cpu_subr.c revision 1.27 1 /* $NetBSD: cpu_subr.c,v 1.27 2006/08/05 21:26:49 sanjayl Exp $ */
2
3 /*-
4 * Copyright (c) 2001 Matt Thomas.
5 * Copyright (c) 2001 Tsubai Masanari.
6 * Copyright (c) 1998, 1999, 2001 Internet Research Institute, Inc.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by
20 * Internet Research Institute, Inc.
21 * 4. The name of the author may not be used to endorse or promote products
22 * derived from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
29 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: cpu_subr.c,v 1.27 2006/08/05 21:26:49 sanjayl Exp $");
38
39 #include "opt_ppcparam.h"
40 #include "opt_multiprocessor.h"
41 #include "opt_altivec.h"
42 #include "sysmon_envsys.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/device.h>
47 #include <sys/malloc.h>
48
49 #include <uvm/uvm_extern.h>
50
51 #include <powerpc/oea/hid.h>
52 #include <powerpc/oea/hid_601.h>
53 #include <powerpc/spr.h>
54
55 #include <dev/sysmon/sysmonvar.h>
56
57 static void cpu_enable_l2cr(register_t);
58 static void cpu_enable_l3cr(register_t);
59 static void cpu_config_l2cr(int);
60 static void cpu_config_l3cr(int);
61 static void cpu_probe_speed(struct cpu_info *);
62 static void cpu_idlespin(void);
63 #if NSYSMON_ENVSYS > 0
64 static void cpu_tau_setup(struct cpu_info *);
65 static int cpu_tau_gtredata __P((struct sysmon_envsys *,
66 struct envsys_tre_data *));
67 static int cpu_tau_streinfo __P((struct sysmon_envsys *,
68 struct envsys_basic_info *));
69 #endif
70
71 int cpu;
72 int ncpus;
73
74 struct fmttab {
75 register_t fmt_mask;
76 register_t fmt_value;
77 const char *fmt_string;
78 };
79
80 static const struct fmttab cpu_7450_l2cr_formats[] = {
81 { L2CR_L2E, 0, " disabled" },
82 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
83 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
84 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
85 { L2CR_L2E, ~0, " 256KB L2 cache" },
86 { 0 }
87 };
88
89 static const struct fmttab cpu_7448_l2cr_formats[] = {
90 { L2CR_L2E, 0, " disabled" },
91 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
92 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
93 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
94 { L2CR_L2E, ~0, " 1MB L2 cache" },
95 { 0 }
96 };
97
98 static const struct fmttab cpu_7457_l2cr_formats[] = {
99 { L2CR_L2E, 0, " disabled" },
100 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
101 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
102 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
103 { L2CR_L2E, ~0, " 512KB L2 cache" },
104 { 0 }
105 };
106
107 static const struct fmttab cpu_7450_l3cr_formats[] = {
108 { L3CR_L3DO|L3CR_L3IO, L3CR_L3DO, " data-only" },
109 { L3CR_L3DO|L3CR_L3IO, L3CR_L3IO, " instruction-only" },
110 { L3CR_L3DO|L3CR_L3IO, L3CR_L3DO|L3CR_L3IO, " locked" },
111 { L3CR_L3SIZ, L3SIZ_2M, " 2MB" },
112 { L3CR_L3SIZ, L3SIZ_1M, " 1MB" },
113 { L3CR_L3PE|L3CR_L3APE, L3CR_L3PE|L3CR_L3APE, " parity" },
114 { L3CR_L3PE|L3CR_L3APE, L3CR_L3PE, " data-parity" },
