dev/sysmon/sysmonvar.h>
63
64 static void cpu_enable_l2cr(register_t);
65 static void cpu_enable_l3cr(register_t);
66 static void cpu_config_l2cr(int);
67 static void cpu_config_l3cr(int);
68 static void cpu_probe_speed(struct cpu_info *);
69 static void cpu_idlespin(void);
70 static void cpu_set_dfs_xcall(void *, void *);
71 #if NSYSMON_ENVSYS > 0
72 static void cpu_tau_setup(struct cpu_info *);
73 static void cpu_tau_refresh(struct sysmon_envsys *, envsys_data_t *);
74 #endif
75
76 extern void init_scom_speedctl(void);
77
78 int cpu = -1;
79 int ncpus;
80
81 struct fmttab {
82 register_t fmt_mask;
83 register_t fmt_value;
84 const char *fmt_string;
85 };
86
87 /*
88 * This should be one per CPU but since we only support it on 750 variants it
89 * doesn't really matter since none of them support SMP
90 */
91 envsys_data_t sensor;
92
93 static const struct fmttab cpu_7450_l2cr_formats[] = {
94 { L2CR_L2E, 0, " disabled" },
95 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
96 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
97 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
98 { L2CR_L2E, ~0, " 256KB L2 cache" },
99 { L2CR_L2PE, 0, " no parity" },
100 { L2CR_L2PE, L2CR_L2PE, " parity enabled" },
101 { 0, 0, NULL }
102 };
103
104 static const struct fmttab cpu_7448_l2cr_formats[] = {
105 { L2CR_L2E, 0, " disabled" },
106 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
107 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
108 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
109 { L2CR_L2E, ~0, " 1MB L2 cache" },
110 { L2CR_L2PE, 0, " no parity" },
111 { L2CR_L2PE, L2CR_L2PE, " parity enabled" },
112 { 0, 0, NULL }
113 };
114
115 static const struct fmttab cpu_7457_l2cr_formats[] = {
116 { L2CR_L2E, 0, " disabled" },
117 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
118 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
119 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
120 { L2CR_L2E, ~0, " 512KB L2 cache" },
121 { L2CR_L2PE, 0, " no parity" },
122 { L2CR_L2PE, L2CR_L2PE, " parity enabled" },
123 { 0, 0, NULL }
124 };
125
126 static const struct fmttab cpu_7450_l3cr_formats[] = {
127 { L3CR_L3DO|L3CR_L3IO, L3CR_L3DO, " data-only" },
128 { L3CR_L3DO|L3CR_L3IO, L3CR_L3IO, " instruction-only" },
129 { L3CR_L3DO|L3CR_L3IO, L3CR_L3DO|L3CR_L3IO, " locked" },
130 { L3CR_L3SIZ, L3SIZ_2M, " 2MB" },
131 { L3CR_L3SIZ, L3SIZ_1M, " 1MB" },
132 { L3CR_L3PE|L3CR_L3APE, L3CR_L3PE|L3CR_L3APE, " parity" },
133 { L3CR_L3PE|L3CR_L3APE, L3CR_L3PE, " data-parity" },
134 { L3CR_L3PE|L3CR_L3APE, L3CR_L3APE, " address-parity" },
135 { L3CR_L3PE|L3CR_L3APE, 0, " no-parity" },
136 { L3CR_L3SIZ, ~0, " L3 cache" },
137 { L3CR_L3RT, L3RT_MSUG2_DDR, " (DDR SRAM)" },
138 { L3CR_L3RT, L3RT_PIPELINE_LATE, " (LW SRAM)" },
139 { L3CR_L3RT, L3RT_PB2_SRAM, " (PB2 SRAM)" },
140 { L3CR_L3CLK, ~0, " at" },
141 { L3CR_L3CLK, L3CLK_20, " 2:1" },
142 { L3CR_L3CLK, L3CLK_25, " 2.5:1" },
143 { L3CR_L3CLK, L3CLK_30, " 3:1" },
144 { L3CR_L3CLK, L3CLK_35, " 3.5:1" },
145 { L3CR_L3CLK, L3CLK_40, " 4:1" },
146 { L3CR_L3CLK, L3CLK_50, " 5:1" },
147 { L3CR_L3CLK, L3CLK_60, " 6:1" },
148 { L3CR_L3CLK, ~0, " ratio" },
149 { 0, 0, NULL },
150 };
151
152 static const struct fmttab cpu_ibm750_l2cr_formats[] = {
153 { L2CR_L2E, 0, " disabled" },
154 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
155 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
156 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
157 { 0, ~0, " 512KB" },
158 { L2CR_L2WT, L2CR_L2WT, " WT" },
159 { L2CR_L2WT, 0, " WB" },
160 { L2CR_L2PE, L2CR_L2PE, " with ECC" },
161 { 0, ~0, " L2 cache" },
162 { 0, 0, NULL }
163 };
164
165 static const struct fmttab cpu_l2cr_formats[] = {
166 { L2CR_L2E, 0, " disabled" },
167 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
168 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
169 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
170 { L2CR_L2PE, L2CR_L2PE, " parity" },
171 { L2CR_L2PE, 0, " no-parity" },
172 { L2CR_L2SIZ, L2SIZ_2M, " 2MB" },
173 { L2CR_L2SIZ, L2SIZ_1M, " 1MB" },
174 { L2CR_L2SIZ, L2SIZ_512K, " 512KB" },
175 { L2CR_L2SIZ, L2SIZ_256K, " 256KB" },
176 { L2CR_L2WT, L2CR_L2WT, " WT" },
177 { L2CR_L2WT, 0, " WB" },
178 { L2CR_L2E, ~0, " L2 cache" },
179 { L2CR_L2RAM, L2RAM_FLOWTHRU_BURST, " (FB SRAM)" },
180 { L2CR_L2RAM, L2RAM_PIPELINE_LATE, " (LW SRAM)" },
181 { L2CR_L2RAM, L2RAM_PIPELINE_BURST, " (PB SRAM)" },
182 { L2CR_L2CLK, ~0, " at" },
183 { L2CR_L2CLK, L2CLK_10, " 1:1" },
184 { L2CR_L2CLK, L2CLK_15, " 1.5:1" },
185 { L2CR_L2CLK, L2CLK_20, " 2:1" },
186 { L2CR_L2CLK, L2CLK_25, " 2.5:1" },
187 { L2CR_L2CLK, L2CLK_30, " 3:1" },
188 { L2CR_L2CLK, L2CLK_35, " 3.5:1" },
189 { L2CR_L2CLK, L2CLK_40, " 4:1" },
190 { L2CR_L2CLK, ~0, " ratio" },
191 { 0, 0, NULL }
192 };
193
194 static void cpu_fmttab_print(const struct fmttab *, register_t);
195
196 struct cputab {
197 const char name[8];
198 uint16_t version;
199 uint16_t revfmt;
200 };
201 #define REVFMT_MAJMIN 1 /* %u.%u */
202 #define REVFMT_HEX 2 /* 0x%04x */
203 #define REVFMT_DEC 3 /* %u */
204 static const struct cputab models[] = {
205 { "601", MPC601, REVFMT_DEC },
206 { "602", MPC602, REVFMT_DEC },
207 { "603", MPC603, REVFMT_MAJMIN },
208 { "603e", MPC603e, REVFMT_MAJMIN },
