Home | History | Annotate | Line # | Download | only in oea
cpu_subr.c revision 1.66
      1 /*	$NetBSD: cpu_subr.c,v 1.66 2011/06/17 19:03:04 matt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 Matt Thomas.
      5  * Copyright (c) 2001 Tsubai Masanari.
      6  * Copyright (c) 1998, 1999, 2001 Internet Research Institute, Inc.
      7  * All rights reserved.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed by
     20  *	Internet Research Institute, Inc.
     21  * 4. The name of the author may not be used to endorse or promote products
     22  *    derived from this software without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     25  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     26  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     27  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     29  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     30  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     31  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     32  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     33  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: cpu_subr.c,v 1.66 2011/06/17 19:03:04 matt Exp $");
     38 
     39 #include "opt_ppcparam.h"
     40 #include "opt_multiprocessor.h"
     41 #include "opt_altivec.h"
     42 #include "sysmon_envsys.h"
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/device.h>
     47 #include <sys/types.h>
     48 #include <sys/lwp.h>
     49 #include <sys/malloc.h>
     50 #include <sys/xcall.h>
     51 
     52 #include <uvm/uvm.h>
     53 
     54 #include <powerpc/pcb.h>
     55 #include <powerpc/spr.h>
     56 #include <powerpc/oea/hid.h>
     57 #include <powerpc/oea/hid_601.h>
     58 #include <powerpc/oea/spr.h>
     59 #include <powerpc/oea/cpufeat.h>
     60 
     61 #include <dev/sysmon/sysmonvar.h>
     62 
     63 static void cpu_enable_l2cr(register_t);
     64 static void cpu_enable_l3cr(register_t);
     65 static void cpu_config_l2cr(int);
     66 static void cpu_config_l3cr(int);
     67 static void cpu_probe_speed(struct cpu_info *);
     68 static void cpu_idlespin(void);
     69 static void cpu_set_dfs_xcall(void *, void *);
     70 #if NSYSMON_ENVSYS > 0
     71 static void cpu_tau_setup(struct cpu_info *);
     72 static void cpu_tau_refresh(struct sysmon_envsys *, envsys_data_t *);
     73 #endif
     74 
     75 int cpu;
     76 int ncpus;
     77 
     78 struct fmttab {
     79 	register_t fmt_mask;
     80 	register_t fmt_value;
     81 	const char *fmt_string;
     82 };
     83 
     84 /*
     85  * This should be one per CPU but since we only support it on 750 variants it
     86  * doesn't realy matter since none of them supports SMP
     87  */
     88 envsys_data_t sensor;
     89 
     90 static const struct fmttab cpu_7450_l2cr_formats[] = {
     91 	{ L2CR_L2E, 0, " disabled" },
     92 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
     93 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
     94 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
     95 	{ L2CR_L2E, ~0, " 256KB L2 cache" },
     96 	{ L2CR_L2PE, 0, " no parity" },
     97 	{ L2CR_L2PE, ~0, " parity enabled" },
     98 	{ 0, 0, NULL }
     99 };
    100 
    101 static const struct fmttab cpu_7448_l2cr_formats[] = {
