cpu_subr.c revision 1.32 1 /* $NetBSD: cpu_subr.c,v 1.32 2007/07/01 07:37:13 xtraeme Exp $ */
2
3 /*-
4 * Copyright (c) 2001 Matt Thomas.
5 * Copyright (c) 2001 Tsubai Masanari.
6 * Copyright (c) 1998, 1999, 2001 Internet Research Institute, Inc.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by
20 * Internet Research Institute, Inc.
21 * 4. The name of the author may not be used to endorse or promote products
22 * derived from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
29 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: cpu_subr.c,v 1.32 2007/07/01 07:37:13 xtraeme Exp $");
38
39 #include "opt_ppcparam.h"
40 #include "opt_multiprocessor.h"
41 #include "opt_altivec.h"
42 #include "sysmon_envsys.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/device.h>
47 #include <sys/malloc.h>
48
49 #include <uvm/uvm_extern.h>
50
51 #include <powerpc/oea/hid.h>
52 #include <powerpc/oea/hid_601.h>
53 #include <powerpc/spr.h>
54
55 #include <dev/sysmon/sysmonvar.h>
56
57 static void cpu_enable_l2cr(register_t);
58 static void cpu_enable_l3cr(register_t);
59 static void cpu_config_l2cr(int);
60 static void cpu_config_l3cr(int);
61 static void cpu_probe_speed(struct cpu_info *);
62 static void cpu_idlespin(void);
63 #if NSYSMON_ENVSYS > 0
64 static void cpu_tau_setup(struct cpu_info *);
65 static int cpu_tau_gtredata(struct sysmon_envsys *, envsys_data_t *);
66 #endif
67
68 int cpu;
69 int ncpus;
70
71 struct fmttab {
72 register_t fmt_mask;
73 register_t fmt_value;
74 const char *fmt_string;
75 };
76
77 static const struct fmttab cpu_7450_l2cr_formats[] = {
78 { L2CR_L2E, 0, " disabled" },
79 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
80 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
81 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
82 { L2CR_L2E, ~0, " 256KB L2 cache" },
83 { 0, 0, NULL }
84 };
85
86 static const struct fmttab cpu_7448_l2cr_formats[] = {
87 { L2CR_L2E, 0, " disabled" },
88 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
89 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
90 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
91 { L2CR_L2E, ~0, " 1MB L2 cache" },
92 { 0, 0, NULL }
93 };
94
95 static const struct fmttab cpu_7457_l2cr_formats[] = {
96 { L2CR_L2E, 0, " disabled" },
97 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
98 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
99 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
100 { L2CR_L2E, ~0, " 512KB L2 cache" },
101 { 0, 0, NULL }
102 };
103
104 static const struct fmttab cpu_7450_l3cr_formats[] = {
105 { L3CR_L3DO|L3CR_L3IO, L3CR_L3DO, " data-only" },
106 { L3CR_L3DO|L3CR_L3IO, L3CR_L3IO, " instruction-only" },
107 { L3CR_L3DO|L3CR_L3IO, L3CR_L3DO|L3CR_L3IO, " locked" },
108 { L3CR_L3SIZ, L3SIZ_2M, " 2MB" },
109 { L3CR_L3SIZ, L3SIZ_1M, " 1MB" },
110 { L3CR_L3PE|L3CR_L3APE, L3CR_L3PE|L3CR_L3APE, " parity" },
111 { L3CR_L3PE|L3CR_L3APE, L3CR_L3PE, " data-parity" },
112 { L3CR_L3PE|L3CR_L3APE, L3CR_L3APE, " address-parity" },