209 { "603ev", MPC603ev, REVFMT_MAJMIN },
210 { "G2", MPCG2, REVFMT_MAJMIN },
211 { "604", MPC604, REVFMT_MAJMIN },
212 { "604e", MPC604e, REVFMT_MAJMIN },
213 { "604ev", MPC604ev, REVFMT_MAJMIN },
214 { "620", MPC620, REVFMT_HEX },
215 { "750", MPC750, REVFMT_MAJMIN },
216 { "750FX", IBM750FX, REVFMT_MAJMIN },
217 { "750GX", IBM750GX, REVFMT_MAJMIN },
218 { "7400", MPC7400, REVFMT_MAJMIN },
219 { "7410", MPC7410, REVFMT_MAJMIN },
220 { "7450", MPC7450, REVFMT_MAJMIN },
221 { "7455", MPC7455, REVFMT_MAJMIN },
222 { "7457", MPC7457, REVFMT_MAJMIN },
223 { "7447A", MPC7447A, REVFMT_MAJMIN },
224 { "7448", MPC7448, REVFMT_MAJMIN },
225 { "8240", MPC8240, REVFMT_MAJMIN },
226 { "8245", MPC8245, REVFMT_MAJMIN },
227 { "970", IBM970, REVFMT_MAJMIN },
228 { "970FX", IBM970FX, REVFMT_MAJMIN },
229 { "970MP", IBM970MP, REVFMT_MAJMIN },
230 { "POWER3II", IBMPOWER3II, REVFMT_MAJMIN },
231 { "", 0, REVFMT_HEX }
232 };
233
234 #ifdef MULTIPROCESSOR
235 struct cpu_info cpu_info[CPU_MAXNUM] = {
236 [0] = {
237 .ci_curlwp = &lwp0,
238 },
239 };
240 volatile struct cpu_hatch_data *cpu_hatch_data;
241 volatile int cpu_hatch_stack;
242 #define HATCH_STACK_SIZE 0x1000
243 extern int ticks_per_intr;
244 #include <powerpc/oea/bat.h>
245 #include <powerpc/pic/picvar.h>
246 #include <powerpc/pic/ipivar.h>
247 extern struct bat battable[];
248 #else
249 struct cpu_info cpu_info[1] = {
250 [0] = {
251 .ci_curlwp = &lwp0,
252 },
253 };
254 #endif /*MULTIPROCESSOR*/
255
256 int cpu_altivec;
257 register_t cpu_psluserset;
258 register_t cpu_pslusermod;
259 register_t cpu_pslusermask = 0xffff;
260
261 /* This is to be called from locore.S, and nowhere else. */
262
263 void
264 cpu_model_init(void)
265 {
266 u_int pvr, vers;
267
268 pvr = mfpvr();
269 vers = pvr >> 16;
270
271 oeacpufeat = 0;
272
273 if ((vers >= IBMRS64II && vers <= IBM970GX) || vers == MPC620 ||
274 vers == IBMCELL || vers == IBMPOWER6P5) {
275 oeacpufeat |= OEACPU_64;
276 oeacpufeat |= OEACPU_64_BRIDGE;
277 oeacpufeat |= OEACPU_NOBAT;
278
279 } else if (vers == MPC601) {
280 oeacpufeat |= OEACPU_601;
281
282 } else if (MPC745X_P(vers)) {
283 register_t hid1 = mfspr(SPR_HID1);
284
285 if (vers != MPC7450) {
286 register_t hid0 = mfspr(SPR_HID0);
287
288 /* Enable more SPRG registers */
289 oeacpufeat |= OEACPU_HIGHSPRG;
290
291 /* Enable more BAT registers */
292 oeacpufeat |= OEACPU_HIGHBAT;
293 hid0 |= HID0_HIGH_BAT_EN;
294
295 /* Enable larger BAT registers */
296 oeacpufeat |= OEACPU_XBSEN;
297 hid0 |= HID0_XBSEN;
298
299 mtspr(SPR_HID0, hid0);
300 __asm volatile("sync;isync");
301 }
302
303 /* Enable address broadcasting for MP systems */
304 hid1 |= HID1_SYNCBE | HID1_ABE;
305
306 mtspr(SPR_HID1, hid1);
307 __asm volatile("sync;isync");
308
309 } else if (vers == IBM750FX || vers == IBM750GX) {
310 oeacpufeat |= OEACPU_HIGHBAT;
311 }
312 }
313
314 void
315 cpu_fmttab_print(const struct fmttab *fmt, register_t data)
316 {
317 for (; fmt->fmt_mask != 0 || fmt->fmt_value != 0; fmt++) {
318 if ((~fmt->fmt_mask & fmt->fmt_value) != 0 ||
319 (data & fmt->fmt_mask) == fmt->fmt_value)
320 aprint_normal("%s", fmt->fmt_string);
321 }
322 }
323
324 void
325 cpu_idlespin(void)
326 {
327 register_t msr;
328
329 if (powersave <= 0)
330 return;
331
332 #if defined(_ARCH_PPC64) || defined (PPC_OEA64_BRIDGE)
333 if (cpu_altivec)
334 __asm volatile("dssall");
335 #endif
336
337 __asm volatile(
338 "sync;"
339 "mfmsr %0;"
340 "oris %0,%0,%1@h;" /* enter power saving mode */
341 "mtmsr %0;"
342 "isync;"
343 : "=r"(msr)
344 : "J"(PSL_POW));
345 }
346
347 void
348 cpu_probe_cache(void)
349 {
350 u_int assoc, pvr, vers;
351
352 pvr = mfpvr();
353 vers = pvr >> 16;
354
355
356 /* Presently common across almost all implementations. */
357 curcpu()->ci_ci.dcache_line_size = 32;
358 curcpu()->ci_ci.icache_line_size = 32;
359
360
361 switch (vers) {
362 #define K *1024
363 case IBM750FX:
364 case IBM750GX:
365 case MPC601:
366 case MPC750:
367 case MPC7400:
368 case MPC7447A:
369 case MPC7448:
370 case MPC7450:
371 case MPC7455:
372 case MPC7457:
373 curcpu()->ci_ci.dcache_size = 32 K;
374 curcpu()->ci_ci.icache_size = 32 K;
375 assoc = 8;
376 break;
377 case MPC603:
378 curcpu()->ci_ci.dcache_size = 8 K;
379 curcpu()->ci_ci.icache_size = 8 K;
380 assoc = 2;
381 break;
382 case MPC603e:
383 case MPC603ev:
384 case MPC604:
385 case MPC8240:
386 case MPC8245:
387 case MPCG2:
388 curcpu()->ci_ci.dcache_size = 16 K;
389 curcpu()->ci_ci.icache_size = 16 K;
390 assoc = 4;
391 break;
392 case MPC604e:
393 case MPC604ev:
394 curcpu()->ci_ci.dcache_size = 32 K;
395 curcpu()->ci_ci.icache_size = 32 K;
396 assoc = 4;
397 break;
398 case IBMPOWER3II:
399 curcpu()->ci_ci.dcache_size = 64 K;
400 curcpu()->ci_ci.icache_size = 32 K;
401 curcpu()->ci_ci.dcache_line_size = 128;
402 curcpu()->ci_ci.icache_line_size = 128;
403 assoc = 128; /* not a typo */
404 break;
405 case IBM970:
406 case IBM970FX:
407 case IBM970MP:
408 curcpu()->ci_ci.dcache_size = 32 K;
409 curcpu()->ci_ci.icache_size = 64 K;
410 curcpu()->ci_ci.dcache_line_size = 128;
411 curcpu()->ci_ci.icache_line_size = 128;
412 assoc = 2;
413 break;
414
415 default:
416 curcpu()->ci_ci.dcache_size = PAGE_SIZE;
417 curcpu()->ci_ci.icache_size = PAGE_SIZE;
418 assoc = 1;
419 #undef K
420 }
421
422 /*
423 * Possibly recolor.
