cpu_subr.c revision 1.21 1 /* $NetBSD: cpu_subr.c,v 1.21 2005/01/20 21:28:47 matt Exp $ */
2
3 /*-
4 * Copyright (c) 2001 Matt Thomas.
5 * Copyright (c) 2001 Tsubai Masanari.
6 * Copyright (c) 1998, 1999, 2001 Internet Research Institute, Inc.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by
20 * Internet Research Institute, Inc.
21 * 4. The name of the author may not be used to endorse or promote products
22 * derived from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
29 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: cpu_subr.c,v 1.21 2005/01/20 21:28:47 matt Exp $");
38
39 #include "opt_ppcparam.h"
40 #include "opt_multiprocessor.h"
41 #include "opt_altivec.h"
42 #include "sysmon_envsys.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/device.h>
47 #include <sys/malloc.h>
48
49 #include <uvm/uvm_extern.h>
50
51 #include <powerpc/oea/hid.h>
52 #include <powerpc/oea/hid_601.h>
53 #include <powerpc/spr.h>
54
55 #include <dev/sysmon/sysmonvar.h>
56
57 static void cpu_enable_l2cr(register_t);
58 static void cpu_enable_l3cr(register_t);
59 static void cpu_config_l2cr(int);
60 static void cpu_config_l3cr(int);
61 static void cpu_print_speed(void);
62 static void cpu_idlespin(void);
63 #if NSYSMON_ENVSYS > 0
64 static void cpu_tau_setup(struct cpu_info *);
65 static int cpu_tau_gtredata __P((struct sysmon_envsys *,
66 struct envsys_tre_data *));
67 static int cpu_tau_streinfo __P((struct sysmon_envsys *,
68 struct envsys_basic_info *));
69 #endif
70
71 int cpu;
72 int ncpus;
73
74 struct fmttab {
75 register_t fmt_mask;
76 register_t fmt_value;
77 const char *fmt_string;
78 };
79
80 static const struct fmttab cpu_7450_l2cr_formats[] = {
81 { L2CR_L2E, 0, " disabled" },
82 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
83 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
84 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
85 { L2CR_L2E, ~0, " 256KB L2 cache" },
86 { 0 }
87 };
88
89 static const struct fmttab cpu_7457_l2cr_formats[] = {
90 { L2CR_L2E, 0, " disabled" },
91 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
92 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
93 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
94 { L2CR_L2E, ~0, " 512KB L2 cache" },
95 { 0 }
96 };
97
98 static const struct fmttab cpu_7450_l3cr_formats[] = {
99 { L3CR_L3DO|L3CR_L3IO, L3CR_L3DO, " data-only" },
100 { L3CR_L3DO|L3CR_L3IO, L3CR_L3IO, " instruction-only" },
101 { L3CR_L3DO|L3CR_L3IO, L3CR_L3DO|L3CR_L3IO, " locked" },
102 { L3CR_L3SIZ, L3SIZ_2M, " 2MB" },
103 { L3CR_L3SIZ, L3SIZ_1M, " 1MB" },
104 { L3CR_L3PE|L3CR_L3APE, L3CR_L3PE|L3CR_L3APE, " parity" },
105 { L3CR_L3PE|L3CR_L3APE, L3CR_L3PE, " data-parity" },
106 { L3CR_L3PE|L3CR_L3APE, L3CR_L3APE, " address-parity" },