    102 	{ L2CR_L2E, 0, " disabled" },
    103 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
    104 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
    105 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
    106 	{ L2CR_L2E, ~0, " 1MB L2 cache" },
    107 	{ L2CR_L2PE, 0, " no parity" },
    108 	{ L2CR_L2PE, ~0, " parity enabled" },
    109 	{ 0, 0, NULL }
    110 };
    111 
    112 static const struct fmttab cpu_7457_l2cr_formats[] = {
    113 	{ L2CR_L2E, 0, " disabled" },
    114 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
    115 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
    116 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
    117 	{ L2CR_L2E, ~0, " 512KB L2 cache" },
    118 	{ L2CR_L2PE, 0, " no parity" },
    119 	{ L2CR_L2PE, ~0, " parity enabled" },
    120 	{ 0, 0, NULL }
    121 };
    122 
    123 static const struct fmttab cpu_7450_l3cr_formats[] = {
    124 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3DO, " data-only" },
    125 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3IO, " instruction-only" },
    126 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3DO|L3CR_L3IO, " locked" },
    127 	{ L3CR_L3SIZ, L3SIZ_2M, " 2MB" },
    128 	{ L3CR_L3SIZ, L3SIZ_1M, " 1MB" },
    129 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3PE|L3CR_L3APE, " parity" },
    130 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3PE, " data-parity" },
    131 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3APE, " address-parity" },
    132 	{ L3CR_L3PE|L3CR_L3APE, 0, " no-parity" },
    133 	{ L3CR_L3SIZ, ~0, " L3 cache" },
    134 	{ L3CR_L3RT, L3RT_MSUG2_DDR, " (DDR SRAM)" },
    135 	{ L3CR_L3RT, L3RT_PIPELINE_LATE, " (LW SRAM)" },
    136 	{ L3CR_L3RT, L3RT_PB2_SRAM, " (PB2 SRAM)" },
    137 	{ L3CR_L3CLK, ~0, " at" },
    138 	{ L3CR_L3CLK, L3CLK_20, " 2:1" },
    139 	{ L3CR_L3CLK, L3CLK_25, " 2.5:1" },
    140 	{ L3CR_L3CLK, L3CLK_30, " 3:1" },
    141 	{ L3CR_L3CLK, L3CLK_35, " 3.5:1" },
    142 	{ L3CR_L3CLK, L3CLK_40, " 4:1" },
    143 	{ L3CR_L3CLK, L3CLK_50, " 5:1" },
    144 	{ L3CR_L3CLK, L3CLK_60, " 6:1" },
    145 	{ L3CR_L3CLK, ~0, " ratio" },
    146 	{ 0, 0, NULL },
    147 };
    148 
    149 static const struct fmttab cpu_ibm750_l2cr_formats[] = {
    150 	{ L2CR_L2E, 0, " disabled" },
    151 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
    152 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
    153 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
    154 	{ 0, ~0, " 512KB" },
    155 	{ L2CR_L2WT, L2CR_L2WT, " WT" },
    156 	{ L2CR_L2WT, 0, " WB" },
    157 	{ L2CR_L2PE, L2CR_L2PE, " with ECC" },
    158 	{ 0, ~0, " L2 cache" },
    159 	{ 0, 0, NULL }
    160 };
    161 
    162 static const struct fmttab cpu_l2cr_formats[] = {
    163 	{ L2CR_L2E, 0, " disabled" },
    164 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
    165 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
    166 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
    167 	{ L2CR_L2PE, L2CR_L2PE, " parity" },
    168 	{ L2CR_L2PE, 0, " no-parity" },
    169 	{ L2CR_L2SIZ, L2SIZ_2M, " 2MB" },
    170 	{ L2CR_L2SIZ, L2SIZ_1M, " 1MB" },
    171 	{ L2CR_L2SIZ, L2SIZ_512K, " 512KB" },
    172 	{ L2CR_L2SIZ, L2SIZ_256K, " 256KB" },
    173 	{ L2CR_L2WT, L2CR_L2WT, " WT" },