113 { L3CR_L3PE|L3CR_L3APE, 0, " no-parity" },
114 { L3CR_L3SIZ, ~0, " L3 cache" },
115 { L3CR_L3RT, L3RT_MSUG2_DDR, " (DDR SRAM)" },
116 { L3CR_L3RT, L3RT_PIPELINE_LATE, " (LW SRAM)" },
117 { L3CR_L3RT, L3RT_PB2_SRAM, " (PB2 SRAM)" },
118 { L3CR_L3CLK, ~0, " at" },
119 { L3CR_L3CLK, L3CLK_20, " 2:1" },
120 { L3CR_L3CLK, L3CLK_25, " 2.5:1" },
121 { L3CR_L3CLK, L3CLK_30, " 3:1" },
122 { L3CR_L3CLK, L3CLK_35, " 3.5:1" },
123 { L3CR_L3CLK, L3CLK_40, " 4:1" },
124 { L3CR_L3CLK, L3CLK_50, " 5:1" },
125 { L3CR_L3CLK, L3CLK_60, " 6:1" },
126 { L3CR_L3CLK, ~0, " ratio" },
127 { 0, 0, NULL },
128 };
129
130 static const struct fmttab cpu_ibm750_l2cr_formats[] = {
131 { L2CR_L2E, 0, " disabled" },
132 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
133 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
134 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
135 { 0, ~0, " 512KB" },
136 { L2CR_L2WT, L2CR_L2WT, " WT" },
137 { L2CR_L2WT, 0, " WB" },
138 { L2CR_L2PE, L2CR_L2PE, " with ECC" },
139 { 0, ~0, " L2 cache" },
140 { 0, 0, NULL }
141 };
142
143 static const struct fmttab cpu_l2cr_formats[] = {
144 { L2CR_L2E, 0, " disabled" },
145 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
146 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
147 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
148 { L2CR_L2PE, L2CR_L2PE, " parity" },
149 { L2CR_L2PE, 0, " no-parity" },
150 { L2CR_L2SIZ, L2SIZ_2M, " 2MB" },
151 { L2CR_L2SIZ, L2SIZ_1M, " 1MB" },
152 { L2CR_L2SIZ, L2SIZ_512K, " 512KB" },
153 { L2CR_L2SIZ, L2SIZ_256K, " 256KB" },
154 { L2CR_L2WT, L2CR_L2WT, " WT" },
155 { L2CR_L2WT, 0, " WB" },
156 { L2CR_L2E, ~0, " L2 cache" },
157 { L2CR_L2RAM, L2RAM_FLOWTHRU_BURST, " (FB SRAM)" },
158 { L2CR_L2RAM, L2RAM_PIPELINE_LATE, " (LW SRAM)" },
159 { L2CR_L2RAM, L2RAM_PIPELINE_BURST, " (PB SRAM)" },
160 { L2CR_L2CLK, ~0, " at" },
161 { L2CR_L2CLK, L2CLK_10, " 1:1" },
162 { L2CR_L2CLK, L2CLK_15, " 1.5:1" },
163 { L2CR_L2CLK, L2CLK_20, " 2:1" },
164 { L2CR_L2CLK, L2CLK_25, " 2.5:1" },
165 { L2CR_L2CLK, L2CLK_30, " 3:1" },
166 { L2CR_L2CLK, L2CLK_35, " 3.5:1" },
167 { L2CR_L2CLK, L2CLK_40, " 4:1" },
168 { L2CR_L2CLK, ~0, " ratio" },
169 { 0, 0, NULL }
170 };
171
172 static void cpu_fmttab_print(const struct fmttab *, register_t);
173
174 struct cputab {
175 const char name[8];
176 uint16_t version;
177 uint16_t revfmt;
178 };
179 #define REVFMT_MAJMIN 1 /* %u.%u */
180 #define REVFMT_HEX 2 /* 0x%04x */
181 #define REVFMT_DEC 3 /* %u */
182 static const struct cputab models[] = {
183 { "601", MPC601, REVFMT_DEC },
184 { "602", MPC602, REVFMT_DEC },
185 { "603", MPC603, REVFMT_MAJMIN },
186 { "603e", MPC603e, REVFMT_MAJMIN },
187 { "603ev", MPC603ev, REVFMT_MAJMIN },
188 { "G2", MPCG2, REVFMT_MAJMIN },
189 { "604", MPC604, REVFMT_MAJMIN },
190 { "604e", MPC604e, REVFMT_MAJMIN },
191 { "604ev", MPC604ev, REVFMT_MAJMIN },
192 { "620", MPC620, REVFMT_HEX },
193 { "750", MPC750, REVFMT_MAJMIN },
194 { "750FX", IBM750FX, REVFMT_MAJMIN },
195 { "7400", MPC7400, REVFMT_MAJMIN },
196 { "7410", MPC7410, REVFMT_MAJMIN },