115 { L3CR_L3PE|L3CR_L3APE, L3CR_L3APE, " address-parity" },
116 { L3CR_L3PE|L3CR_L3APE, 0, " no-parity" },
117 { L3CR_L3SIZ, ~0, " L3 cache" },
118 { L3CR_L3RT, L3RT_MSUG2_DDR, " (DDR SRAM)" },
119 { L3CR_L3RT, L3RT_PIPELINE_LATE, " (LW SRAM)" },
120 { L3CR_L3RT, L3RT_PB2_SRAM, " (PB2 SRAM)" },
121 { L3CR_L3CLK, ~0, " at" },
122 { L3CR_L3CLK, L3CLK_20, " 2:1" },
123 { L3CR_L3CLK, L3CLK_25, " 2.5:1" },
124 { L3CR_L3CLK, L3CLK_30, " 3:1" },
125 { L3CR_L3CLK, L3CLK_35, " 3.5:1" },
126 { L3CR_L3CLK, L3CLK_40, " 4:1" },
127 { L3CR_L3CLK, L3CLK_50, " 5:1" },
128 { L3CR_L3CLK, L3CLK_60, " 6:1" },
129 { L3CR_L3CLK, ~0, " ratio" },
130 { 0, 0 },
131 };
132
133 static const struct fmttab cpu_ibm750_l2cr_formats[] = {
134 { L2CR_L2E, 0, " disabled" },
135 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
136 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
137 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
138 { 0, ~0, " 512KB" },
139 { L2CR_L2WT, L2CR_L2WT, " WT" },
140 { L2CR_L2WT, 0, " WB" },
141 { L2CR_L2PE, L2CR_L2PE, " with ECC" },
142 { 0, ~0, " L2 cache" },
143 { 0 }
144 };
145
146 static const struct fmttab cpu_l2cr_formats[] = {
147 { L2CR_L2E, 0, " disabled" },
148 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
149 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
150 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
151 { L2CR_L2PE, L2CR_L2PE, " parity" },
152 { L2CR_L2PE, 0, " no-parity" },
153 { L2CR_L2SIZ, L2SIZ_2M, " 2MB" },
154 { L2CR_L2SIZ, L2SIZ_1M, " 1MB" },
155 { L2CR_L2SIZ, L2SIZ_512K, " 512KB" },
156 { L2CR_L2SIZ, L2SIZ_256K, " 256KB" },
157 { L2CR_L2WT, L2CR_L2WT, " WT" },
158 { L2CR_L2WT, 0, " WB" },
159 { L2CR_L2E, ~0, " L2 cache" },
160 { L2CR_L2RAM, L2RAM_FLOWTHRU_BURST, " (FB SRAM)" },
161 { L2CR_L2RAM, L2RAM_PIPELINE_LATE, " (LW SRAM)" },
162 { L2CR_L2RAM, L2RAM_PIPELINE_BURST, " (PB SRAM)" },
163 { L2CR_L2CLK, ~0, " at" },
164 { L2CR_L2CLK, L2CLK_10, " 1:1" },
165 { L2CR_L2CLK, L2CLK_15, " 1.5:1" },
166 { L2CR_L2CLK, L2CLK_20, " 2:1" },
167 { L2CR_L2CLK, L2CLK_25, " 2.5:1" },
168 { L2CR_L2CLK, L2CLK_30, " 3:1" },
169 { L2CR_L2CLK, L2CLK_35, " 3.5:1" },
170 { L2CR_L2CLK, L2CLK_40, " 4:1" },
171 { L2CR_L2CLK, ~0, " ratio" },
172 { 0 }
173 };
174
175 static void cpu_fmttab_print(const struct fmttab *, register_t);
176
177 struct cputab {
178 const char name[8];
179 uint16_t version;
180 uint16_t revfmt;
181 };
182 #define REVFMT_MAJMIN 1 /* %u.%u */
183 #define REVFMT_HEX 2 /* 0x%04x */
184 #define REVFMT_DEC 3 /* %u */
185 static const struct cputab models[] = {
186 { "601", MPC601, REVFMT_DEC },
187 { "602", MPC602, REVFMT_DEC },
188 { "603", MPC603, REVFMT_MAJMIN },
189 { "603e", MPC603e, REVFMT_MAJMIN },
190 { "603ev", MPC603ev, REVFMT_MAJMIN },
191 { "604", MPC604, REVFMT_MAJMIN },
192 { "604e", MPC604e, REVFMT_MAJMIN },
193 { "604ev", MPC604ev, REVFMT_MAJMIN },
194 { "620", MPC620, REVFMT_HEX },
195 { "750", MPC750, REVFMT_MAJMIN },
196 { "750FX", IBM750FX, REVFMT_MAJMIN },
197 { "7400", MPC7400, REVFMT_MAJMIN },