424 */
425 uvm_page_recolor(atop(curcpu()->ci_ci.dcache_size / assoc));
426 }
427
428 struct cpu_info *
429 cpu_attach_common(device_t self, int id)
430 {
431 struct cpu_info *ci;
432 u_int pvr, vers;
433
434 ci = &cpu_info[id];
435 #ifndef MULTIPROCESSOR
436 /*
437 * If this isn't the primary CPU, print an error message
438 * and just bail out.
439 */
440 if (id != 0) {
441 aprint_naive("\n");
442 aprint_normal(": ID %d\n", id);
443 aprint_normal_dev(self,
444 "processor off-line; "
445 "multiprocessor support not present in kernel\n");
446 return (NULL);
447 }
448 #endif
449
450 ci->ci_cpuid = id;
451 ci->ci_idepth = -1;
452 ci->ci_dev = self;
453 ci->ci_idlespin = cpu_idlespin;
454
455 pvr = mfpvr();
456 vers = (pvr >> 16) & 0xffff;
457
458 switch (id) {
459 case 0:
460 /* load my cpu_number to PIR */
461 switch (vers) {
462 case MPC601:
463 case MPC604:
464 case MPC604e:
465 case MPC604ev:
466 case MPC7400:
467 case MPC7410:
468 case MPC7447A:
469 case MPC7448:
470 case MPC7450:
471 case MPC7455:
472 case MPC7457:
473 mtspr(SPR_PIR, id);
474 }
475 cpu_setup(self, ci);
476 break;
477 default:
478 aprint_naive("\n");
479 if (id >= CPU_MAXNUM) {
480 aprint_normal(": more than %d cpus?\n", CPU_MAXNUM);
481 panic("cpuattach");
482 }
483 #ifndef MULTIPROCESSOR
484 aprint_normal(" not configured\n");
485 return NULL;
486 #else
487 mi_cpu_attach(ci);
488 break;
489 #endif
490 }
491 return (ci);
492 }
493
494 void
495 cpu_setup(device_t self, struct cpu_info *ci)
496 {
497 u_int pvr, vers;
498 const char * const xname = device_xname(self);
499 const char *bitmask;
500 char hidbuf[128];
501 char model[80];
502 #if defined(PPC_OEA64_BRIDGE) || defined(_ARCH_PPC64)
503 char hidbuf_u[128];
504 const char *bitmasku = NULL;
505 volatile uint64_t hid64_0, hid64_0_save;
506 #endif
507 #if !defined(_ARCH_PPC64)
508 register_t hid0 = 0, hid0_save = 0;
509 #endif
510
511 pvr = mfpvr();
512 vers = (pvr >> 16) & 0xffff;
513
514 cpu_identify(model, sizeof(model));
515 aprint_naive("\n");
516 aprint_normal(": %s, ID %d%s\n", model, cpu_number(),
517 cpu_number() == 0 ? " (primary)" : "");
518
519 /* set the cpu number */
520 ci->ci_cpuid = cpu_number();
521 #if defined(_ARCH_PPC64)
522 __asm volatile("mfspr %0,%1" : "=r"(hid64_0) : "K"(SPR_HID0));
523 hid64_0_save = hid64_0;
524 #else
525 #if defined(PPC_OEA64_BRIDGE)
526 if ((oeacpufeat & OEACPU_64_BRIDGE) != 0)
527 hid64_0_save = hid64_0 = mfspr(SPR_HID0);
528 else
529 #endif
530 hid0_save = hid0 = mfspr(SPR_HID0);
531 #endif
532
533
534 cpu_probe_cache();
535
536 /*
537 * Configure power-saving mode.
538 */
539 switch (vers) {
540 #if !defined(_ARCH_PPC64)
541 case MPC604:
542 case MPC604e:
543 case MPC604ev:
544 /*
545 * Do not have HID0 support settings, but can support
546 * MSR[POW] off
547 */
548 powersave = 1;
549 break;
550
551 case MPC603:
552 case MPC603e:
553 case MPC603ev:
554 case MPC7400:
555 case MPC7410:
556 case MPC8240:
557 case MPC8245:
558 case MPCG2:
559 /* Select DOZE mode. */
560 hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
561 hid0 |= HID0_DOZE | HID0_DPM;
562 powersave = 1;
563 break;
564
565 case MPC750:
566 case IBM750FX:
567 case IBM750GX:
568 /* Select NAP mode. */
569 hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
570 hid0 |= HID0_NAP | HID0_DPM;
571 powersave = 1;
572 break;
573
574 case MPC7447A:
575 case MPC7448:
576 case MPC7457:
577 case MPC7455:
578 case MPC7450:
579 /* Enable the 7450 branch caches */
580 hid0 |= HID0_SGE | HID0_BTIC;
581 hid0 |= HID0_LRSTK | HID0_FOLD | HID0_BHT;
582 /* Disable BTIC on 7450 Rev 2.0 or earlier */
583 if (vers == MPC7450 && (pvr & 0xFFFF) <= 0x0200)
584 hid0 &= ~HID0_BTIC;
585 /* Select NAP mode. */
586 hid0 &= ~HID0_SLEEP;
587 /* XXX my quicksilver hangs if nap is enabled */
588 if (vers != MPC7450) {
589 hid0 |= HID0_NAP | HID0_DPM;
590 powersave = 1;
591 }
592 break;
593 #endif
594
595 case IBM970:
596 case IBM970FX:
597 case IBM970MP:
598 #if defined(_ARCH_PPC64) || defined (PPC_OEA64_BRIDGE)
599 #if !defined(_ARCH_PPC64)
600 KASSERT((oeacpufeat & OEACPU_64_BRIDGE) != 0);
601 #endif
602 hid64_0 &= ~(HID0_64_DOZE | HID0_64_NAP | HID0_64_DEEPNAP);
603 hid64_0 |= HID0_64_NAP | HID0_64_DPM | HID0_64_EX_TBEN |
604 HID0_64_TB_CTRL | HID0_64_EN_MCHK;
605 powersave = 1;
606 break;
607 #endif
608 case IBMPOWER3II:
609 default:
610 /* No power-saving mode is available. */ ;
611 }
612
613 #ifdef NAPMODE
614 switch (vers) {
615 case IBM750FX:
616 case IBM750GX:
617 case MPC750:
618 case MPC7400:
619 /* Select NAP mode. */
620 hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
621 hid0 |= HID0_NAP;
622 break;
623 }
624 #endif
625
626 switch (vers) {
627 case IBM750FX:
628 case IBM750GX:
629 case MPC750:
630 hid0 &= ~HID0_DBP; /* XXX correct? */
631 hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
632 break;
633
634 case MPC7400:
635 case MPC7410:
636 hid0 &= ~HID0_SPD;
637 hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
638 hid0 |= HID0_EIEC;
639 break;
640 }
641
642 /*
643 * according to the 603e manual this is necessary for an external L2
644 * cache to work properly
645 */
646 switch (vers) {
647 case MPC603e:
648 hid0 |= HID0_ABE;
649 }
650
651 #if defined(_ARCH_PPC64) || defined(PPC_OEA64_BRIDGE)
652 #if defined(PPC_OEA64_BRIDGE)
653 if ((oeacpufeat & OEACPU_64_BRIDGE) != 0) {
654 #endif
655 if (hid64_0 != hid64_0_save) {