197 { "7450", MPC7450, REVFMT_MAJMIN },
198 { "7455", MPC7455, REVFMT_MAJMIN },
199 { "7457", MPC7457, REVFMT_MAJMIN },
200 { "7447A", MPC7447A, REVFMT_MAJMIN },
201 { "7448", MPC7448, REVFMT_MAJMIN },
202 { "8240", MPC8240, REVFMT_MAJMIN },
203 { "8245", MPC8245, REVFMT_MAJMIN },
204 { "970", IBM970, REVFMT_MAJMIN },
205 { "970FX", IBM970FX, REVFMT_MAJMIN },
206 { "", 0, REVFMT_HEX }
207 };
208
209
210 #ifdef MULTIPROCESSOR
211 struct cpu_info cpu_info[CPU_MAXNUM];
212 #else
213 struct cpu_info cpu_info[1];
214 #endif
215
216 int cpu_altivec;
217 int cpu_psluserset, cpu_pslusermod;
218 char cpu_model[80];
219
220 void
221 cpu_fmttab_print(const struct fmttab *fmt, register_t data)
222 {
223 for (; fmt->fmt_mask != 0 || fmt->fmt_value != 0; fmt++) {
224 if ((~fmt->fmt_mask & fmt->fmt_value) != 0 ||
225 (data & fmt->fmt_mask) == fmt->fmt_value)
226 aprint_normal("%s", fmt->fmt_string);
227 }
228 }
229
230 void
231 cpu_idlespin(void)
232 {
233 register_t msr;
234
235 if (powersave <= 0)
236 return;
237
238 __asm volatile(
239 "sync;"
240 "mfmsr %0;"
241 "oris %0,%0,%1@h;" /* enter power saving mode */
242 "mtmsr %0;"
243 "isync;"
244 : "=r"(msr)
245 : "J"(PSL_POW));
246 }
247
248 void
249 cpu_probe_cache(void)
250 {
251 u_int assoc, pvr, vers;
252
253 pvr = mfpvr();
254 vers = pvr >> 16;
255
256
257 /* Presently common across almost all implementations. */
258 curcpu()->ci_ci.dcache_line_size = CACHELINESIZE;
259 curcpu()->ci_ci.icache_line_size = CACHELINESIZE;
260
261
262 switch (vers) {
263 #define K *1024
264 case IBM750FX:
265 case MPC601:
266 case MPC750:
267 case MPC7447A:
268 case MPC7448:
269 case MPC7450:
270 case MPC7455:
271 case MPC7457:
272 curcpu()->ci_ci.dcache_size = 32 K;
273 curcpu()->ci_ci.icache_size = 32 K;
274 assoc = 8;
275 break;
276 case MPC603:
277 curcpu()->ci_ci.dcache_size = 8 K;
278 curcpu()->ci_ci.icache_size = 8 K;
279 assoc = 2;
280 break;
281 case MPC603e:
282 case MPC603ev:
283 case MPC604:
284 case MPC8240:
285 case MPC8245:
286 case MPCG2:
287 curcpu()->ci_ci.dcache_size = 16 K;
288 curcpu()->ci_ci.icache_size = 16 K;
289 assoc = 4;
290 break;
291 case MPC604e:
292 case MPC604ev:
293 curcpu()->ci_ci.dcache_size = 32 K;
294 curcpu()->ci_ci.icache_size = 32 K;
295 assoc = 4;
296 break;
297 case IBM970:
298 case IBM970FX:
299 curcpu()->ci_ci.dcache_size = 32 K;
300 curcpu()->ci_ci.icache_size = 64 K;
301 curcpu()->ci_ci.dcache_line_size = 128;
302 curcpu()->ci_ci.icache_line_size = 128;
303 assoc = 2;
304 break;
305
306 default:
307 curcpu()->ci_ci.dcache_size = PAGE_SIZE;
308 curcpu()->ci_ci.icache_size = PAGE_SIZE;
309 assoc = 1;
310 #undef K
311 }
312
313 /*
314 * Possibly recolor.
315 */
316 uvm_page_recolor(atop(curcpu()->ci_ci.dcache_size / assoc));
317 }
318
319 struct cpu_info *
320 cpu_attach_common(struct device *self, int id)
321 {
322 struct cpu_info *ci;
323 u_int pvr, vers;
324
325 ci = &cpu_info[id];
326 #ifndef MULTIPROCESSOR
327 /*
328 * If this isn't the primary CPU, print an error message
329 * and just bail out.