    174 	{ L2CR_L2WT, 0, " WB" },
    175 	{ L2CR_L2E, ~0, " L2 cache" },
    176 	{ L2CR_L2RAM, L2RAM_FLOWTHRU_BURST, " (FB SRAM)" },
    177 	{ L2CR_L2RAM, L2RAM_PIPELINE_LATE, " (LW SRAM)" },
    178 	{ L2CR_L2RAM, L2RAM_PIPELINE_BURST, " (PB SRAM)" },
    179 	{ L2CR_L2CLK, ~0, " at" },
    180 	{ L2CR_L2CLK, L2CLK_10, " 1:1" },
    181 	{ L2CR_L2CLK, L2CLK_15, " 1.5:1" },
    182 	{ L2CR_L2CLK, L2CLK_20, " 2:1" },
    183 	{ L2CR_L2CLK, L2CLK_25, " 2.5:1" },
    184 	{ L2CR_L2CLK, L2CLK_30, " 3:1" },
    185 	{ L2CR_L2CLK, L2CLK_35, " 3.5:1" },
    186 	{ L2CR_L2CLK, L2CLK_40, " 4:1" },
    187 	{ L2CR_L2CLK, ~0, " ratio" },
    188 	{ 0, 0, NULL }
    189 };
    190 
    191 static void cpu_fmttab_print(const struct fmttab *, register_t);
    192 
    193 struct cputab {
    194 	const char name[8];
    195 	uint16_t version;
    196 	uint16_t revfmt;
    197 };
    198 #define	REVFMT_MAJMIN	1		/* %u.%u */
    199 #define	REVFMT_HEX	2		/* 0x%04x */
    200 #define	REVFMT_DEC	3		/* %u */
    201 static const struct cputab models[] = {
    202 	{ "601",	MPC601,		REVFMT_DEC },
    203 	{ "602",	MPC602,		REVFMT_DEC },
    204 	{ "603",	MPC603,		REVFMT_MAJMIN },
    205 	{ "603e",	MPC603e,	REVFMT_MAJMIN },
    206 	{ "603ev",	MPC603ev,	REVFMT_MAJMIN },
    207 	{ "G2",		MPCG2,		REVFMT_MAJMIN },
    208 	{ "604",	MPC604,		REVFMT_MAJMIN },
    209 	{ "604e",	MPC604e,	REVFMT_MAJMIN },
    210 	{ "604ev",	MPC604ev,	REVFMT_MAJMIN },
    211 	{ "620",	MPC620,  	REVFMT_HEX },
    212 	{ "750",	MPC750,		REVFMT_MAJMIN },
    213 	{ "750FX",	IBM750FX,	REVFMT_MAJMIN },
    214 	{ "750GX",	IBM750GX,	REVFMT_MAJMIN },
    215 	{ "7400",	MPC7400,	REVFMT_MAJMIN },
    216 	{ "7410",	MPC7410,	REVFMT_MAJMIN },
    217 	{ "7450",	MPC7450,	REVFMT_MAJMIN },
    218 	{ "7455",	MPC7455,	REVFMT_MAJMIN },
    219 	{ "7457",	MPC7457,	REVFMT_MAJMIN },
    220 	{ "7447A",	MPC7447A,	REVFMT_MAJMIN },
    221 	{ "7448",	MPC7448,	REVFMT_MAJMIN },
    222 	{ "8240",	MPC8240,	REVFMT_MAJMIN },
    223 	{ "8245",	MPC8245,	REVFMT_MAJMIN },
    224 	{ "970",	IBM970,		REVFMT_MAJMIN },
    225 	{ "970FX",	IBM970FX,	REVFMT_MAJMIN },
    226 	{ "970MP",	IBM970MP,	REVFMT_MAJMIN },
    227 	{ "POWER3II",   IBMPOWER3II,    REVFMT_MAJMIN },
    228 	{ "",		0,		REVFMT_HEX }
    229 };
    230 
    231 #ifdef MULTIPROCESSOR
    232 struct cpu_info cpu_info[CPU_MAXNUM] = {
    233     [0] = {
    234 	.ci_curlwp = &lwp0,
    235     },
    236 };
    237 volatile struct cpu_hatch_data *cpu_hatch_data;
    238 volatile int cpu_hatch_stack;
    239 extern int ticks_per_intr;
    240 #include <powerpc/oea/bat.h>
    241 #include <arch/powerpc/pic/picvar.h>
    242 #include <arch/powerpc/pic/ipivar.h>
    243 extern struct bat battable[];
    244 #else
    245 struct cpu_info cpu_info[1] = {
    246     [0] = {
    247 	.ci_curlwp = &lwp0,
    248     },
    249 };
    250 #endif /*MULTIPROCESSOR*/
    251 
    252 int cpu_altivec;
    253 int cpu_psluserset, cpu_pslusermod;
    254 char cpu_model[80];
    255 
    256 /* This is to be called from locore.S, and nowhere else. */
    257 
    258 void
    259 cpu_model_init(void)
    260 {
    261 	u_int pvr, vers;
    262 
    263 	pvr = mfpvr();
    264 	vers = pvr >> 16;
    265 
    266 	oeacpufeat = 0;
    267 
    268 	if ((vers >= IBMRS64II && vers <= IBM970GX) || vers == MPC620 ||