656 mtspr64(SPR_HID0, hid64_0);
657 }
658 #if defined(PPC_OEA64_BRIDGE)
659 } else {
660 #endif
661 #endif
662
663 #if !defined(_ARCH_PPC64)
664 if (hid0 != hid0_save) {
665 mtspr(SPR_HID0, hid0);
666 __asm volatile("sync;isync");
667 }
668 #endif
669 #if defined(PPC_OEA64_BRIDGE)
670 }
671 #endif
672
673 switch (vers) {
674 case MPC601:
675 bitmask = HID0_601_BITMASK;
676 break;
677 case MPC7447A:
678 case MPC7448:
679 case MPC7450:
680 case MPC7455:
681 case MPC7457:
682 bitmask = HID0_7450_BITMASK;
683 break;
684 case IBM970:
685 case IBM970FX:
686 case IBM970MP:
687 bitmask = HID0_970_BITMASK;
688 #if defined(PPC_OEA64_BRIDGE) || defined(_ARCH_PPC64)
689 bitmasku = HID0_970_BITMASK_U;
690 #endif
691 break;
692 default:
693 bitmask = HID0_BITMASK;
694 break;
695 }
696
697 #if defined(PPC_OEA64_BRIDGE) || defined(_ARCH_PPC64)
698 if (bitmasku != NULL) {
699 snprintb(hidbuf, sizeof hidbuf, bitmask, hid64_0 & 0xffffffff);
700 snprintb(hidbuf_u, sizeof hidbuf_u, bitmasku, hid64_0 >> 32);
701 aprint_normal_dev(self, "HID0 %s %s, powersave: %d\n",
702 hidbuf_u, hidbuf, powersave);
703 } else
704 #endif
705 {
706 snprintb(hidbuf, sizeof hidbuf, bitmask, hid0);
707 aprint_normal_dev(self, "HID0 %s, powersave: %d\n",
708 hidbuf, powersave);
709 }
710
711 ci->ci_khz = 0;
712
713 /*
714 * Display speed and cache configuration.
715 */
716 switch (vers) {
717 case MPC604:
718 case MPC604e:
719 case MPC604ev:
720 case MPC750:
721 case IBM750FX:
722 case IBM750GX:
723 case MPC7400:
724 case MPC7410:
725 case MPC7447A:
726 case MPC7448:
727 case MPC7450:
728 case MPC7455:
729 case MPC7457:
730 aprint_normal_dev(self, "");
731 cpu_probe_speed(ci);
732 aprint_normal("%u.%02u MHz",
733 ci->ci_khz / 1000, (ci->ci_khz / 10) % 100);
734 switch (vers) {
735 case MPC7450: /* 7441 does not have L3! */
736 case MPC7455: /* 7445 does not have L3! */
737 case MPC7457: /* 7447 does not have L3! */
738 cpu_config_l3cr(vers);
739 break;
740 case IBM750FX:
741 case IBM750GX:
742 case MPC750:
743 case MPC7400:
744 case MPC7410:
745 case MPC7447A:
746 case MPC7448:
747 cpu_config_l2cr(pvr);
748 break;
749 default:
750 break;
751 }
752 aprint_normal("\n");
753 break;
754 }
755
756 #if NSYSMON_ENVSYS > 0
757 /*
758 * Attach MPC750 temperature sensor to the envsys subsystem.
759 * XXX the 74xx series also has this sensor, but it is not
760 * XXX supported by Motorola and may return values that are off by
761 * XXX 35-55 degrees C.
762 */
763 if (vers == MPC750 || vers == IBM750FX || vers == IBM750GX)
764 cpu_tau_setup(ci);
765 #endif
766
767 #if defined(PPC_OEA64) || defined(PPC_OEA64_BRIDGE)
768 if (vers == IBM970MP)
769 init_scom_speedctl();
770 #endif
771
772 evcnt_attach_dynamic(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
773 NULL, xname, "clock");
774 evcnt_attach_dynamic(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
775 NULL, xname, "traps");
776 evcnt_attach_dynamic(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
777 &ci->ci_ev_traps, xname, "kernel DSI traps");
778 evcnt_attach_dynamic(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
779 &ci->ci_ev_traps, xname, "user DSI traps");
780 evcnt_attach_dynamic(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
781 &ci->ci_ev_udsi, xname, "user DSI failures");
782 evcnt_attach_dynamic(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP,
783 &ci->ci_ev_traps, xname, "kernel ISI traps");
784 evcnt_attach_dynamic(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
785 &ci->ci_ev_traps, xname, "user ISI traps");
786 evcnt_attach_dynamic(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
787 &ci->ci_ev_isi, xname, "user ISI failures");
788 evcnt_attach_dynamic(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
789 &ci->ci_ev_traps, xname, "system call traps");
790 evcnt_attach_dynamic(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
791 &ci->ci_ev_traps, xname, "PGM traps");
792 evcnt_attach_dynamic(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
793 &ci->ci_ev_traps, xname, "FPU unavailable traps");
794 evcnt_attach_dynamic(&ci->ci_ev_fpusw, EVCNT_TYPE_TRAP,
795 &ci->ci_ev_fpu, xname, "FPU context switches");
796 evcnt_attach_dynamic(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
797 &ci->ci_ev_traps, xname, "user alignment traps");
798 evcnt_attach_dynamic(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
799 &ci->ci_ev_ali, xname, "user alignment traps");
800 evcnt_attach_dynamic(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
801 &ci->ci_ev_umchk, xname, "user MCHK failures");
802 evcnt_attach_dynamic(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
803 &ci->ci_ev_traps, xname, "AltiVec unavailable");
804 #ifdef ALTIVEC
805 if (cpu_altivec) {
806 evcnt_attach_dynamic(&ci->ci_ev_vecsw, EVCNT_TYPE_TRAP,
807 &ci->ci_ev_vec, xname, "AltiVec context switches");
808 }
809 #endif
810 evcnt_attach_dynamic(&ci->ci_ev_ipi, EVCNT_TYPE_INTR,
811 NULL, xname, "IPIs");
812 }
813
814 /*
815 * According to a document labeled "PVR Register Settings":
816 ** For integrated microprocessors the PVR register inside the device
817 ** will identify the version of the microprocessor core. You must also
818 ** read the Device ID, PCI register 02, to identify the part and the
819 ** Revision ID, PCI register 08, to identify the revision of the
820 ** integrated microprocessor.