107 { L3CR_L3PE|L3CR_L3APE, 0, " no-parity" },
108 { L3CR_L3SIZ, ~0, " L3 cache" },
109 { L3CR_L3RT, L3RT_MSUG2_DDR, " (DDR SRAM)" },
110 { L3CR_L3RT, L3RT_PIPELINE_LATE, " (LW SRAM)" },
111 { L3CR_L3RT, L3RT_PB2_SRAM, " (PB2 SRAM)" },
112 { L3CR_L3CLK, ~0, " at" },
113 { L3CR_L3CLK, L3CLK_20, " 2:1" },
114 { L3CR_L3CLK, L3CLK_25, " 2.5:1" },
115 { L3CR_L3CLK, L3CLK_30, " 3:1" },
116 { L3CR_L3CLK, L3CLK_35, " 3.5:1" },
117 { L3CR_L3CLK, L3CLK_40, " 4:1" },
118 { L3CR_L3CLK, L3CLK_50, " 5:1" },
119 { L3CR_L3CLK, L3CLK_60, " 6:1" },
120 { L3CR_L3CLK, ~0, " ratio" },
121 { 0, 0 },
122 };
123
124 static const struct fmttab cpu_ibm750_l2cr_formats[] = {
125 { L2CR_L2E, 0, " disabled" },
126 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
127 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
128 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
129 { 0, ~0, " 512KB" },
130 { L2CR_L2WT, L2CR_L2WT, " WT" },
131 { L2CR_L2WT, 0, " WB" },
132 { L2CR_L2PE, L2CR_L2PE, " with ECC" },
133 { 0, ~0, " L2 cache" },
134 { 0 }
135 };
136
137 static const struct fmttab cpu_l2cr_formats[] = {
138 { L2CR_L2E, 0, " disabled" },
139 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
140 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
141 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
142 { L2CR_L2PE, L2CR_L2PE, " parity" },
143 { L2CR_L2PE, 0, " no-parity" },
144 { L2CR_L2SIZ, L2SIZ_2M, " 2MB" },
145 { L2CR_L2SIZ, L2SIZ_1M, " 1MB" },
146 { L2CR_L2SIZ, L2SIZ_512K, " 512KB" },
147 { L2CR_L2SIZ, L2SIZ_256K, " 256KB" },
148 { L2CR_L2WT, L2CR_L2WT, " WT" },
149 { L2CR_L2WT, 0, " WB" },
150 { L2CR_L2E, ~0, " L2 cache" },
151 { L2CR_L2RAM, L2RAM_FLOWTHRU_BURST, " (FB SRAM)" },
152 { L2CR_L2RAM, L2RAM_PIPELINE_LATE, " (LW SRAM)" },
153 { L2CR_L2RAM, L2RAM_PIPELINE_BURST, " (PB SRAM)" },
154 { L2CR_L2CLK, ~0, " at" },
155 { L2CR_L2CLK, L2CLK_10, " 1:1" },
156 { L2CR_L2CLK, L2CLK_15, " 1.5:1" },
157 { L2CR_L2CLK, L2CLK_20, " 2:1" },
158 { L2CR_L2CLK, L2CLK_25, " 2.5:1" },
159 { L2CR_L2CLK, L2CLK_30, " 3:1" },
160 { L2CR_L2CLK, L2CLK_35, " 3.5:1" },
161 { L2CR_L2CLK, L2CLK_40, " 4:1" },
162 { L2CR_L2CLK, ~0, " ratio" },
163 { 0 }
164 };
165
166 static void cpu_fmttab_print(const struct fmttab *, register_t);
167
168 struct cputab {
169 const char name[8];
170 uint16_t version;
171 uint16_t revfmt;
172 };
173 #define REVFMT_MAJMIN 1 /* %u.%u */
174 #define REVFMT_HEX 2 /* 0x%04x */
175 #define REVFMT_DEC 3 /* %u */
176 static const struct cputab models[] = {
177 { "601", MPC601, REVFMT_DEC },
178 { "602", MPC602, REVFMT_DEC },
179 { "603", MPC603, REVFMT_MAJMIN },
180 { "603e", MPC603e, REVFMT_MAJMIN },
181 { "603ev", MPC603ev, REVFMT_MAJMIN },
182 { "604", MPC604, REVFMT_MAJMIN },
183 { "604e", MPC604e, REVFMT_MAJMIN },
184 { "604ev", MPC604ev, REVFMT_MAJMIN },