198 { "7410", MPC7410, REVFMT_MAJMIN },
199 { "7450", MPC7450, REVFMT_MAJMIN },
200 { "7455", MPC7455, REVFMT_MAJMIN },
201 { "7457", MPC7457, REVFMT_MAJMIN },
202 { "7447A", MPC7447A, REVFMT_MAJMIN },
203 { "7448", MPC7448, REVFMT_MAJMIN },
204 { "8240", MPC8240, REVFMT_MAJMIN },
205 { "970", IBM970, REVFMT_MAJMIN },
206 { "970FX", IBM970FX, REVFMT_MAJMIN },
207 { "", 0, REVFMT_HEX }
208 };
209
210
211 #ifdef MULTIPROCESSOR
212 struct cpu_info cpu_info[CPU_MAXNUM];
213 #else
214 struct cpu_info cpu_info[1];
215 #endif
216
217 int cpu_altivec;
218 int cpu_psluserset, cpu_pslusermod;
219 char cpu_model[80];
220
221 void
222 cpu_fmttab_print(const struct fmttab *fmt, register_t data)
223 {
224 for (; fmt->fmt_mask != 0 || fmt->fmt_value != 0; fmt++) {
225 if ((~fmt->fmt_mask & fmt->fmt_value) != 0 ||
226 (data & fmt->fmt_mask) == fmt->fmt_value)
227 aprint_normal("%s", fmt->fmt_string);
228 }
229 }
230
231 void
232 cpu_idlespin(void)
233 {
234 register_t msr;
235
236 if (powersave <= 0)
237 return;
238
239 __asm volatile(
240 "sync;"
241 "mfmsr %0;"
242 "oris %0,%0,%1@h;" /* enter power saving mode */
243 "mtmsr %0;"
244 "isync;"
245 : "=r"(msr)
246 : "J"(PSL_POW));
247 }
248
249 void
250 cpu_probe_cache(void)
251 {
252 u_int assoc, pvr, vers;
253
254 pvr = mfpvr();
255 vers = pvr >> 16;
256
257
258 /* Presently common across almost all implementations. */
259 curcpu()->ci_ci.dcache_line_size = CACHELINESIZE;
260 curcpu()->ci_ci.icache_line_size = CACHELINESIZE;
261
262
263 switch (vers) {
264 #define K *1024
265 case IBM750FX:
266 case MPC601:
267 case MPC750:
268 case MPC7447A:
269 case MPC7448:
270 case MPC7450:
271 case MPC7455:
272 case MPC7457:
273 curcpu()->ci_ci.dcache_size = 32 K;
274 curcpu()->ci_ci.icache_size = 32 K;
275 assoc = 8;
276 break;
277 case MPC603:
278 curcpu()->ci_ci.dcache_size = 8 K;
279 curcpu()->ci_ci.icache_size = 8 K;
280 assoc = 2;
281 break;
282 case MPC603e:
283 case MPC603ev:
284 case MPC604:
285 case MPC8240:
286 case MPC8245:
287 curcpu()->ci_ci.dcache_size = 16 K;
288 curcpu()->ci_ci.icache_size = 16 K;
289 assoc = 4;
290 break;
291 case MPC604e:
292 case MPC604ev:
293 curcpu()->ci_ci.dcache_size = 32 K;
294 curcpu()->ci_ci.icache_size = 32 K;
295 assoc = 4;
296 break;
297 case IBM970:
298 case IBM970FX:
299 curcpu()->ci_ci.dcache_size = 32 K;
300 curcpu()->ci_ci.icache_size = 64 K;
301 curcpu()->ci_ci.dcache_line_size = 128;
302 curcpu()->ci_ci.icache_line_size = 128;
303 assoc = 2;
304 break;
305
306 default:
307 curcpu()->ci_ci.dcache_size = PAGE_SIZE;
308 curcpu()->ci_ci.icache_size = PAGE_SIZE;
309 assoc = 1;
310 #undef K
311 }
312
313 /*
314 * Possibly recolor.
315 */
316 uvm_page_recolor(atop(curcpu()->ci_ci.dcache_size / assoc));
317 }
318
319 struct cpu_info *
320 cpu_attach_common(struct device *self, int id)
321 {
322 struct cpu_info *ci;
323 u_int pvr, vers;
324
325 ncpus++;
326 ci = &cpu_info[id];
327 #ifndef MULTIPROCESSOR
328 /*
329 * If this isn't the primary CPU, print an error message
330 * and just bail out.