821 * This apparently applies to 8240/8245/8241, PVR 00810101 and 80811014
822 */
823
824 void
825 cpu_identify(char *str, size_t len)
826 {
827 u_int pvr, major, minor;
828 uint16_t vers, rev, revfmt;
829 const struct cputab *cp;
830 size_t n;
831
832 pvr = mfpvr();
833 vers = pvr >> 16;
834 rev = pvr;
835
836 switch (vers) {
837 case MPC7410:
838 minor = (pvr >> 0) & 0xff;
839 major = minor <= 4 ? 1 : 2;
840 break;
841 case MPCG2: /*XXX see note above */
842 major = (pvr >> 4) & 0xf;
843 minor = (pvr >> 0) & 0xf;
844 break;
845 default:
846 major = (pvr >> 8) & 0xf;
847 minor = (pvr >> 0) & 0xf;
848 }
849
850 for (cp = models; cp->name[0] != '\0'; cp++) {
851 if (cp->version == vers)
852 break;
853 }
854
855 if (cpu == -1)
856 cpu = vers;
857
858 revfmt = cp->revfmt;
859 if (rev == MPC750 && pvr == 15) {
860 revfmt = REVFMT_HEX;
861 }
862
863 if (cp->name[0] != '\0') {
864 n = snprintf(str, len, "%s (Revision ", cp->name);
865 } else {
866 n = snprintf(str, len, "Version %#x (Revision ", vers);
867 }
868 if (len > n) {
869 switch (revfmt) {
870 case REVFMT_MAJMIN:
871 snprintf(str + n, len - n, "%u.%u)", major, minor);
872 break;
873 case REVFMT_HEX:
874 snprintf(str + n, len - n, "0x%04x)", rev);
875 break;
876 case REVFMT_DEC:
877 snprintf(str + n, len - n, "%u)", rev);
878 break;
879 }
880 }
881 }
882
883 #ifdef L2CR_CONFIG
884 u_int l2cr_config = L2CR_CONFIG;
885 #else
886 u_int l2cr_config = 0;
887 #endif
888
889 #ifdef L3CR_CONFIG
890 u_int l3cr_config = L3CR_CONFIG;
891 #else
892 u_int l3cr_config = 0;
893 #endif
894
895 void
896 cpu_enable_l2cr(register_t l2cr)
897 {
898 register_t msr, x;
899 uint16_t vers;
900
901 vers = mfpvr() >> 16;
902
903 /* Disable interrupts and set the cache config bits. */
904 msr = mfmsr();
905 mtmsr(msr & ~PSL_EE);
906 #ifdef ALTIVEC
907 if (cpu_altivec)
908 __asm volatile("dssall");
909 #endif
910 __asm volatile("sync");
911 mtspr(SPR_L2CR, l2cr & ~L2CR_L2E);
912 __asm volatile("sync");
913
914 /* Wait for L2 clock to be stable (640 L2 clocks). */
915 delay(100);
916
917 /* Invalidate all L2 contents. */
918 if (MPC745X_P(vers)) {
919 mtspr(SPR_L2CR, l2cr | L2CR_L2I);
920 do {
921 x = mfspr(SPR_L2CR);
922 } while (x & L2CR_L2I);
923 } else {
924 mtspr(SPR_L2CR, l2cr | L2CR_L2I);
925 do {
926 x = mfspr(SPR_L2CR);
927 } while (x & L2CR_L2IP);
928 }
929 /* Enable L2 cache. */
930 l2cr |= L2CR_L2E;
931 mtspr(SPR_L2CR, l2cr);
932 mtmsr(msr);
933 }
934
935 void
936 cpu_enable_l3cr(register_t l3cr)
937 {
938 register_t x;
939
940 /* By The Book (numbered steps from section 3.7.1.3 of MPC7450UM) */
941
942 /*
943 * 1: Set all L3CR bits for final config except L3E, L3I, L3PE, and
944 * L3CLKEN. (also mask off reserved bits in case they were included
945 * in L3CR_CONFIG)
946 */
947 l3cr &= ~(L3CR_L3E|L3CR_L3I|L3CR_L3PE|L3CR_L3CLKEN|L3CR_RESERVED);
948 mtspr(SPR_L3CR, l3cr);
949
950 /* 2: Set L3CR[5] (otherwise reserved bit) to 1 */
951 l3cr |= 0x04000000;
952 mtspr(SPR_L3CR, l3cr);
953
954 /* 3: Set L3CLKEN to 1*/
955 l3cr |= L3CR_L3CLKEN;
956 mtspr(SPR_L3CR, l3cr);
957
958 /* 4/5: Perform a global cache invalidate (ref section 3.7.3.6) */
959 __asm volatile("dssall;sync");
960 /* L3 cache is already disabled, no need to clear L3E */
961 mtspr(SPR_L3CR, l3cr|L3CR_L3I);
962 do {
963 x = mfspr(SPR_L3CR);
964 } while (x & L3CR_L3I);
965
966 /* 6: Clear L3CLKEN to 0 */
967 l3cr &= ~L3CR_L3CLKEN;
968 mtspr(SPR_L3CR, l3cr);
969
970 /* 7: Perform a 'sync' and wait at least 100 CPU cycles */
971 __asm volatile("sync");
972 delay(100);
973
974 /* 8: Set L3E and L3CLKEN */
975 l3cr |= (L3CR_L3E|L3CR_L3CLKEN);
976 mtspr(SPR_L3CR, l3cr);
977
978 /* 9: Perform a 'sync' and wait at least 100 CPU cycles */
979 __asm volatile("sync");
980 delay(100);
981 }
982
983 void
984 cpu_config_l2cr(int pvr)
985 {
986 register_t l2cr;
987 u_int vers = (pvr >> 16) & 0xffff;
988
989 l2cr = mfspr(SPR_L2CR);
990
991 /*
992 * For MP systems, the firmware may only configure the L2 cache
993 * on the first CPU. In this case, assume that the other CPUs
994 * should use the same value for L2CR.
995 */
996 if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
997 l2cr_config = l2cr;
998 }
999
1000 /*
1001 * Configure L2 cache if not enabled.