    269 		vers == IBMCELL || vers == IBMPOWER6P5)
    270 		oeacpufeat |= OEACPU_64 | OEACPU_64_BRIDGE | OEACPU_NOBAT;
    271 
    272 	else if (vers == MPC601)
    273 		oeacpufeat |= OEACPU_601;
    274 
    275 	else if (MPC745X_P(vers) && vers != MPC7450)
    276 		oeacpufeat |= OEACPU_XBSEN | OEACPU_HIGHBAT | OEACPU_HIGHSPRG;
    277 
    278 	else if (vers == IBM750FX || vers == IBM750GX)
    279 		oeacpufeat |= OEACPU_HIGHBAT;
    280 }
    281 
    282 void
    283 cpu_fmttab_print(const struct fmttab *fmt, register_t data)
    284 {
    285 	for (; fmt->fmt_mask != 0 || fmt->fmt_value != 0; fmt++) {
    286 		if ((~fmt->fmt_mask & fmt->fmt_value) != 0 ||
    287 		    (data & fmt->fmt_mask) == fmt->fmt_value)
    288 			aprint_normal("%s", fmt->fmt_string);
    289 	}
    290 }
    291 
    292 void
    293 cpu_idlespin(void)
    294 {
    295 	register_t msr;
    296 
    297 	if (powersave <= 0)
    298 		return;
    299 
    300 	__asm volatile(
    301 		"sync;"
    302 		"mfmsr	%0;"
    303 		"oris	%0,%0,%1@h;"	/* enter power saving mode */
    304 		"mtmsr	%0;"
    305 		"isync;"
    306 	    :	"=r"(msr)
    307 	    :	"J"(PSL_POW));
    308 }
    309 
    310 void
    311 cpu_probe_cache(void)
    312 {
    313 	u_int assoc, pvr, vers;
    314 
    315 	pvr = mfpvr();
    316 	vers = pvr >> 16;
    317 
    318 
    319 	/* Presently common across almost all implementations. */
    320 	curcpu()->ci_ci.dcache_line_size = 32;
    321 	curcpu()->ci_ci.icache_line_size = 32;
    322 
    323 
    324 	switch (vers) {
    325 #define	K	*1024
    326 	case IBM750FX:
    327 	case IBM750GX:
    328 	case MPC601:
    329 	case MPC750:
    330 	case MPC7400:
    331 	case MPC7447A:
    332 	case MPC7448:
    333 	case MPC7450:
    334 	case MPC7455:
    335 	case MPC7457:
    336 		curcpu()->ci_ci.dcache_size = 32 K;
    337 		curcpu()->ci_ci.icache_size = 32 K;
    338 		assoc = 8;
    339 		break;
    340 	case MPC603:
    341 		curcpu()->ci_ci.dcache_size = 8 K;
    342 		curcpu()->ci_ci.icache_size = 8 K;
    343 		assoc = 2;
    344 		break;
    345 	case MPC603e:
    346 	case MPC603ev:
    347 	case MPC604:
    348 	case MPC8240:
    349 	case MPC8245:
    350 	case MPCG2:
    351 		curcpu()->ci_ci.dcache_size = 16 K;
    352 		curcpu()->ci_ci.icache_size = 16 K;
    353 		assoc = 4;
    354 		break;
    355 	case MPC604e:
    356 	case MPC604ev:
    357 		curcpu()->ci_ci.dcache_size = 32 K;
    358 		curcpu()->ci_ci.icache_size = 32 K;
    359 		assoc = 4;
    360 		break;
    361 	case IBMPOWER3II:
    362 		curcpu()->ci_ci.dcache_size = 64 K;
    363 		curcpu()->ci_ci.icache_size = 32 K;
    364 		curcpu()->ci_ci.dcache_line_size = 128;
    365 		curcpu()->ci_ci.icache_line_size = 128;
    366 		assoc = 128; /* not a typo */
    367 		break;
    368 	case IBM970:
    369 	case IBM970FX:
    370 	case IBM970MP:
    371 		curcpu()->ci_ci.dcache_size = 32 K;
    372 		curcpu()->ci_ci.icache_size = 64 K;
    373 		curcpu()->ci_ci.dcache_line_size = 128;
    374 		curcpu()->ci_ci.icache_line_size = 128;
    375 		assoc = 2;
    376 		break;
    377 
    378 	default:
    379 		curcpu()->ci_ci.dcache_size = PAGE_SIZE;
    380 		curcpu()->ci_ci.icache_size = PAGE_SIZE;
    381 		assoc = 1;
    382 #undef	K
    383 	}
    384 
    385 	/*
    386 	 * Possibly recolor.