331 */
332 if (id != 0) {
333 aprint_normal(": ID %d\n", id);
334 aprint_normal("%s: processor off-line; multiprocessor support "
335 "not present in kernel\n", self->dv_xname);
336 return (NULL);
337 }
338 #endif
339
340 ci->ci_cpuid = id;
341 ci->ci_intrdepth = -1;
342 ci->ci_dev = self;
343 ci->ci_idlespin = cpu_idlespin;
344
345 pvr = mfpvr();
346 vers = (pvr >> 16) & 0xffff;
347
348 switch (id) {
349 case 0:
350 /* load my cpu_number to PIR */
351 switch (vers) {
352 case MPC601:
353 case MPC604:
354 case MPC604e:
355 case MPC604ev:
356 case MPC7400:
357 case MPC7410:
358 case MPC7447A:
359 case MPC7448:
360 case MPC7450:
361 case MPC7455:
362 case MPC7457:
363 mtspr(SPR_PIR, id);
364 }
365 cpu_setup(self, ci);
366 break;
367 default:
368 if (id >= CPU_MAXNUM) {
369 aprint_normal(": more than %d cpus?\n", CPU_MAXNUM);
370 panic("cpuattach");
371 }
372 #ifndef MULTIPROCESSOR
373 aprint_normal(" not configured\n");
374 return NULL;
375 #endif
376 }
377 return (ci);
378 }
379
380 void
381 cpu_setup(self, ci)
382 struct device *self;
383 struct cpu_info *ci;
384 {
385 u_int hid0, pvr, vers;
386 const char *bitmask;
387 char hidbuf[128];
388 char model[80];
389
390 pvr = mfpvr();
391 vers = (pvr >> 16) & 0xffff;
392
393 cpu_identify(model, sizeof(model));
394 aprint_normal(": %s, ID %d%s\n", model, cpu_number(),
395 cpu_number() == 0 ? " (primary)" : "");
396
397 #if defined (PPC_OEA) || defined (PPC_OEA64)
398 hid0 = mfspr(SPR_HID0);
399 #elif defined (PPC_OEA64_BRIDGE)
400 hid0 = mfspr(SPR_HID0);
401 #endif
402
403 cpu_probe_cache();
404
405 /*
406 * Configure power-saving mode.
407 */
408 switch (vers) {
409 case MPC604:
410 case MPC604e:
411 case MPC604ev:
412 /*
413 * Do not have HID0 support settings, but can support
414 * MSR[POW] off
415 */
416 powersave = 1;
417 break;
418
419 case MPC603:
420 case MPC603e:
421 case MPC603ev:
422 case MPC750:
423 case IBM750FX:
424 case MPC7400:
425 case MPC7410:
426 case MPC8240:
427 case MPC8245:
428 /* Select DOZE mode. */
429 hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
430 hid0 |= HID0_DOZE | HID0_DPM;
431 powersave = 1;
432 break;
433
434 case MPC7447A:
435 case MPC7448:
436 case MPC7457:
437 case MPC7455:
438 case MPC7450:
439 /* Enable the 7450 branch caches */
440 hid0 |= HID0_SGE | HID0_BTIC;
441 hid0 |= HID0_LRSTK | HID0_FOLD | HID0_BHT;
442 /* Disable BTIC on 7450 Rev 2.0 or earlier */
443 if (vers == MPC7450 && (pvr & 0xFFFF) <= 0x0200)
444 hid0 &= ~HID0_BTIC;
445 /* Select NAP mode. */
446 hid0 &= ~(HID0_HIGH_BAT_EN | HID0_SLEEP);
447 hid0 |= HID0_NAP | HID0_DPM /* | HID0_XBSEN */;
448 powersave = 1;
449 break;
450
451 case IBM970:
452 case IBM970FX:
453 default:
454 /* No power-saving mode is available. */ ;
455 }
456
457 #ifdef NAPMODE
458 switch (vers) {
459 case IBM750FX:
460 case MPC750:
461 case MPC7400:
462 /* Select NAP mode. */
463 hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
464 hid0 |= HID0_NAP;
465 break;
466 }
467 #endif
468
469 switch (vers) {
470 case IBM750FX:
471 case MPC750:
472 hid0 &= ~HID0_DBP; /* XXX correct? */
473 hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
474 break;
475
476 case MPC7400:
477 case MPC7410:
478 hid0 &= ~HID0_SPD;
479 hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
480 hid0 |= HID0_EIEC;
481 break;
482 }
483
484 #if defined (PPC_OEA)
485 mtspr(SPR_HID0, hid0);
486 __asm volatile("sync;isync");
487 #endif
488
489 switch (vers) {
490 case MPC601:
491 bitmask = HID0_601_BITMASK;
492 break;
493 case MPC7450:
494 case MPC7455:
495 case MPC7457:
496 bitmask = HID0_7450_BITMASK;
497 break;
498 case IBM970:
499 case IBM970FX:
500 bitmask = 0;
501 break;
502 default:
503 bitmask = HID0_BITMASK;
504 break;
505 }
506 bitmask_snprintf(hid0, bitmask, hidbuf, sizeof hidbuf);
507 aprint_normal("%s: HID0 %s, powersave: %d\n", self->dv_xname, hidbuf, powersave);
508
509 ci->ci_khz = 0;
510
511 /*
512 * Display speed and cache configuration.