185 { "620", MPC620, REVFMT_HEX },
186 { "750", MPC750, REVFMT_MAJMIN },
187 { "750FX", IBM750FX, REVFMT_MAJMIN },
188 { "7400", MPC7400, REVFMT_MAJMIN },
189 { "7410", MPC7410, REVFMT_MAJMIN },
190 { "7450", MPC7450, REVFMT_MAJMIN },
191 { "7455", MPC7455, REVFMT_MAJMIN },
192 { "7457", MPC7457, REVFMT_MAJMIN },
193 { "7447A", MPC7447A, REVFMT_MAJMIN },
194 { "8240", MPC8240, REVFMT_MAJMIN },
195 { "", 0, REVFMT_HEX }
196 };
197
198
199 #ifdef MULTIPROCESSOR
200 struct cpu_info cpu_info[CPU_MAXNUM];
201 #else
202 struct cpu_info cpu_info[1];
203 #endif
204
205 int cpu_altivec;
206 int cpu_psluserset, cpu_pslusermod;
207 char cpu_model[80];
208
209 void
210 cpu_fmttab_print(const struct fmttab *fmt, register_t data)
211 {
212 for (; fmt->fmt_mask != 0 || fmt->fmt_value != 0; fmt++) {
213 if ((~fmt->fmt_mask & fmt->fmt_value) != 0 ||
214 (data & fmt->fmt_mask) == fmt->fmt_value)
215 aprint_normal("%s", fmt->fmt_string);
216 }
217 }
218
219 void
220 cpu_idlespin(void)
221 {
222 register_t msr;
223
224 if (powersave <= 0)
225 return;
226
227 __asm __volatile(
228 "sync;"
229 "mfmsr %0;"
230 "oris %0,%0,%1@h;" /* enter power saving mode */
231 "mtmsr %0;"
232 "isync;"
233 : "=r"(msr)
234 : "J"(PSL_POW));
235 }
236
237 void
238 cpu_probe_cache(void)
239 {
240 u_int assoc, pvr, vers;
241
242 pvr = mfpvr();
243 vers = pvr >> 16;
244
245 switch (vers) {
246 #define K *1024
247 case IBM750FX:
248 case MPC601:
249 case MPC750:
250 case MPC7450:
251 case MPC7455:
252 case MPC7457:
253 curcpu()->ci_ci.dcache_size = 32 K;
254 curcpu()->ci_ci.icache_size = 32 K;
255 assoc = 8;
256 break;
257 case MPC603:
258 curcpu()->ci_ci.dcache_size = 8 K;
259 curcpu()->ci_ci.icache_size = 8 K;
260 assoc = 2;
261 break;
262 case MPC603e:
263 case MPC603ev:
264 case MPC604:
265 case MPC8240:
266 case MPC8245:
267 curcpu()->ci_ci.dcache_size = 16 K;
268 curcpu()->ci_ci.icache_size = 16 K;
269 assoc = 4;
270 break;
271 case MPC604e:
272 case MPC604ev:
273 curcpu()->ci_ci.dcache_size = 32 K;
274 curcpu()->ci_ci.icache_size = 32 K;
275 assoc = 4;
276 break;
277 default:
278 curcpu()->ci_ci.dcache_size = PAGE_SIZE;
279 curcpu()->ci_ci.icache_size = PAGE_SIZE;
280 assoc = 1;
281 #undef K
282 }
283
284 /* Presently common across all implementations. */
285 curcpu()->ci_ci.dcache_line_size = CACHELINESIZE;
286 curcpu()->ci_ci.icache_line_size = CACHELINESIZE;
287
288 /*
289 * Possibly recolor.
290 */
291 uvm_page_recolor(atop(curcpu()->ci_ci.dcache_size / assoc));
292 }
293
294 struct cpu_info *
295 cpu_attach_common(struct device *self, int id)
296 {
297 struct cpu_info *ci;
298 u_int pvr, vers;
299
300 ncpus++;
301 ci = &cpu_info[id];
302 #ifndef MULTIPROCESSOR
303 /*
304 * If this isn't the primary CPU, print an error message
305 * and just bail out.