330 */
331 if (id != 0) {
332 aprint_normal(": ID %d\n", id);
333 aprint_normal("%s: processor off-line; multiprocessor support "
334 "not present in kernel\n", self->dv_xname);
335 return (NULL);
336 }
337 #endif
338
339 ci->ci_cpuid = id;
340 ci->ci_intrdepth = -1;
341 ci->ci_dev = self;
342 ci->ci_idlespin = cpu_idlespin;
343
344 pvr = mfpvr();
345 vers = (pvr >> 16) & 0xffff;
346
347 switch (id) {
348 case 0:
349 /* load my cpu_number to PIR */
350 switch (vers) {
351 case MPC601:
352 case MPC604:
353 case MPC604e:
354 case MPC604ev:
355 case MPC7400:
356 case MPC7410:
357 case MPC7447A:
358 case MPC7448:
359 case MPC7450:
360 case MPC7455:
361 case MPC7457:
362 mtspr(SPR_PIR, id);
363 }
364 cpu_setup(self, ci);
365 break;
366 default:
367 if (id >= CPU_MAXNUM) {
368 aprint_normal(": more than %d cpus?\n", CPU_MAXNUM);
369 panic("cpuattach");
370 }
371 #ifndef MULTIPROCESSOR
372 aprint_normal(" not configured\n");
373 return NULL;
374 #else
375 mi_cpu_attach(ci);
376 break;
377 #endif
378 }
379 return (ci);
380 }
381
382 void
383 cpu_setup(self, ci)
384 struct device *self;
385 struct cpu_info *ci;
386 {
387 u_int hid0, pvr, vers;
388 const char *bitmask;
389 char hidbuf[128];
390 char model[80];
391
392 pvr = mfpvr();
393 vers = (pvr >> 16) & 0xffff;
394
395 cpu_identify(model, sizeof(model));
396 aprint_normal(": %s, ID %d%s\n", model, cpu_number(),
397 cpu_number() == 0 ? " (primary)" : "");
398
399 #if defined (PPC_OEA) || defined (PPC_OEA64)
400 hid0 = mfspr(SPR_HID0);
401 #elif defined (PPC_OEA64_BRIDGE)
402 hid0 = mfspr(SPR_HID0);
403 #endif
404
405 cpu_probe_cache();
406
407 /*
408 * Configure power-saving mode.
409 */
410 switch (vers) {
411 case MPC604:
412 case MPC604e:
413 case MPC604ev:
414 /*
415 * Do not have HID0 support settings, but can support
416 * MSR[POW] off
417 */
418 powersave = 1;
419 break;
420
421 case MPC603:
422 case MPC603e:
423 case MPC603ev:
424 case MPC750:
425 case IBM750FX:
426 case MPC7400:
427 case MPC7410:
428 case MPC8240:
429 case MPC8245:
430 case MPCG2:
431 /* Select DOZE mode. */
432 hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
433 hid0 |= HID0_DOZE | HID0_DPM;
434 powersave = 1;
435 break;
436
437 case MPC7447A:
438 case MPC7448:
439 case MPC7457:
440 case MPC7455:
441 case MPC7450:
442 /* Enable the 7450 branch caches */
443 hid0 |= HID0_SGE | HID0_BTIC;
444 hid0 |= HID0_LRSTK | HID0_FOLD | HID0_BHT;
445 /* Disable BTIC on 7450 Rev 2.0 or earlier */
446 if (vers == MPC7450 && (pvr & 0xFFFF) <= 0x0200)
447 hid0 &= ~HID0_BTIC;
448 /* Select NAP mode. */
449 hid0 &= ~(HID0_HIGH_BAT_EN | HID0_SLEEP);
450 hid0 |= HID0_NAP | HID0_DPM /* | HID0_XBSEN */;
451 powersave = 1;
452 break;
453
454 case IBM970:
455 case IBM970FX:
456 default:
457 /* No power-saving mode is available. */ ;
458 }
459
460 #ifdef NAPMODE
461 switch (vers) {
462 case IBM750FX:
463 case MPC750:
464 case MPC7400:
465 /* Select NAP mode. */
466 hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
467 hid0 |= HID0_NAP;
468 break;
469 }
470 #endif
471
472 switch (vers) {
473 case IBM750FX:
474 case MPC750:
475 hid0 &= ~HID0_DBP; /* XXX correct? */
476 hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
477 break;
478
479 case MPC7400:
480 case MPC7410:
481 hid0 &= ~HID0_SPD;
482 hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
483 hid0 |= HID0_EIEC;
484 break;
485 }
486
487 #if defined (PPC_OEA)
488 mtspr(SPR_HID0, hid0);
489 __asm volatile("sync;isync");
490 #endif
491
492 switch (vers) {
493 case MPC601:
494 bitmask = HID0_601_BITMASK;
495 break;
496 case MPC7450:
497 case MPC7455:
498 case MPC7457:
499 bitmask = HID0_7450_BITMASK;
500 break;
501 case IBM970:
502 case IBM970FX:
503 bitmask = 0;
504 break;
505 default:
506 bitmask = HID0_BITMASK;
507 break;
508 }
509 bitmask_snprintf(hid0, bitmask, hidbuf, sizeof hidbuf);
510 aprint_normal("%s: HID0 %s, powersave: %d\n", self->dv_xname, hidbuf, powersave);
511
512 ci->ci_khz = 0;
513
514 /*
515 * Display speed and cache configuration.