513 */
514 switch (vers) {
515 case MPC604:
516 case MPC604e:
517 case MPC604ev:
518 case MPC750:
519 case IBM750FX:
520 case MPC7400:
521 case MPC7410:
522 case MPC7447A:
523 case MPC7448:
524 case MPC7450:
525 case MPC7455:
526 case MPC7457:
527 aprint_normal("%s: ", self->dv_xname);
528 cpu_probe_speed(ci);
529 aprint_normal("%u.%02u MHz",
530 ci->ci_khz / 1000, (ci->ci_khz / 10) % 100);
531
532 if (vers == IBM750FX || vers == MPC750 ||
533 vers == MPC7400 || vers == MPC7410 || MPC745X_P(vers)) {
534 if (MPC745X_P(vers)) {
535 cpu_config_l3cr(vers);
536 } else {
537 cpu_config_l2cr(pvr);
538 }
539 }
540 aprint_normal("\n");
541 break;
542 }
543
544 #if NSYSMON_ENVSYS > 0
545 /*
546 * Attach MPC750 temperature sensor to the envsys subsystem.
547 * XXX the 74xx series also has this sensor, but it is not
548 * XXX supported by Motorola and may return values that are off by
549 * XXX 35-55 degrees C.
550 */
551 if (vers == MPC750 || vers == IBM750FX)
552 cpu_tau_setup(ci);
553 #endif
554
555 evcnt_attach_dynamic(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
556 NULL, self->dv_xname, "clock");
557 evcnt_attach_dynamic(&ci->ci_ev_softclock, EVCNT_TYPE_INTR,
558 NULL, self->dv_xname, "soft clock");
559 evcnt_attach_dynamic(&ci->ci_ev_softnet, EVCNT_TYPE_INTR,
560 NULL, self->dv_xname, "soft net");
561 evcnt_attach_dynamic(&ci->ci_ev_softserial, EVCNT_TYPE_INTR,
562 NULL, self->dv_xname, "soft serial");
563 evcnt_attach_dynamic(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
564 NULL, self->dv_xname, "traps");
565 evcnt_attach_dynamic(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
566 &ci->ci_ev_traps, self->dv_xname, "kernel DSI traps");
567 evcnt_attach_dynamic(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
568 &ci->ci_ev_traps, self->dv_xname, "user DSI traps");
569 evcnt_attach_dynamic(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
570 &ci->ci_ev_udsi, self->dv_xname, "user DSI failures");
571 evcnt_attach_dynamic(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP,
572 &ci->ci_ev_traps, self->dv_xname, "kernel ISI traps");
573 evcnt_attach_dynamic(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
574 &ci->ci_ev_traps, self->dv_xname, "user ISI traps");
575 evcnt_attach_dynamic(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
576 &ci->ci_ev_isi, self->dv_xname, "user ISI failures");
577 evcnt_attach_dynamic(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
578 &ci->ci_ev_traps, self->dv_xname, "system call traps");
579 evcnt_attach_dynamic(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
580 &ci->ci_ev_traps, self->dv_xname, "PGM traps");
581 evcnt_attach_dynamic(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
582 &ci->ci_ev_traps, self->dv_xname, "FPU unavailable traps");
583 evcnt_attach_dynamic(&ci->ci_ev_fpusw, EVCNT_TYPE_TRAP,
584 &ci->ci_ev_fpu, self->dv_xname, "FPU context switches");
585 evcnt_attach_dynamic(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
586 &ci->ci_ev_traps, self->dv_xname, "user alignment traps");
587 evcnt_attach_dynamic(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