306 */
307 if (id != 0) {
308 aprint_normal(": ID %d\n", id);
309 aprint_normal("%s: processor off-line; multiprocessor support "
310 "not present in kernel\n", self->dv_xname);
311 return (NULL);
312 }
313 #endif
314
315 ci->ci_cpuid = id;
316 ci->ci_intrdepth = -1;
317 ci->ci_dev = self;
318 ci->ci_idlespin = cpu_idlespin;
319
320 pvr = mfpvr();
321 vers = (pvr >> 16) & 0xffff;
322
323 switch (id) {
324 case 0:
325 /* load my cpu_number to PIR */
326 switch (vers) {
327 case MPC601:
328 case MPC604:
329 case MPC604e:
330 case MPC604ev:
331 case MPC7400:
332 case MPC7410:
333 case MPC7450:
334 case MPC7455:
335 case MPC7457:
336 mtspr(SPR_PIR, id);
337 }
338 cpu_setup(self, ci);
339 break;
340 default:
341 if (id >= CPU_MAXNUM) {
342 aprint_normal(": more than %d cpus?\n", CPU_MAXNUM);
343 panic("cpuattach");
344 }
345 #ifndef MULTIPROCESSOR
346 aprint_normal(" not configured\n");
347 return NULL;
348 #endif
349 }
350 return (ci);
351 }
352
353 void
354 cpu_setup(self, ci)
355 struct device *self;
356 struct cpu_info *ci;
357 {
358 u_int hid0, pvr, vers;
359 char *bitmask, hidbuf[128];
360 char model[80];
361
362 pvr = mfpvr();
363 vers = (pvr >> 16) & 0xffff;
364
365 cpu_identify(model, sizeof(model));
366 aprint_normal(": %s, ID %d%s\n", model, cpu_number(),
367 cpu_number() == 0 ? " (primary)" : "");
368
369 hid0 = mfspr(SPR_HID0);
370 cpu_probe_cache();
371
372 /*
373 * Configure power-saving mode.
374 */
375 switch (vers) {
376 case MPC604:
377 case MPC604e:
378 case MPC604ev:
379 /*
380 * Do not have HID0 support settings, but can support
381 * MSR[POW] off
382 */
383 powersave = 1;
384 break;
385
386 case MPC603:
387 case MPC603e:
388 case MPC603ev:
389 case MPC750:
390 case IBM750FX:
391 case MPC7400:
392 case MPC7410:
393 case MPC8240:
394 case MPC8245:
395 /* Select DOZE mode. */
396 hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
397 hid0 |= HID0_DOZE | HID0_DPM;
398 powersave = 1;
399 break;
400
401 case MPC7457:
402 case MPC7455:
403 case MPC7450:
404 /* Enable the 7450 branch caches */
405 hid0 |= HID0_SGE | HID0_BTIC;
406 hid0 |= HID0_LRSTK | HID0_FOLD | HID0_BHT;
407 /* Disable BTIC on 7450 Rev 2.0 or earlier */
408 if (vers == MPC7450 && (pvr & 0xFFFF) <= 0x0200)
409 hid0 &= ~HID0_BTIC;
410 /* Select NAP mode. */
411 hid0 &= ~(HID0_HIGH_BAT_EN | HID0_SLEEP);
412 hid0 |= HID0_NAP | HID0_DPM;
413 powersave = 1;
414 break;
415
416 default:
417 /* No power-saving mode is available. */ ;
418 }
419
420 #ifdef NAPMODE
421 switch (vers) {
422 case IBM750FX:
423 case MPC750:
424 case MPC7400:
425 /* Select NAP mode. */
426 hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
427 hid0 |= HID0_NAP;
428 break;
429 }
430 #endif
431
432 switch (vers) {
433 case IBM750FX:
434 case MPC750:
435 hid0 &= ~HID0_DBP; /* XXX correct? */
436 hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
437 break;
438
439 case MPC7400:
440 case MPC7410:
441 hid0 &= ~HID0_SPD;
442 hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
443 hid0 |= HID0_EIEC;
444 break;
445 }
446
447 mtspr(SPR_HID0, hid0);
448
449 switch (vers) {
450 case MPC601:
451 bitmask = HID0_601_BITMASK;
452 break;
453 case MPC7450:
454 case MPC7455:
455 case MPC7457:
456 bitmask = HID0_7450_BITMASK;
457 break;
458 default:
459 bitmask = HID0_BITMASK;
460 break;
461 }
462 bitmask_snprintf(hid0, bitmask, hidbuf, sizeof hidbuf);
463 aprint_normal("%s: HID0 %s\n", self->dv_xname, hidbuf);
464
465 /*
466 * Display speed and cache configuration.