516 */
517 switch (vers) {
518 case MPC604:
519 case MPC604e:
520 case MPC604ev:
521 case MPC750:
522 case IBM750FX:
523 case MPC7400:
524 case MPC7410:
525 case MPC7447A:
526 case MPC7448:
527 case MPC7450:
528 case MPC7455:
529 case MPC7457:
530 aprint_normal("%s: ", self->dv_xname);
531 cpu_probe_speed(ci);
532 aprint_normal("%u.%02u MHz",
533 ci->ci_khz / 1000, (ci->ci_khz / 10) % 100);
534
535 if (vers == IBM750FX || vers == MPC750 ||
536 vers == MPC7400 || vers == MPC7410 || MPC745X_P(vers)) {
537 if (MPC745X_P(vers)) {
538 cpu_config_l3cr(vers);
539 } else {
540 cpu_config_l2cr(pvr);
541 }
542 }
543 aprint_normal("\n");
544 break;
545 }
546
547 #if NSYSMON_ENVSYS > 0
548 /*
549 * Attach MPC750 temperature sensor to the envsys subsystem.
550 * XXX the 74xx series also has this sensor, but it is not
551 * XXX supported by Motorola and may return values that are off by
552 * XXX 35-55 degrees C.
553 */
554 if (vers == MPC750 || vers == IBM750FX)
555 cpu_tau_setup(ci);
556 #endif
557
558 evcnt_attach_dynamic(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
559 NULL, self->dv_xname, "clock");
560 evcnt_attach_dynamic(&ci->ci_ev_softclock, EVCNT_TYPE_INTR,
561 NULL, self->dv_xname, "soft clock");
562 evcnt_attach_dynamic(&ci->ci_ev_softnet, EVCNT_TYPE_INTR,
563 NULL, self->dv_xname, "soft net");
564 evcnt_attach_dynamic(&ci->ci_ev_softserial, EVCNT_TYPE_INTR,
565 NULL, self->dv_xname, "soft serial");
566 evcnt_attach_dynamic(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
567 NULL, self->dv_xname, "traps");
568 evcnt_attach_dynamic(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
569 &ci->ci_ev_traps, self->dv_xname, "kernel DSI traps");
570 evcnt_attach_dynamic(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
571 &ci->ci_ev_traps, self->dv_xname, "user DSI traps");
572 evcnt_attach_dynamic(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
573 &ci->ci_ev_udsi, self->dv_xname, "user DSI failures");
574 evcnt_attach_dynamic(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP,
575 &ci->ci_ev_traps, self->dv_xname, "kernel ISI traps");
576 evcnt_attach_dynamic(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
577 &ci->ci_ev_traps, self->dv_xname, "user ISI traps");
578 evcnt_attach_dynamic(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
579 &ci->ci_ev_isi, self->dv_xname, "user ISI failures");
580 evcnt_attach_dynamic(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
581 &ci->ci_ev_traps, self->dv_xname, "system call traps");
582 evcnt_attach_dynamic(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
583 &ci->ci_ev_traps, self->dv_xname, "PGM traps");
584 evcnt_attach_dynamic(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
585 &ci->ci_ev_traps, self->dv_xname, "FPU unavailable traps");
586 evcnt_attach_dynamic(&ci->ci_ev_fpusw, EVCNT_TYPE_TRAP,
587 &ci->ci_ev_fpu, self->dv_xname, "FPU context switches");
588 evcnt_attach_dynamic(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
589 &ci->ci_ev_traps, self->dv_xname, "user alignment traps");
590 evcnt_attach_dynamic(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