588 &ci->ci_ev_ali, self->dv_xname, "user alignment traps");
589 evcnt_attach_dynamic(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
590 &ci->ci_ev_umchk, self->dv_xname, "user MCHK failures");
591 evcnt_attach_dynamic(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
592 &ci->ci_ev_traps, self->dv_xname, "AltiVec unavailable");
593 #ifdef ALTIVEC
594 if (cpu_altivec) {
595 evcnt_attach_dynamic(&ci->ci_ev_vecsw, EVCNT_TYPE_TRAP,
596 &ci->ci_ev_vec, self->dv_xname, "AltiVec context switches");
597 }
598 #endif
599 }
600
601 void
602 cpu_identify(char *str, size_t len)
603 {
604 u_int pvr, major, minor;
605 uint16_t vers, rev, revfmt;
606 const struct cputab *cp;
607 const char *name;
608 size_t n;
609
610 pvr = mfpvr();
611 vers = pvr >> 16;
612 rev = pvr;
613
614 switch (vers) {
615 case MPC7410:
616 minor = (pvr >> 0) & 0xff;
617 major = minor <= 4 ? 1 : 2;
618 break;
619 default:
620 major = (pvr >> 8) & 0xf;
621 minor = (pvr >> 0) & 0xf;
622 }
623
624 for (cp = models; cp->name[0] != '\0'; cp++) {
625 if (cp->version == vers)
626 break;
627 }
628
629 if (str == NULL) {
630 str = cpu_model;
631 len = sizeof(cpu_model);
632 cpu = vers;
633 }
634
635 revfmt = cp->revfmt;
636 name = cp->name;
637 if (rev == MPC750 && pvr == 15) {
638 name = "755";
639 revfmt = REVFMT_HEX;
640 }
641
642 if (cp->name[0] != '\0') {
643 n = snprintf(str, len, "%s (Revision ", cp->name);
644 } else {
645 n = snprintf(str, len, "Version %#x (Revision ", vers);
646 }
647 if (len > n) {
648 switch (revfmt) {
649 case REVFMT_MAJMIN:
650 snprintf(str + n, len - n, "%u.%u)", major, minor);
651 break;
652 case REVFMT_HEX:
653 snprintf(str + n, len - n, "0x%04x)", rev);
654 break;
655 case REVFMT_DEC:
656 snprintf(str + n, len - n, "%u)", rev);
657 break;
658 }
659 }
660 }
661
662 #ifdef L2CR_CONFIG
663 u_int l2cr_config = L2CR_CONFIG;
664 #else
665 u_int l2cr_config = 0;
666 #endif
667
668 #ifdef L3CR_CONFIG
669 u_int l3cr_config = L3CR_CONFIG;
670 #else
671 u_int l3cr_config = 0;
672 #endif
673
674 void
675 cpu_enable_l2cr(register_t l2cr)
676 {
677 register_t msr, x;
678
679 /* Disable interrupts and set the cache config bits. */
680 msr = mfmsr();
681 mtmsr(msr & ~PSL_EE);
682 #ifdef ALTIVEC
683 if (cpu_altivec)
684 __asm volatile("dssall");
685 #endif
686 __asm volatile("sync");
687 mtspr(SPR_L2CR, l2cr & ~L2CR_L2E);
688 __asm volatile("sync");
689
690 /* Wait for L2 clock to be stable (640 L2 clocks). */
691 delay(100);
692
693 /* Invalidate all L2 contents. */
694 mtspr(SPR_L2CR, l2cr | L2CR_L2I);
695 do {
696 x = mfspr(SPR_L2CR);
697 } while (x & L2CR_L2IP);
698
699 /* Enable L2 cache. */
700 l2cr |= L2CR_L2E;
701 mtspr(SPR_L2CR, l2cr);
702 mtmsr(msr);
703 }
704
705 void
706 cpu_enable_l3cr(register_t l3cr)
707 {
708 register_t x;
709
710 /* By The Book (numbered steps from section 3.7.1.3 of MPC7450UM) */
711
712 /*
713 * 1: Set all L3CR bits for final config except L3E, L3I, L3PE, and
714 * L3CLKEN. (also mask off reserved bits in case they were included
715 * in L3CR_CONFIG)
716 */
717 l3cr &= ~(L3CR_L3E|L3CR_L3I|L3CR_L3PE|L3CR_L3CLKEN|L3CR_RESERVED);
718 mtspr(SPR_L3CR, l3cr);
719