467 */
468 switch (vers) {
469 case MPC604:
470 case MPC604e:
471 case MPC604ev:
472 case MPC750:
473 case IBM750FX:
474 case MPC7400:
475 case MPC7410:
476 case MPC7450:
477 case MPC7455:
478 case MPC7457:
479 aprint_normal("%s: ", self->dv_xname);
480 cpu_print_speed();
481
482 if (vers == IBM750FX || vers == MPC750 ||
483 vers == MPC7400 || vers == MPC7410 || MPC745X_P(vers)) {
484 if (MPC745X_P(vers)) {
485 cpu_config_l3cr(vers);
486 } else {
487 cpu_config_l2cr(pvr);
488 }
489 }
490 aprint_normal("\n");
491 break;
492 }
493
494 #if NSYSMON_ENVSYS > 0
495 /*
496 * Attach MPC750 temperature sensor to the envsys subsystem.
497 * XXX the 74xx series also has this sensor, but it is not
498 * XXX supported by Motorola and may return values that are off by
499 * XXX 35-55 degrees C.
500 */
501 if (vers == MPC750 || vers == IBM750FX)
502 cpu_tau_setup(ci);
503 #endif
504
505 evcnt_attach_dynamic(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
506 NULL, self->dv_xname, "clock");
507 evcnt_attach_dynamic(&ci->ci_ev_softclock, EVCNT_TYPE_INTR,
508 NULL, self->dv_xname, "soft clock");
509 evcnt_attach_dynamic(&ci->ci_ev_softnet, EVCNT_TYPE_INTR,
510 NULL, self->dv_xname, "soft net");
511 evcnt_attach_dynamic(&ci->ci_ev_softserial, EVCNT_TYPE_INTR,
512 NULL, self->dv_xname, "soft serial");
513 evcnt_attach_dynamic(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
514 NULL, self->dv_xname, "traps");
515 evcnt_attach_dynamic(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
516 &ci->ci_ev_traps, self->dv_xname, "kernel DSI traps");
517 evcnt_attach_dynamic(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
518 &ci->ci_ev_traps, self->dv_xname, "user DSI traps");
519 evcnt_attach_dynamic(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
520 &ci->ci_ev_udsi, self->dv_xname, "user DSI failures");
521 evcnt_attach_dynamic(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP,
522 &ci->ci_ev_traps, self->dv_xname, "kernel ISI traps");
523 evcnt_attach_dynamic(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
524 &ci->ci_ev_traps, self->dv_xname, "user ISI traps");
525 evcnt_attach_dynamic(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
526 &ci->ci_ev_isi, self->dv_xname, "user ISI failures");
527 evcnt_attach_dynamic(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
528 &ci->ci_ev_traps, self->dv_xname, "system call traps");
529 evcnt_attach_dynamic(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
530 &ci->ci_ev_traps, self->dv_xname, "PGM traps");
531 evcnt_attach_dynamic(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
532 &ci->ci_ev_traps, self->dv_xname, "FPU unavailable traps");
533 evcnt_attach_dynamic(&ci->ci_ev_fpusw, EVCNT_TYPE_TRAP,
534 &ci->ci_ev_fpu, self->dv_xname, "FPU context switches");
535 evcnt_attach_dynamic(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
536 &ci->ci_ev_traps, self->dv_xname, "user alignment traps");
537 evcnt_attach_dynamic(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
538 &ci->ci_ev_ali, self->dv_xname, "user alignment traps");
539 evcnt_attach_dynamic(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
540 &ci->ci_ev_umchk, self->dv_xname, "user MCHK failures");
541 evcnt_attach_dynamic(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
542 &ci->ci_ev_traps, self->dv_xname, "AltiVec unavailable");
543 #ifdef ALTIVEC
544 if (cpu_altivec) {
545 evcnt_attach_dynamic(&ci->ci_ev_vecsw, EVCNT_TYPE_TRAP,
546 &ci->ci_ev_vec, self->dv_xname, "AltiVec context switches");
547 }
548 #endif
549 }
550
551 void
552 cpu_identify(char *str, size_t len)
553 {
554 u_int pvr, maj, min;
555 uint16_t vers, rev, revfmt;