    387 	 */
    388 	uvm_page_recolor(atop(curcpu()->ci_ci.dcache_size / assoc));
    389 }
    390 
    391 struct cpu_info *
    392 cpu_attach_common(device_t self, int id)
    393 {
    394 	struct cpu_info *ci;
    395 	u_int pvr, vers;
    396 
    397 	ci = &cpu_info[id];
    398 #ifndef MULTIPROCESSOR
    399 	/*
    400 	 * If this isn't the primary CPU, print an error message
    401 	 * and just bail out.
    402 	 */
    403 	if (id != 0) {
    404 		aprint_normal(": ID %d\n", id);
    405 		aprint_normal_dev(self,
    406 		    "processor off-line; "
    407 		    "multiprocessor support not present in kernel\n");
    408 		return (NULL);
    409 	}
    410 #endif
    411 
    412 	ci->ci_cpuid = id;
    413 	ci->ci_idepth = -1;
    414 	ci->ci_dev = self;
    415 	ci->ci_idlespin = cpu_idlespin;
    416 
    417 	pvr = mfpvr();
    418 	vers = (pvr >> 16) & 0xffff;
    419 
    420 	switch (id) {
    421 	case 0:
    422 		/* load my cpu_number to PIR */
    423 		switch (vers) {
    424 		case MPC601:
    425 		case MPC604:
    426 		case MPC604e:
    427 		case MPC604ev:
    428 		case MPC7400:
    429 		case MPC7410:
    430 		case MPC7447A:
    431 		case MPC7448:
    432 		case MPC7450:
    433 		case MPC7455:
    434 		case MPC7457:
    435 			mtspr(SPR_PIR, id);
    436 		}
    437 		cpu_setup(self, ci);
    438 		break;
    439 	default:
    440 		if (id >= CPU_MAXNUM) {
    441 			aprint_normal(": more than %d cpus?\n", CPU_MAXNUM);
    442 			panic("cpuattach");
    443 		}
    444 #ifndef MULTIPROCESSOR
    445 		aprint_normal(" not configured\n");
    446 		return NULL;
    447 #else
    448 		mi_cpu_attach(ci);
    449 		break;
    450 #endif
    451 	}
    452 	return (ci);
    453 }
    454 
    455 void
    456 cpu_setup(device_t self, struct cpu_info *ci)
    457 {
    458 	u_int hid0, hid0_save, pvr, vers;
    459 	const char * const xname = device_xname(self);
    460 	const char *bitmask;
    461 	char hidbuf[128];
    462 	char model[80];
    463 
    464 	pvr = mfpvr();
    465 	vers = (pvr >> 16) & 0xffff;
    466 
    467 	cpu_identify(model, sizeof(model));
    468 	aprint_normal(": %s, ID %d%s\n", model,  cpu_number(),
    469 	    cpu_number() == 0 ? " (primary)" : "");
    470 
    471 	/* set the cpu number */
    472 	ci->ci_cpuid = cpu_number();
    473 	hid0_save = hid0 = mfspr(SPR_HID0);
    474 
    475 	cpu_probe_cache();
    476 
    477 	/*
    478 	 * Configure power-saving mode.