591 &ci->ci_ev_ali, self->dv_xname, "user alignment traps");
592 evcnt_attach_dynamic(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
593 &ci->ci_ev_umchk, self->dv_xname, "user MCHK failures");
594 evcnt_attach_dynamic(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
595 &ci->ci_ev_traps, self->dv_xname, "AltiVec unavailable");
596 #ifdef ALTIVEC
597 if (cpu_altivec) {
598 evcnt_attach_dynamic(&ci->ci_ev_vecsw, EVCNT_TYPE_TRAP,
599 &ci->ci_ev_vec, self->dv_xname, "AltiVec context switches");
600 }
601 #endif
602 }
603
604 void
605 cpu_identify(char *str, size_t len)
606 {
607 u_int pvr, major, minor;
608 uint16_t vers, rev, revfmt;
609 const struct cputab *cp;
610 const char *name;
611 size_t n;
612
613 pvr = mfpvr();
614 vers = pvr >> 16;
615 rev = pvr;
616
617 switch (vers) {
618 case MPC7410:
619 minor = (pvr >> 0) & 0xff;
620 major = minor <= 4 ? 1 : 2;
621 break;
622 default:
623 major = (pvr >> 4) & 0xf;
624 minor = (pvr >> 0) & 0xf;
625 }
626
627 for (cp = models; cp->name[0] != '\0'; cp++) {
628 if (cp->version == vers)
629 break;
630 }
631
632 if (str == NULL) {
633 str = cpu_model;
634 len = sizeof(cpu_model);
635 cpu = vers;
636 }
637
638 revfmt = cp->revfmt;
639 name = cp->name;
640 if (rev == MPC750 && pvr == 15) {
641 name = "755";
642 revfmt = REVFMT_HEX;
643 }
644
645 if (cp->name[0] != '\0') {
646 n = snprintf(str, len, "%s (Revision ", cp->name);
647 } else {
648 n = snprintf(str, len, "Version %#x (Revision ", vers);
649 }
650 if (len > n) {
651 switch (revfmt) {
652 case REVFMT_MAJMIN:
653 snprintf(str + n, len - n, "%u.%u)", major, minor);
654 break;
655 case REVFMT_HEX:
656 snprintf(str + n, len - n, "0x%04x)", rev);
657 break;
658 case REVFMT_DEC:
659 snprintf(str + n, len - n, "%u)", rev);
660 break;
661 }
662 }
663 }
664
665 #ifdef L2CR_CONFIG
666 u_int l2cr_config = L2CR_CONFIG;
667 #else
668 u_int l2cr_config = 0;
669 #endif
670
671 #ifdef L3CR_CONFIG
672 u_int l3cr_config = L3CR_CONFIG;
673 #else
674 u_int l3cr_config = 0;
675 #endif
676
677 void
678 cpu_enable_l2cr(register_t l2cr)
679 {
680 register_t msr, x;
681
682 /* Disable interrupts and set the cache config bits. */
683 msr = mfmsr();
684 mtmsr(msr & ~PSL_EE);
685 #ifdef ALTIVEC
686 if (cpu_altivec)
687 __asm volatile("dssall");
688 #endif
689 __asm volatile("sync");
690 mtspr(SPR_L2CR, l2cr & ~L2CR_L2E);
691 __asm volatile("sync");
692
693 /* Wait for L2 clock to be stable (640 L2 clocks). */
694 delay(100);
695
696 /* Invalidate all L2 contents. */
697 mtspr(SPR_L2CR, l2cr | L2CR_L2I);
698 do {
699 x = mfspr(SPR_L2CR);
700 } while (x & L2CR_L2IP);
701
702 /* Enable L2 cache. */
703 l2cr |= L2CR_L2E;
704 mtspr(SPR_L2CR, l2cr);
705 mtmsr(msr);
706 }
707
708 void
709 cpu_enable_l3cr(register_t l3cr)
710 {
711 register_t x;
712
713 /* By The Book (numbered steps from section 3.7.1.3 of MPC7450UM) */
714
715 /*
716 * 1: Set all L3CR bits for final config except L3E, L3I, L3PE, and
717 * L3CLKEN. (also mask off reserved bits in case they were included
718 * in L3CR_CONFIG)
719 */
720 l3cr &= ~(L3CR_L3E|L3CR_L3I|L3CR_L3PE|L3CR_L3CLKEN|L3CR_RESERVED);
721 mtspr(SPR_L3CR, l3cr);
722