556 const struct cputab *cp;
557 const char *name;
558 size_t n;
559
560 pvr = mfpvr();
561 vers = pvr >> 16;
562 rev = pvr;
563 switch (vers) {
564 case MPC7410:
565 min = (pvr >> 0) & 0xff;
566 maj = min <= 4 ? 1 : 2;
567 break;
568 default:
569 maj = (pvr >> 8) & 0xf;
570 min = (pvr >> 0) & 0xf;
571 }
572
573 for (cp = models; cp->name[0] != '\0'; cp++) {
574 if (cp->version == vers)
575 break;
576 }
577
578 if (str == NULL) {
579 str = cpu_model;
580 len = sizeof(cpu_model);
581 cpu = vers;
582 }
583
584 revfmt = cp->revfmt;
585 name = cp->name;
586 if (rev == MPC750 && pvr == 15) {
587 name = "755";
588 revfmt = REVFMT_HEX;
589 }
590
591 if (cp->name[0] != '\0') {
592 n = snprintf(str, len, "%s (Revision ", cp->name);
593 } else {
594 n = snprintf(str, len, "Version %#x (Revision ", vers);
595 }
596 if (len > n) {
597 switch (revfmt) {
598 case REVFMT_MAJMIN:
599 snprintf(str + n, len - n, "%u.%u)", maj, min);
600 break;
601 case REVFMT_HEX:
602 snprintf(str + n, len - n, "0x%04x)", rev);
603 break;
604 case REVFMT_DEC:
605 snprintf(str + n, len - n, "%u)", rev);
606 break;
607 }
608 }
609 }
610
611 #ifdef L2CR_CONFIG
612 u_int l2cr_config = L2CR_CONFIG;
613 #else
614 u_int l2cr_config = 0;
615 #endif
616
617 #ifdef L3CR_CONFIG
618 u_int l3cr_config = L3CR_CONFIG;
619 #else
620 u_int l3cr_config = 0;
621 #endif
622
623 void
624 cpu_enable_l2cr(register_t l2cr)
625 {
626 register_t msr, x;
627
628 /* Disable interrupts and set the cache config bits. */
629 msr = mfmsr();
630 mtmsr(msr & ~PSL_EE);
631 #ifdef ALTIVEC
632 if (cpu_altivec)
633 __asm __volatile("dssall");
634 #endif
635 __asm __volatile("sync");
636 mtspr(SPR_L2CR, l2cr & ~L2CR_L2E);
637 __asm __volatile("sync");
638
639 /* Wait for L2 clock to be stable (640 L2 clocks). */
640 delay(100);
641
642 /* Invalidate all L2 contents. */
643 mtspr(SPR_L2CR, l2cr | L2CR_L2I);
644 do {
645 x = mfspr(SPR_L2CR);
646 } while (x & L2CR_L2IP);
647
648 /* Enable L2 cache. */
649 l2cr |= L2CR_L2E;
650 mtspr(SPR_L2CR, l2cr);
651 mtmsr(msr);
652 }
653
654 void
655 cpu_enable_l3cr(register_t l3cr)
656 {
657 register_t x;
658
659 /* By The Book (numbered steps from section 3.7.1.3 of MPC7450UM) */
660
661 /*
662 * 1: Set all L3CR bits for final config except L3E, L3I, L3PE, and
663 * L3CLKEN. (also mask off reserved bits in case they were included
664 * in L3CR_CONFIG)
665 */
666 l3cr &= ~(L3CR_L3E|L3CR_L3I|L3CR_L3PE|L3CR_L3CLKEN|L3CR_RESERVED);
667 mtspr(SPR_L3CR, l3cr);
668
669 /* 2: Set L3CR[5] (otherwise reserved bit) to 1 */
670 l3cr |= 0x04000000;
671 mtspr(SPR_L3CR, l3cr);
672
673 /* 3: Set L3CLKEN to 1*/
674 l3cr |= L3CR_L3CLKEN;
675 mtspr(SPR_L3CR, l3cr);
676
677 /* 4/5: Perform a global cache invalidate (ref section 3.7.3.6) */
678 __asm __volatile("dssall;sync");
679 /* L3 cache is already disabled, no need to clear L3E */
680 mtspr(SPR_L3CR, l3cr|L3CR_L3I);
681 do {
682 x = mfspr(SPR_L3CR);
683 } while (x & L3CR_L3I);
684
685 /* 6: Clear L3CLKEN to 0 */
686 l3cr &= ~L3CR_L3CLKEN;
687 mtspr(SPR_L3CR, l3cr);
688
689 /* 7: Perform a 'sync' and wait at least 100 CPU cycles */
690 __asm __volatile("sync");
691 delay(100);
692
693 /* 8: Set L3E and L3CLKEN */
694 l3cr |= (L3CR_L3E|L3CR_L3CLKEN);
695 mtspr(SPR_L3CR, l3cr);
696
697 /* 9: Perform a 'sync' and wait at least 100 CPU cycles */
698 __asm __volatile("sync");
699 delay(100);
700 }
701
702 void
703 cpu_config_l2cr(int pvr)
704 {
705 register_t l2cr;
706
707 l2cr = mfspr(SPR_L2CR);
708
709 /*
710 * For MP systems, the firmware may only configure the L2 cache
711 * on the first CPU. In this case, assume that the other CPUs
712 * should use the same value for L2CR.