1002 */
1003 if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
1004 cpu_enable_l2cr(l2cr_config);
1005 l2cr = mfspr(SPR_L2CR);
1006 }
1007
1008 if ((l2cr & L2CR_L2E) == 0) {
1009 aprint_normal(" L2 cache present but not enabled ");
1010 return;
1011 }
1012 aprint_normal(",");
1013
1014 switch (vers) {
1015 case IBM750FX:
1016 case IBM750GX:
1017 cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
1018 break;
1019 case MPC750:
1020 if ((pvr & 0xffffff00) == 0x00082200 /* IBM750CX */ ||
1021 (pvr & 0xffffef00) == 0x00082300 /* IBM750CXe */)
1022 cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
1023 else
1024 cpu_fmttab_print(cpu_l2cr_formats, l2cr);
1025 break;
1026 case MPC7447A:
1027 case MPC7457:
1028 cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
1029 return;
1030 case MPC7448:
1031 cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
1032 return;
1033 case MPC7450:
1034 case MPC7455:
1035 cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
1036 break;
1037 default:
1038 cpu_fmttab_print(cpu_l2cr_formats, l2cr);
1039 break;
1040 }
1041 }
1042
1043 void
1044 cpu_config_l3cr(int vers)
1045 {
1046 register_t l2cr;
1047 register_t l3cr;
1048
1049 l2cr = mfspr(SPR_L2CR);
1050
1051 /*
1052 * For MP systems, the firmware may only configure the L2 cache
1053 * on the first CPU. In this case, assume that the other CPUs
1054 * should use the same value for L2CR.
1055 */
1056 if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
1057 l2cr_config = l2cr;
1058 }
1059
1060 /*
1061 * Configure L2 cache if not enabled.
1062 */
1063 if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
1064 cpu_enable_l2cr(l2cr_config);
1065 l2cr = mfspr(SPR_L2CR);
1066 }
1067
1068 aprint_normal(",");
1069 switch (vers) {
1070 case MPC7447A:
1071 case MPC7457:
1072 cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
1073 return;
1074 case MPC7448:
1075 cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
1076 return;
1077 default:
1078 cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
1079 break;
1080 }
1081
1082 l3cr = mfspr(SPR_L3CR);
1083
1084 /*
1085 * For MP systems, the firmware may only configure the L3 cache
1086 * on the first CPU. In this case, assume that the other CPUs
1087 * should use the same value for L3CR.
1088 */
1089 if ((l3cr & L3CR_L3E) != 0 && l3cr_config == 0) {
1090 l3cr_config = l3cr;
1091 }
1092
1093 /*
1094 * Configure L3 cache if not enabled.
1095 */
1096 if ((l3cr & L3CR_L3E) == 0 && l3cr_config != 0) {
1097 cpu_enable_l3cr(l3cr_config);
1098 l3cr = mfspr(SPR_L3CR);
1099 }
1100
1101 if (l3cr & L3CR_L3E) {
1102 aprint_normal(",");
1103 cpu_fmttab_print(cpu_7450_l3cr_formats, l3cr);
1104 }
1105 }
1106
1107 void
1108 cpu_probe_speed(struct cpu_info *ci)
1109 {
1110 uint64_t cps;
1111
1112 mtspr(SPR_MMCR0, MMCR0_FC);
1113 mtspr(SPR_PMC1, 0);
1114 mtspr(SPR_MMCR0, MMCR0_PMC1SEL(PMCN_CYCLES));
1115 delay(100000);
1116 cps = (mfspr(SPR_PMC1) * 10) + 4999;
1117
1118 mtspr(SPR_MMCR0, MMCR0_FC);
1119
1120 ci->ci_khz = (cps * cpu_get_dfs()) / 1000;
1121 }
1122
1123 /*
1124 * Read the Dynamic Frequency Switching state and return a divisor for
1125 * the maximum frequency.
1126 */
1127 int
1128 cpu_get_dfs(void)
1129 {
1130 u_int pvr, vers;
1131
1132 pvr = mfpvr();
1133 vers = pvr >> 16;
1134
1135 switch (vers) {
1136 case MPC7448:
1137 if (mfspr(SPR_HID1) & HID1_DFS4)
1138 return 4;
1139 /* FALLTHROUGH */
1140 case MPC7447A:
1141 if (mfspr(SPR_HID1) & HID1_DFS2)
1142 return 2;
1143 }
1144 return 1;
1145 }
1146
1147 /*
1148 * Set the Dynamic Frequency Switching divisor the same for all cpus.
1149 */
1150 void
1151 cpu_set_dfs(int div)
1152 {
1153 u_int dfs_mask, pvr, vers;
1154
1155 pvr = mfpvr();
1156 vers = pvr >> 16;
1157 dfs_mask = 0;
1158
1159 switch (vers) {
1160 case MPC7448:
1161 dfs_mask |= HID1_DFS4;
1162 /* FALLTHROUGH */
1163 case MPC7447A:
1164 dfs_mask |= HID1_DFS2;
1165 break;
1166 default:
1167 printf("cpu_set_dfs: DFS not supported\n");
1168 return;
1169
1170 }
1171 #ifdef MULTIPROCESSOR
1172 uint64_t where;
1173 where = xc_broadcast(0, (xcfunc_t)cpu_set_dfs_xcall, &div, &dfs_mask);
1174 xc_wait(where);
1175 #else
1176 cpu_set_dfs_xcall(&div, &dfs_mask);
1177 #endif
1178 }
1179
1180 static void
1181 cpu_set_dfs_xcall(void *arg1, void *arg2)
1182 {
1183 u_int dfs_mask, hid1, old_hid1;
1184 int *divisor, s;
1185
1186 divisor = arg1;
1187 dfs_mask = *(u_int *)arg2;
1188
1189 s = splhigh();
1190 hid1 = old_hid1 = mfspr(SPR_HID1);
1191
1192 switch (*divisor) {
1193 case 1:
1194 hid1 &= ~dfs_mask;
1195 break;
1196 case 2:
1197 hid1 &= ~(dfs_mask & HID1_DFS4);
1198 hid1 |= dfs_mask & HID1_DFS2;
1199 break;
1200 case 4:
1201 hid1 &= ~(dfs_mask & HID1_DFS2);
1202 hid1 |= dfs_mask & HID1_DFS4;
1203 break;
1204 }
1205
1206 if (hid1 != old_hid1) {
1207 __asm volatile("sync");
1208 mtspr(SPR_HID1, hid1);
1209 __asm volatile("sync;isync");
1210 }
1211
1212 splx(s);
1213 }
1214
1215 #if NSYSMON_ENVSYS > 0
1216 void
1217 cpu_tau_setup(struct cpu_info *ci)
1218 {
1219 struct sysmon_envsys *sme;
1220 int error, therm_delay;
1221
1222 mtspr(SPR_THRM1, SPR_THRM_VALID);
1223 mtspr(SPR_THRM2, 0);
1224
1225 /*
1226 * we need to figure out how much 20+us in units of CPU clock cycles
1227 * are
1228 */
1229
1230 therm_delay = ci->ci_khz / 40; /* 25us just to be safe */
1231
1232 mtspr(SPR_THRM3, SPR_THRM_TIMER(therm_delay) | SPR_THRM_ENABLE);
1233
1234 sme = sysmon_envsys_create();
1235
1236 sensor.units = ENVSYS_STEMP;
1237 sensor.state = ENVSYS_SINVALID;
1238 (void)strlcpy(sensor.desc, "CPU Temp", sizeof(sensor.desc));
1239 if (sysmon_envsys_sensor_attach(sme, &sensor)) {
1240 sysmon_envsys_destroy(sme);
1241 return;
1242 }
1243
1244 sme->sme_name = device_xname(ci->ci_dev);
1245 sme->sme_cookie = ci;
1246 sme->sme_refresh = cpu_tau_refresh;
1247
1248 if ((error = sysmon_envsys_register(sme)) != 0) {
1249 aprint_error_dev(ci->ci_dev,
1250 " unable to register with sysmon (%d)\n", error);
1251 sysmon_envsys_destroy(sme);
1252 }
1253 }
1254
1255 /* Find the temperature of the CPU. */
1256 void
1257 cpu_tau_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
1258 {
1259 int i, threshold, count;
1260
1261 threshold = 64; /* Half of the 7-bit sensor range */
1262
1263 /* Successive-approximation code adapted from Motorola
1264 * application note AN1800/D, "Programming the Thermal Assist
1265 * Unit in the MPC750 Microprocessor".