720 /* 2: Set L3CR[5] (otherwise reserved bit) to 1 */
721 l3cr |= 0x04000000;
722 mtspr(SPR_L3CR, l3cr);
723
724 /* 3: Set L3CLKEN to 1*/
725 l3cr |= L3CR_L3CLKEN;
726 mtspr(SPR_L3CR, l3cr);
727
728 /* 4/5: Perform a global cache invalidate (ref section 3.7.3.6) */
729 __asm volatile("dssall;sync");
730 /* L3 cache is already disabled, no need to clear L3E */
731 mtspr(SPR_L3CR, l3cr|L3CR_L3I);
732 do {
733 x = mfspr(SPR_L3CR);
734 } while (x & L3CR_L3I);
735
736 /* 6: Clear L3CLKEN to 0 */
737 l3cr &= ~L3CR_L3CLKEN;
738 mtspr(SPR_L3CR, l3cr);
739
740 /* 7: Perform a 'sync' and wait at least 100 CPU cycles */
741 __asm volatile("sync");
742 delay(100);
743
744 /* 8: Set L3E and L3CLKEN */
745 l3cr |= (L3CR_L3E|L3CR_L3CLKEN);
746 mtspr(SPR_L3CR, l3cr);
747
748 /* 9: Perform a 'sync' and wait at least 100 CPU cycles */
749 __asm volatile("sync");
750 delay(100);
751 }
752
753 void
754 cpu_config_l2cr(int pvr)
755 {
756 register_t l2cr;
757
758 l2cr = mfspr(SPR_L2CR);
759
760 /*
761 * For MP systems, the firmware may only configure the L2 cache
762 * on the first CPU. In this case, assume that the other CPUs
763 * should use the same value for L2CR.
764 */
765 if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
766 l2cr_config = l2cr;
767 }
768
769 /*
770 * Configure L2 cache if not enabled.
771 */
772 if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
773 cpu_enable_l2cr(l2cr_config);
774 l2cr = mfspr(SPR_L2CR);
775 }
776
777 if ((l2cr & L2CR_L2E) == 0) {
778 aprint_normal(" L2 cache present but not enabled ");
779 return;
780 }
781
782 aprint_normal(",");
783 if ((pvr >> 16) == IBM750FX ||
784 (pvr & 0xffffff00) == 0x00082200 /* IBM750CX */ ||
785 (pvr & 0xffffef00) == 0x00082300 /* IBM750CXe */) {
786 cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
787 } else {
788 cpu_fmttab_print(cpu_l2cr_formats, l2cr);
789 }
790 }
791
792 void
793 cpu_config_l3cr(int vers)
794 {
795 register_t l2cr;
796 register_t l3cr;
797
798 l2cr = mfspr(SPR_L2CR);
799
800 /*
801 * For MP systems, the firmware may only configure the L2 cache
802 * on the first CPU. In this case, assume that the other CPUs
803 * should use the same value for L2CR.
804 */
805 if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
806 l2cr_config = l2cr;
807 }
808
809 /*
810 * Configure L2 cache if not enabled.
811 */
812 if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
813 cpu_enable_l2cr(l2cr_config);
814 l2cr = mfspr(SPR_L2CR);
815 }
816
817 aprint_normal(",");
818 switch (vers) {
819 case MPC7447A:
820 case MPC7457:
821 cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
822 return;
823 case MPC7448:
824 cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
825 return;
826 default:
827 cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
828 break;
829 }
830
831 l3cr = mfspr(SPR_L3CR);
832
833 /*
834 * For MP systems, the firmware may only configure the L3 cache
835 * on the first CPU. In this case, assume that the other CPUs
836 * should use the same value for L3CR.
837 */
838 if ((l3cr & L3CR_L3E) != 0 && l3cr_config == 0) {
839 l3cr_config = l3cr;
840 }
841
842 /*
843 * Configure L3 cache if not enabled.