723 /* 2: Set L3CR[5] (otherwise reserved bit) to 1 */
724 l3cr |= 0x04000000;
725 mtspr(SPR_L3CR, l3cr);
726
727 /* 3: Set L3CLKEN to 1*/
728 l3cr |= L3CR_L3CLKEN;
729 mtspr(SPR_L3CR, l3cr);
730
731 /* 4/5: Perform a global cache invalidate (ref section 3.7.3.6) */
732 __asm volatile("dssall;sync");
733 /* L3 cache is already disabled, no need to clear L3E */
734 mtspr(SPR_L3CR, l3cr|L3CR_L3I);
735 do {
736 x = mfspr(SPR_L3CR);
737 } while (x & L3CR_L3I);
738
739 /* 6: Clear L3CLKEN to 0 */
740 l3cr &= ~L3CR_L3CLKEN;
741 mtspr(SPR_L3CR, l3cr);
742
743 /* 7: Perform a 'sync' and wait at least 100 CPU cycles */
744 __asm volatile("sync");
745 delay(100);
746
747 /* 8: Set L3E and L3CLKEN */
748 l3cr |= (L3CR_L3E|L3CR_L3CLKEN);
749 mtspr(SPR_L3CR, l3cr);
750
751 /* 9: Perform a 'sync' and wait at least 100 CPU cycles */
752 __asm volatile("sync");
753 delay(100);
754 }
755
756 void
757 cpu_config_l2cr(int pvr)
758 {
759 register_t l2cr;
760
761 l2cr = mfspr(SPR_L2CR);
762
763 /*
764 * For MP systems, the firmware may only configure the L2 cache
765 * on the first CPU. In this case, assume that the other CPUs
766 * should use the same value for L2CR.
767 */
768 if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
769 l2cr_config = l2cr;
770 }
771
772 /*
773 * Configure L2 cache if not enabled.
774 */
775 if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
776 cpu_enable_l2cr(l2cr_config);
777 l2cr = mfspr(SPR_L2CR);
778 }
779
780 if ((l2cr & L2CR_L2E) == 0) {
781 aprint_normal(" L2 cache present but not enabled ");
782 return;
783 }
784
785 aprint_normal(",");
786 if ((pvr >> 16) == IBM750FX ||
787 (pvr & 0xffffff00) == 0x00082200 /* IBM750CX */ ||
788 (pvr & 0xffffef00) == 0x00082300 /* IBM750CXe */) {
789 cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
790 } else {
791 cpu_fmttab_print(cpu_l2cr_formats, l2cr);
792 }
793 }
794
795 void
796 cpu_config_l3cr(int vers)
797 {
798 register_t l2cr;
799 register_t l3cr;
800
801 l2cr = mfspr(SPR_L2CR);
802
803 /*
804 * For MP systems, the firmware may only configure the L2 cache
805 * on the first CPU. In this case, assume that the other CPUs
806 * should use the same value for L2CR.
807 */
808 if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
809 l2cr_config = l2cr;
810 }
811
812 /*
813 * Configure L2 cache if not enabled.
814 */
815 if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
816 cpu_enable_l2cr(l2cr_config);
817 l2cr = mfspr(SPR_L2CR);
818 }
819
820 aprint_normal(",");
821 switch (vers) {
822 case MPC7447A:
823 case MPC7457:
824 cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
825 return;
826 case MPC7448:
827 cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
828 return;
829 default:
830 cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
831 break;
832 }
833
834 l3cr = mfspr(SPR_L3CR);
835
836 /*
837 * For MP systems, the firmware may only configure the L3 cache
838 * on the first CPU. In this case, assume that the other CPUs
839 * should use the same value for L3CR.
840 */
841 if ((l3cr & L3CR_L3E) != 0 && l3cr_config == 0) {
842 l3cr_config = l3cr;
843 }
844
845 /*
846 * Configure L3 cache if not enabled.