713 */
714 if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
715 l2cr_config = l2cr;
716 }
717
718 /*
719 * Configure L2 cache if not enabled.
720 */
721 if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
722 cpu_enable_l2cr(l2cr_config);
723 l2cr = mfspr(SPR_L2CR);
724 }
725
726 if ((l2cr & L2CR_L2E) == 0) {
727 aprint_normal(" L2 cache present but not enabled ");
728 return;
729 }
730
731 aprint_normal(",");
732 if ((pvr >> 16) == IBM750FX ||
733 (pvr & 0xffffff00) == 0x00082200 /* IBM750CX */ ||
734 (pvr & 0xffffef00) == 0x00082300 /* IBM750CXe */) {
735 cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
736 } else {
737 cpu_fmttab_print(cpu_l2cr_formats, l2cr);
738 }
739 }
740
741 void
742 cpu_config_l3cr(int vers)
743 {
744 register_t l2cr;
745 register_t l3cr;
746
747 l2cr = mfspr(SPR_L2CR);
748
749 /*
750 * For MP systems, the firmware may only configure the L2 cache
751 * on the first CPU. In this case, assume that the other CPUs
752 * should use the same value for L2CR.
753 */
754 if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
755 l2cr_config = l2cr;
756 }
757
758 /*
759 * Configure L2 cache if not enabled.
760 */
761 if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
762 cpu_enable_l2cr(l2cr_config);
763 l2cr = mfspr(SPR_L2CR);
764 }
765
766 aprint_normal(",");
767 cpu_fmttab_print(vers == MPC7457
768 ? cpu_7457_l2cr_formats : cpu_7450_l2cr_formats, l2cr);
769
770 l3cr = mfspr(SPR_L3CR);
771
772 /*
773 * For MP systems, the firmware may only configure the L3 cache
774 * on the first CPU. In this case, assume that the other CPUs
775 * should use the same value for L3CR.
776 */
777 if ((l3cr & L3CR_L3E) != 0 && l3cr_config == 0) {
778 l3cr_config = l3cr;
779 }
780
781 /*
782 * Configure L3 cache if not enabled.