    479 	 */
    480 	switch (vers) {
    481 	case MPC604:
    482 	case MPC604e:
    483 	case MPC604ev:
    484 		/*
    485 		 * Do not have HID0 support settings, but can support
    486 		 * MSR[POW] off
    487 		 */
    488 		powersave = 1;
    489 		break;
    490 
    491 	case MPC603:
    492 	case MPC603e:
    493 	case MPC603ev:
    494 	case MPC7400:
    495 	case MPC7410:
    496 	case MPC8240:
    497 	case MPC8245:
    498 	case MPCG2:
    499 		/* Select DOZE mode. */
    500 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
    501 		hid0 |= HID0_DOZE | HID0_DPM;
    502 		powersave = 1;
    503 		break;
    504 
    505 	case MPC750:
    506 	case IBM750FX:
    507 	case IBM750GX:
    508 		/* Select NAP mode. */
    509 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
    510 		hid0 |= HID0_NAP | HID0_DPM;
    511 		powersave = 1;
    512 		break;
    513 
    514 	case MPC7447A:
    515 	case MPC7448:
    516 	case MPC7457:
    517 	case MPC7455:
    518 	case MPC7450:
    519 		/* Enable the 7450 branch caches */
    520 		hid0 |= HID0_SGE | HID0_BTIC;
    521 		hid0 |= HID0_LRSTK | HID0_FOLD | HID0_BHT;
    522 		/* Enable more and larger BAT registers */
    523 		if (oeacpufeat & OEACPU_XBSEN)
    524 			hid0 |= HID0_XBSEN;
    525 		if (oeacpufeat & OEACPU_HIGHBAT)
    526 			hid0 |= HID0_HIGH_BAT_EN;
    527 		/* Disable BTIC on 7450 Rev 2.0 or earlier */
    528 		if (vers == MPC7450 && (pvr & 0xFFFF) <= 0x0200)
    529 			hid0 &= ~HID0_BTIC;
    530 		/* Select NAP mode. */
    531 		hid0 &= ~HID0_SLEEP;
    532 		hid0 |= HID0_NAP | HID0_DPM;
    533 		powersave = 1;
    534 		break;
    535 
    536 	case IBM970:
    537 	case IBM970FX:
    538 	case IBM970MP:
    539 	case IBMPOWER3II:
    540 	default:
    541 		/* No power-saving mode is available. */ ;
    542 	}
    543 
    544 #ifdef NAPMODE
    545 	switch (vers) {
    546 	case IBM750FX:
    547 	case IBM750GX:
    548 	case MPC750:
    549 	case MPC7400:
    550 		/* Select NAP mode. */
    551 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
    552 		hid0 |= HID0_NAP;
    553 		break;
    554 	}
    555 #endif
    556 
    557 	switch (vers) {
    558 	case IBM750FX:
    559 	case IBM750GX:
    560 	case MPC750:
    561 		hid0 &= ~HID0_DBP;		/* XXX correct? */
    562 		hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
    563 		break;
    564 
    565 	case MPC7400:
    566 	case MPC7410:
    567 		hid0 &= ~HID0_SPD;
    568 		hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
    569 		hid0 |= HID0_EIEC;
    570 		break;
    571 	}
    572 
    573 	if (hid0 != hid0_save) {
    574 		mtspr(SPR_HID0, hid0);
    575 		__asm volatile("sync;isync");
    576 	}
    577 
    578 
    579 	switch (vers) {
    580 	case MPC601:
    581 		bitmask = HID0_601_BITMASK;
    582 		break;
    583 	case MPC7450:
    584 	case MPC7455:
    585 	case MPC7457:
    586 		bitmask = HID0_7450_BITMASK;
    587 		break;
    588 	case IBM970:
    589 	case IBM970FX:
    590 	case IBM970MP:
    591 		bitmask = 0;
    592 		break;
    593 	default:
    594 		bitmask = HID0_BITMASK;
    595 		break;
    596 	}
    597 	snprintb(hidbuf, sizeof hidbuf, bitmask, hid0);
    598 	aprint_normal_dev(self, "HID0 %s, powersave: %d\n", hidbuf, powersave);
    599 
    600 	ci->ci_khz = 0;
    601 
    602 	/*
    603 	 * Display speed and cache configuration.