1266 */
1267 for (i = 5; i >= 0 ; i--) {
1268 mtspr(SPR_THRM1,
1269 SPR_THRM_THRESHOLD(threshold) | SPR_THRM_VALID);
1270 count = 0;
1271 while ((count < 100000) &&
1272 ((mfspr(SPR_THRM1) & SPR_THRM_TIV) == 0)) {
1273 count++;
1274 delay(1);
1275 }
1276 if (mfspr(SPR_THRM1) & SPR_THRM_TIN) {
1277 /* The interrupt bit was set, meaning the
1278 * temperature was above the threshold
1279 */
1280 threshold += 1 << i;
1281 } else {
1282 /* Temperature was below the threshold */
1283 threshold -= 1 << i;
1284 }
1285 }
1286 threshold += 2;
1287
1288 /* Convert the temperature in degrees C to microkelvin */
1289 edata->value_cur = (threshold * 1000000) + 273150000;
1290 edata->state = ENVSYS_SVALID;
1291 }
1292 #endif /* NSYSMON_ENVSYS > 0 */
1293
1294 #ifdef MULTIPROCESSOR
1295 volatile u_int cpu_spinstart_ack, cpu_spinstart_cpunum;
1296
1297 int
1298 cpu_spinup(device_t self, struct cpu_info *ci)
1299 {
1300 volatile struct cpu_hatch_data hatch_data, *h = &hatch_data;
1301 struct pglist mlist;
1302 int i, error;
1303 char *hp;
1304
1305 KASSERT(ci != curcpu());
1306
1307 /* Now allocate a hatch stack */
1308 error = uvm_pglistalloc(HATCH_STACK_SIZE, 0x10000, 0x10000000, 16, 0,
1309 &mlist, 1, 1);
1310 if (error) {
1311 aprint_error(": unable to allocate hatch stack\n");
1312 return -1;
1313 }
1314
1315 hp = (void *)VM_PAGE_TO_PHYS(TAILQ_FIRST(&mlist));
1316 memset(hp, 0, HATCH_STACK_SIZE);
1317
1318 /* Initialize secondary cpu's initial lwp to its idlelwp. */
1319 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
1320 ci->ci_curpcb = lwp_getpcb(ci->ci_curlwp);
1321 ci->ci_curpm = ci->ci_curpcb->pcb_pm;
1322
1323 cpu_hatch_data = h;
1324 h->hatch_running = 0;
1325 h->hatch_self = self;
1326 h->hatch_ci = ci;
1327 h->hatch_pir = ci->ci_cpuid;
1328
1329 cpu_hatch_stack = (uint32_t)hp + HATCH_STACK_SIZE - CALLFRAMELEN;
1330 ci->ci_lasttb = cpu_info[0].ci_lasttb;
1331
1332 /* copy special registers */
1333
1334 h->hatch_hid0 = mfspr(SPR_HID0);
1335 #if defined(PPC_OEA64_BRIDGE) || defined (_ARCH_PPC64)
1336 h->hatch_hid1 = mfspr(SPR_HID1);
1337 h->hatch_hid4 = mfspr(SPR_HID4);
1338 h->hatch_hid5 = mfspr(SPR_HID5);
1339 #endif
1340
1341 __asm volatile ("mfsdr1 %0" : "=r"(h->hatch_sdr1));
1342 for (i = 0; i < 16; i++) {
1343 __asm ("mfsrin %0,%1" : "=r"(h->hatch_sr[i]) :
1344 "r"(i << ADDR_SR_SHFT));
1345 }
1346 if (oeacpufeat & OEACPU_64)
1347 h->hatch_asr = mfspr(SPR_ASR);
1348 else
1349 h->hatch_asr = 0;
1350
1351 if ((oeacpufeat & OEACPU_NOBAT) == 0) {
1352 /* copy the bat regs */
1353 __asm volatile ("mfibatu %0,0" : "=r"(h->hatch_ibatu[0]));
1354 __asm volatile ("mfibatl %0,0" : "=r"(h->hatch_ibatl[0]));
1355 __asm volatile ("mfibatu %0,1" : "=r"(h->hatch_ibatu[1]));
1356 __asm volatile ("mfibatl %0,1" : "=r"(h->hatch_ibatl[1]));
1357 __asm volatile ("mfibatu %0,2" : "=r"(h->hatch_ibatu[2]));
1358 __asm volatile ("mfibatl %0,2" : "=r"(h->hatch_ibatl[2]));
1359 __asm volatile ("mfibatu %0,3" : "=r"(h->hatch_ibatu[3]));
1360 __asm volatile ("mfibatl %0,3" : "=r"(h->hatch_ibatl[3]));
1361 __asm volatile ("mfdbatu %0,0" : "=r"(h->hatch_dbatu[0]));
1362 __asm volatile ("mfdbatl %0,0" : "=r"(h->hatch_dbatl[0]));
1363 __asm volatile ("mfdbatu %0,1" : "=r"(h->hatch_dbatu[1]));
1364 __asm volatile ("mfdbatl %0,1" : "=r"(h->hatch_dbatl[1]));
1365 __asm volatile ("mfdbatu %0,2" : "=r"(h->hatch_dbatu[2]));
1366 __asm volatile ("mfdbatl %0,2" : "=r"(h->hatch_dbatl[2]));
1367 __asm volatile ("mfdbatu %0,3" : "=r"(h->hatch_dbatu[3]));
1368 __asm volatile ("mfdbatl %0,3" : "=r"(h->hatch_dbatl[3]));
1369 __asm volatile ("sync; isync");
1370 }
1371
1372 if (md_setup_trampoline(h, ci) == -1)
1373 return -1;
1374 md_presync_timebase(h);
1375 md_start_timebase(h);
1376
1377 /* wait for secondary printf */
1378
1379 delay(200000);
1380
1381 #ifdef CACHE_PROTO_MEI
1382 __asm volatile ("dcbi 0,%0"::"r"(&h->hatch_running):"memory");
1383 __asm volatile ("sync; isync");
1384 __asm volatile ("dcbst 0,%0"::"r"(&h->hatch_running):"memory");
1385 __asm volatile ("sync; isync");
1386 #endif
1387 int hatch_bail = 0;
1388 while ((h->hatch_running < 1) && (hatch_bail < 100000)) {
1389 delay(1);
1390 hatch_bail++;
1391 #ifdef CACHE_PROTO_MEI
1392 __asm volatile ("dcbi 0,%0"::"r"(&h->hatch_running):"memory");
1393 __asm volatile ("sync; isync");
1394 __asm volatile ("dcbst 0,%0"::"r"(&h->hatch_running):"memory");
1395 __asm volatile ("sync; isync");
1396 #endif
1397 }
1398 if (h->hatch_running < 1) {
1399 #ifdef CACHE_PROTO_MEI
1400 __asm volatile ("dcbi 0,%0"::"r"(&cpu_spinstart_ack):"memory");
1401 __asm volatile ("sync; isync");
1402 __asm volatile ("dcbst 0,%0"::"r"(&cpu_spinstart_ack):"memory");
1403 __asm volatile ("sync; isync");
1404 #endif
1405 aprint_error("%d:CPU %d didn't start %d\n", cpu_spinstart_ack,
1406 ci->ci_cpuid, cpu_spinstart_ack);
1407 Debugger();
1408 return -1;
1409 }
1410
1411 /* Register IPI Interrupt */
1412 if (ipiops.ppc_establish_ipi)
1413 ipiops.ppc_establish_ipi(IST_LEVEL, IPL_HIGH, NULL);
1414
1415 return 0;
1416 }
1417
1418 static volatile int start_secondary_cpu;
1419
1420 register_t
1421 cpu_hatch(void)
1422 {
1423 volatile struct cpu_hatch_data *h = cpu_hatch_data;
1424 struct cpu_info * const ci = h->hatch_ci;
1425 struct pcb *pcb;
1426 u_int msr;
1427 int i;
1428
1429 /* Initialize timebase. */
1430 __asm ("mttbl %0; mttbu %0; mttbl %0" :: "r"(0));
1431
1432 /*
1433 * Set PIR (Processor Identification Register). i.e. whoami
1434 * Note that PIR is read-only on some CPU versions, so we write to it
1435 * only if it has a different value than we need.