847 */
848 if ((l3cr & L3CR_L3E) == 0 && l3cr_config != 0) {
849 cpu_enable_l3cr(l3cr_config);
850 l3cr = mfspr(SPR_L3CR);
851 }
852
853 if (l3cr & L3CR_L3E) {
854 aprint_normal(",");
855 cpu_fmttab_print(cpu_7450_l3cr_formats, l3cr);
856 }
857 }
858
859 void
860 cpu_probe_speed(struct cpu_info *ci)
861 {
862 uint64_t cps;
863
864 mtspr(SPR_MMCR0, MMCR0_FC);
865 mtspr(SPR_PMC1, 0);
866 mtspr(SPR_MMCR0, MMCR0_PMC1SEL(PMCN_CYCLES));
867 delay(100000);
868 cps = (mfspr(SPR_PMC1) * 10) + 4999;
869
870 mtspr(SPR_MMCR0, MMCR0_FC);
871
872 ci->ci_khz = cps / 1000;
873 }
874
875 #if NSYSMON_ENVSYS > 0
876 void
877 cpu_tau_setup(struct cpu_info *ci)
878 {
879 struct {
880 struct sysmon_envsys sme;
881 envsys_data_t edata;
882 } *datap;
883 int error;
884
885 datap = malloc(sizeof(*datap), M_DEVBUF, M_WAITOK | M_ZERO);
886
887 datap->edata.sensor = 0;
888 datap->edata.units = ENVSYS_STEMP;
889 datap->edata.state = ENVSYS_SVALID;
890 (void)strlcpy(datap->edata.desc, "CPU Temp",
891 sizeof(datap->edata.desc));
892
893 ci->ci_sysmon_cookie = &datap->sme;
894 datap->sme.sme_nsensors = 1;
895 datap->sme.sme_sensor_data = &datap->edata;
896 datap->sme.sme_name = ci->ci_dev->dv_xname;
897 datap->sme.sme_cookie = ci;
898 datap->sme.sme_gtredata = cpu_tau_gtredata;
899
900 if ((error = sysmon_envsys_register(&datap->sme)) != 0)
901 aprint_error("%s: unable to register with sysmon (%d)\n",
902 ci->ci_dev->dv_xname, error);
903 }
904
905
906 /* Find the temperature of the CPU. */
907 int
908 cpu_tau_gtredata(struct sysmon_envsys *sme, envsys_data_t *edata)
909 {
910 int i, threshold, count;
911
912 if (edata->sensor != 0) {
913 edata->state = ENVSYS_SINVALID;
914 return 0;
915 }
916
917 threshold = 64; /* Half of the 7-bit sensor range */
918 mtspr(SPR_THRM1, 0);
919 mtspr(SPR_THRM2, 0);
920 /* XXX This counter is supposed to be "at least 20 microseonds, in
921 * XXX units of clock cycles". Since we don't have convenient
922 * XXX access to the CPU speed, set it to a conservative value,
923 * XXX that is, assuming a fast (1GHz) G3 CPU (As of February 2002,
924 * XXX the fastest G3 processor is 700MHz) . The cost is that
925 * XXX measuring the temperature takes a bit longer.
926 */
927 mtspr(SPR_THRM3, SPR_THRM_TIMER(20000) | SPR_THRM_ENABLE);
928
929 /* Successive-approximation code adapted from Motorola
930 * application note AN1800/D, "Programming the Thermal Assist
931 * Unit in the MPC750 Microprocessor".
932 */
933 for (i = 4; i >= 0 ; i--) {
934 mtspr(SPR_THRM1,
935 SPR_THRM_THRESHOLD(threshold) | SPR_THRM_VALID);
936 count = 0;
937 while ((count < 100) &&
938 ((mfspr(SPR_THRM1) & SPR_THRM_TIV) == 0)) {
939 count++;
940 delay(1);
941 }
942 if (mfspr(SPR_THRM1) & SPR_THRM_TIN) {
943 /* The interrupt bit was set, meaning the
944 * temperature was above the threshold
945 */
946 threshold += 2 << i;
947 } else {
948 /* Temperature was below the threshold */
949 threshold -= 2 << i;
950 }
951 }
952 threshold += 2;
953
954 /* Convert the temperature in degrees C to microkelvin */
955 sme->sme_sensor_data->value_cur = (threshold * 1000000) + 273150000;
956
957 return 0;
958 }
959 #endif /* NSYSMON_ENVSYS > 0 */
960