844 */
845 if ((l3cr & L3CR_L3E) == 0 && l3cr_config != 0) {
846 cpu_enable_l3cr(l3cr_config);
847 l3cr = mfspr(SPR_L3CR);
848 }
849
850 if (l3cr & L3CR_L3E) {
851 aprint_normal(",");
852 cpu_fmttab_print(cpu_7450_l3cr_formats, l3cr);
853 }
854 }
855
856 void
857 cpu_probe_speed(struct cpu_info *ci)
858 {
859 uint64_t cps;
860
861 mtspr(SPR_MMCR0, MMCR0_FC);
862 mtspr(SPR_PMC1, 0);
863 mtspr(SPR_MMCR0, MMCR0_PMC1SEL(PMCN_CYCLES));
864 delay(100000);
865 cps = (mfspr(SPR_PMC1) * 10) + 4999;
866
867 mtspr(SPR_MMCR0, MMCR0_FC);
868
869 ci->ci_khz = cps / 1000;
870 }
871
872 #if NSYSMON_ENVSYS > 0
873 const struct envsys_range cpu_tau_ranges[] = {
874 { 0, 0, ENVSYS_STEMP}
875 };
876
877 struct envsys_basic_info cpu_tau_info[] = {
878 { 0, ENVSYS_STEMP, "CPU temp", 0, 0, ENVSYS_FVALID}
879 };
880
881 void
882 cpu_tau_setup(struct cpu_info *ci)
883 {
884 struct {
885 struct sysmon_envsys sme;
886 struct envsys_tre_data tau_info;
887 } *datap;
888 int error;
889
890 datap = malloc(sizeof(*datap), M_DEVBUF, M_WAITOK | M_ZERO);
891
892 ci->ci_sysmon_cookie = &datap->sme;
893 datap->sme.sme_nsensors = 1;
894 datap->sme.sme_envsys_version = 1000;
895 datap->sme.sme_ranges = cpu_tau_ranges;
896 datap->sme.sme_sensor_info = cpu_tau_info;
897 datap->sme.sme_sensor_data = &datap->tau_info;
898
899 datap->sme.sme_sensor_data->sensor = 0;
900 datap->sme.sme_sensor_data->warnflags = ENVSYS_WARN_OK;
901 datap->sme.sme_sensor_data->validflags = ENVSYS_FVALID|ENVSYS_FCURVALID;
902 datap->sme.sme_cookie = ci;
903 datap->sme.sme_gtredata = cpu_tau_gtredata;
904 datap->sme.sme_streinfo = cpu_tau_streinfo;
905 datap->sme.sme_flags = 0;
906
907 if ((error = sysmon_envsys_register(&datap->sme)) != 0)
908 aprint_error("%s: unable to register with sysmon (%d)\n",
909 ci->ci_dev->dv_xname, error);
910 }
911
912
913 /* Find the temperature of the CPU. */
914 int
915 cpu_tau_gtredata(struct sysmon_envsys *sme, struct envsys_tre_data *tred)
916 {
917 int i, threshold, count;
918
919 if (tred->sensor != 0) {
920 tred->validflags = 0;
921 return 0;
922 }
923
924 threshold = 64; /* Half of the 7-bit sensor range */
925 mtspr(SPR_THRM1, 0);
926 mtspr(SPR_THRM2, 0);
927 /* XXX This counter is supposed to be "at least 20 microseonds, in
928 * XXX units of clock cycles". Since we don't have convenient
929 * XXX access to the CPU speed, set it to a conservative value,
930 * XXX that is, assuming a fast (1GHz) G3 CPU (As of February 2002,
931 * XXX the fastest G3 processor is 700MHz) . The cost is that
932 * XXX measuring the temperature takes a bit longer.
933 */
934 mtspr(SPR_THRM3, SPR_THRM_TIMER(20000) | SPR_THRM_ENABLE);
935
936 /* Successive-approximation code adapted from Motorola
937 * application note AN1800/D, "Programming the Thermal Assist
938 * Unit in the MPC750 Microprocessor".
939 */
940 for (i = 4; i >= 0 ; i--) {
941 mtspr(SPR_THRM1,
942 SPR_THRM_THRESHOLD(threshold) | SPR_THRM_VALID);
943 count = 0;
944 while ((count < 100) &&
945 ((mfspr(SPR_THRM1) & SPR_THRM_TIV) == 0)) {
946 count++;
947 delay(1);
948 }
949 if (mfspr(SPR_THRM1) & SPR_THRM_TIN) {
950 /* The interrupt bit was set, meaning the
951 * temperature was above the threshold
952 */
953 threshold += 2 << i;
954 } else {
955 /* Temperature was below the threshold */
956 threshold -= 2 << i;
957 }
958 }
959 threshold += 2;
960
961 /* Convert the temperature in degrees C to microkelvin */
962 sme->sme_sensor_data->cur.data_us = (threshold * 1000000) + 273150000;
963
964 *tred = *sme->sme_sensor_data;
965
966 return 0;
967 }
968
969 int
970 cpu_tau_streinfo(struct sysmon_envsys *sme, struct envsys_basic_info *binfo)
971 {
972
973 /* There is nothing to set here. */
974 return (EINVAL);
975 }
976 #endif /* NSYSMON_ENVSYS > 0 */
977