1436 */
1437
1438 msr = mfspr(SPR_PIR);
1439 if (msr != h->hatch_pir)
1440 mtspr(SPR_PIR, h->hatch_pir);
1441
1442 __asm volatile ("mtsprg0 %0" :: "r"(ci));
1443 curlwp = ci->ci_curlwp;
1444 cpu_spinstart_ack = 0;
1445
1446 if ((oeacpufeat & OEACPU_NOBAT) == 0) {
1447 /* Initialize MMU. */
1448 __asm ("mtibatu 0,%0" :: "r"(h->hatch_ibatu[0]));
1449 __asm ("mtibatl 0,%0" :: "r"(h->hatch_ibatl[0]));
1450 __asm ("mtibatu 1,%0" :: "r"(h->hatch_ibatu[1]));
1451 __asm ("mtibatl 1,%0" :: "r"(h->hatch_ibatl[1]));
1452 __asm ("mtibatu 2,%0" :: "r"(h->hatch_ibatu[2]));
1453 __asm ("mtibatl 2,%0" :: "r"(h->hatch_ibatl[2]));
1454 __asm ("mtibatu 3,%0" :: "r"(h->hatch_ibatu[3]));
1455 __asm ("mtibatl 3,%0" :: "r"(h->hatch_ibatl[3]));
1456 __asm ("mtdbatu 0,%0" :: "r"(h->hatch_dbatu[0]));
1457 __asm ("mtdbatl 0,%0" :: "r"(h->hatch_dbatl[0]));
1458 __asm ("mtdbatu 1,%0" :: "r"(h->hatch_dbatu[1]));
1459 __asm ("mtdbatl 1,%0" :: "r"(h->hatch_dbatl[1]));
1460 __asm ("mtdbatu 2,%0" :: "r"(h->hatch_dbatu[2]));
1461 __asm ("mtdbatl 2,%0" :: "r"(h->hatch_dbatl[2]));
1462 __asm ("mtdbatu 3,%0" :: "r"(h->hatch_dbatu[3]));
1463 __asm ("mtdbatl 3,%0" :: "r"(h->hatch_dbatl[3]));
1464 }
1465
1466 #ifdef PPC_OEA64_BRIDGE
1467 if ((oeacpufeat & OEACPU_64_BRIDGE) != 0) {
1468
1469 mtspr64(SPR_HID0, h->hatch_hid0);
1470 mtspr64(SPR_HID1, h->hatch_hid1);
1471 mtspr64(SPR_HID4, h->hatch_hid4);
1472 mtspr64(SPR_HID5, h->hatch_hid5);
1473 mtspr64(SPR_HIOR, 0);
1474 } else
1475 #endif
1476 mtspr(SPR_HID0, h->hatch_hid0);
1477
1478 if ((oeacpufeat & OEACPU_NOBAT) == 0) {
1479 __asm ("mtibatl 0,%0; mtibatu 0,%1; mtdbatl 0,%0; mtdbatu 0,%1;"
1480 :: "r"(battable[0].batl), "r"(battable[0].batu));
1481 }
1482
1483 __asm volatile ("sync");
1484 for (i = 0; i < 16; i++)
1485 __asm ("mtsrin %0,%1" :: "r"(h->hatch_sr[i]), "r"(i << ADDR_SR_SHFT));
1486 __asm volatile ("sync; isync");
1487
1488 if (oeacpufeat & OEACPU_64)
1489 mtspr(SPR_ASR, h->hatch_asr);
1490
1491 cpu_spinstart_ack = 1;
1492 __asm ("ptesync");
1493 __asm ("mtsdr1 %0" :: "r"(h->hatch_sdr1));
1494 __asm volatile ("sync; isync");
1495
1496 cpu_spinstart_ack = 5;
1497 for (i = 0; i < 16; i++)
1498 __asm ("mfsrin %0,%1" : "=r"(h->hatch_sr[i]) :
1499 "r"(i << ADDR_SR_SHFT));
1500
1501 /* Enable I/D address translations. */
1502 msr = mfmsr();
1503 msr |= PSL_IR|PSL_DR|PSL_ME|PSL_RI;
1504 mtmsr(msr);
1505 __asm volatile ("sync; isync");
1506 cpu_spinstart_ack = 2;
1507
1508 md_sync_timebase(h);
1509
1510 cpu_setup(h->hatch_self, ci);
1511
1512 h->hatch_running = 1;
1513 __asm volatile ("sync; isync");
1514
1515 while (start_secondary_cpu == 0)
1516 ;
1517
1518 __asm volatile ("sync; isync");
1519
1520 aprint_normal("cpu%d started\n", curcpu()->ci_index);
1521 __asm volatile ("mtdec %0" :: "r"(ticks_per_intr));
1522
1523 md_setup_interrupts();
1524
1525 ci->ci_ipending = 0;
1526 ci->ci_cpl = 0;
1527
1528 mtmsr(mfmsr() | PSL_EE);
1529 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
1530 return pcb->pcb_sp;
1531 }
1532
1533 void
1534 cpu_boot_secondary_processors(void)
1535 {
1536 start_secondary_cpu = 1;
1537 __asm volatile ("sync");
1538 }
1539
1540 #endif /*MULTIPROCESSOR*/
1541