783 */
784 if ((l3cr & L3CR_L3E) == 0 && l3cr_config != 0) {
785 cpu_enable_l3cr(l3cr_config);
786 l3cr = mfspr(SPR_L3CR);
787 }
788
789 if (l3cr & L3CR_L3E) {
790 aprint_normal(",");
791 cpu_fmttab_print(cpu_7450_l3cr_formats, l3cr);
792 }
793 }
794
795 void
796 cpu_print_speed(void)
797 {
798 uint64_t cps;
799
800 mtspr(SPR_MMCR0, MMCR0_FC);
801 mtspr(SPR_PMC1, 0);
802 mtspr(SPR_MMCR0, MMCR0_PMC1SEL(PMCN_CYCLES));
803 delay(100000);
804 cps = (mfspr(SPR_PMC1) * 10) + 4999;
805
806 mtspr(SPR_MMCR0, MMCR0_FC);
807
808 aprint_normal("%lld.%02lld MHz", cps / 1000000, (cps / 10000) % 100);
809 }
810
811 #if NSYSMON_ENVSYS > 0
812 const struct envsys_range cpu_tau_ranges[] = {
813 { 0, 0, ENVSYS_STEMP}
814 };
815
816 struct envsys_basic_info cpu_tau_info[] = {
817 { 0, ENVSYS_STEMP, "CPU temp", 0, 0, ENVSYS_FVALID}
818 };
819
820 void
821 cpu_tau_setup(struct cpu_info *ci)
822 {
823 struct {
824 struct sysmon_envsys sme;
825 struct envsys_tre_data tau_info;
826 } *datap;
827 int error;
828
829 datap = malloc(sizeof(*datap), M_DEVBUF, M_WAITOK | M_ZERO);
830
831 ci->ci_sysmon_cookie = &datap->sme;
832 datap->sme.sme_nsensors = 1;
833 datap->sme.sme_envsys_version = 1000;
834 datap->sme.sme_ranges = cpu_tau_ranges;
835 datap->sme.sme_sensor_info = cpu_tau_info;
836 datap->sme.sme_sensor_data = &datap->tau_info;
837
838 datap->sme.sme_sensor_data->sensor = 0;
839 datap->sme.sme_sensor_data->warnflags = ENVSYS_WARN_OK;
840 datap->sme.sme_sensor_data->validflags = ENVSYS_FVALID|ENVSYS_FCURVALID;
841 datap->sme.sme_cookie = ci;
842 datap->sme.sme_gtredata = cpu_tau_gtredata;
843 datap->sme.sme_streinfo = cpu_tau_streinfo;
844 datap->sme.sme_flags = 0;
845
846 if ((error = sysmon_envsys_register(&datap->sme)) != 0)
847 aprint_error("%s: unable to register with sysmon (%d)\n",
848 ci->ci_dev->dv_xname, error);
849 }
850
851
852 /* Find the temperature of the CPU. */
853 int
854 cpu_tau_gtredata(struct sysmon_envsys *sme, struct envsys_tre_data *tred)
855 {
856 int i, threshold, count;
857
858 if (tred->sensor != 0) {
859 tred->validflags = 0;
860 return 0;
861 }
862
863 threshold = 64; /* Half of the 7-bit sensor range */
864 mtspr(SPR_THRM1, 0);
865 mtspr(SPR_THRM2, 0);
866 /* XXX This counter is supposed to be "at least 20 microseonds, in
867 * XXX units of clock cycles". Since we don't have convenient
868 * XXX access to the CPU speed, set it to a conservative value,
869 * XXX that is, assuming a fast (1GHz) G3 CPU (As of February 2002,
870 * XXX the fastest G3 processor is 700MHz) . The cost is that
871 * XXX measuring the temperature takes a bit longer.
872 */
873 mtspr(SPR_THRM3, SPR_THRM_TIMER(20000) | SPR_THRM_ENABLE);
874
875 /* Successive-approximation code adapted from Motorola
876 * application note AN1800/D, "Programming the Thermal Assist
877 * Unit in the MPC750 Microprocessor".
878 */
879 for (i = 4; i >= 0 ; i--) {
880 mtspr(SPR_THRM1,
881 SPR_THRM_THRESHOLD(threshold) | SPR_THRM_VALID);
882 count = 0;
883 while ((count < 100) &&
884 ((mfspr(SPR_THRM1) & SPR_THRM_TIV) == 0)) {
885 count++;
886 delay(1);
887 }
888 if (mfspr(SPR_THRM1) & SPR_THRM_TIN) {
889 /* The interrupt bit was set, meaning the
890 * temperature was above the threshold
891 */
892 threshold += 2 << i;
893 } else {
894 /* Temperature was below the threshold */
895 threshold -= 2 << i;
896 }
897 }
898 threshold += 2;
899
900 /* Convert the temperature in degrees C to microkelvin */
901 sme->sme_sensor_data->cur.data_us = (threshold * 1000000) + 273150000;
902
903 *tred = *sme->sme_sensor_data;
904
905 return 0;
906 }
907
908 int
909 cpu_tau_streinfo(struct sysmon_envsys *sme, struct envsys_basic_info *binfo)
910 {
911
912 /* There is nothing to set here. */
913 return (EINVAL);
914 }
915 #endif /* NSYSMON_ENVSYS > 0 */
916