    604 	 */
    605 	switch (vers) {
    606 	case MPC604:
    607 	case MPC604e:
    608 	case MPC604ev:
    609 	case MPC750:
    610 	case IBM750FX:
    611 	case IBM750GX:
    612 	case MPC7400:
    613 	case MPC7410:
    614 	case MPC7447A:
    615 	case MPC7448:
    616 	case MPC7450:
    617 	case MPC7455:
    618 	case MPC7457:
    619 		aprint_normal_dev(self, "");
    620 		cpu_probe_speed(ci);
    621 		aprint_normal("%u.%02u MHz",
    622 			      ci->ci_khz / 1000, (ci->ci_khz / 10) % 100);
    623 		switch (vers) {
    624 		case MPC7450: /* 7441 does not have L3! */
    625 		case MPC7455: /* 7445 does not have L3! */
    626 		case MPC7457: /* 7447 does not have L3! */
    627 			cpu_config_l3cr(vers);
    628 			break;
    629 		case IBM750FX:
    630 		case IBM750GX:
    631 		case MPC750:
    632 		case MPC7400:
    633 		case MPC7410:
    634 		case MPC7447A:
    635 		case MPC7448:
    636 			cpu_config_l2cr(pvr);
    637 			break;
    638 		default:
    639 			break;
    640 		}
    641 		aprint_normal("\n");
    642 		break;
    643 	}
    644 
    645 #if NSYSMON_ENVSYS > 0
    646 	/*
    647 	 * Attach MPC750 temperature sensor to the envsys subsystem.
    648 	 * XXX the 74xx series also has this sensor, but it is not
    649 	 * XXX supported by Motorola and may return values that are off by
    650 	 * XXX 35-55 degrees C.
    651 	 */
    652 	if (vers == MPC750 || vers == IBM750FX || vers == IBM750GX)
    653 		cpu_tau_setup(ci);
    654 #endif
    655 
    656 	evcnt_attach_dynamic(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
    657 		NULL, xname, "clock");
    658 	evcnt_attach_dynamic(&ci->ci_ev_softclock, EVCNT_TYPE_INTR,
    659 		NULL, xname, "soft clock");
    660 	evcnt_attach_dynamic(&ci->ci_ev_softnet, EVCNT_TYPE_INTR,
    661 		NULL, xname, "soft net");
    662 	evcnt_attach_dynamic(&ci->ci_ev_softserial, EVCNT_TYPE_INTR,
    663 		NULL, xname, "soft serial");
    664 	evcnt_attach_dynamic(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
    665 		NULL, xname, "traps");
    666 	evcnt_attach_dynamic(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
    667 		&ci->ci_ev_traps, xname, "kernel DSI traps");
    668 	evcnt_attach_dynamic(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
    669 		&ci->ci_ev_traps, xname, "user DSI traps");
    670 	evcnt_attach_dynamic(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
    671 		&ci->ci_ev_udsi, xname, "user DSI failures");
    672 	evcnt_attach_dynamic(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP,
    673 		&ci->ci_ev_traps, xname, "kernel ISI traps");
    674 	evcnt_attach_dynamic(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
    675 		&ci->ci_ev_traps, xname, "user ISI traps");
    676 	evcnt_attach_dynamic(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
    677 		&ci->ci_ev_isi, xname, "user ISI failures");
    678 	evcnt_attach_dynamic(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
    679 		&ci->ci_ev_traps, xname, "system call traps");
    680 	evcnt_attach_dynamic(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
    681 		&ci->ci_ev_traps, xname, "PGM traps");
    682 	evcnt_attach_dynamic(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
    683 		&ci->ci_ev_traps, xname, "FPU unavailable traps");
    684 	evcnt_attach_dynamic(&ci->ci_ev_fpusw, EVCNT_TYPE_TRAP,
    685 		&ci->ci_ev_fpu, xname, "FPU context switches");
    686 	evcnt_attach_dynamic(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
    687 		&ci->ci_ev_traps, xname, "user alignment traps");
    688 	evcnt_attach_dynamic(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
    689 		&ci->ci_ev_ali, xname, "user alignment traps");
    690 	evcnt_attach_dynamic(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
    691 		&ci->ci_ev_umchk, xname, "user MCHK failures");
    692 	evcnt_attach_dynamic(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
    693 		&ci->ci_ev_traps, xname, "AltiVec unavailable");
    694 #ifdef ALTIVEC
    695 	if (cpu_altivec) {
    696 		evcnt_attach_dynamic(&ci->ci_ev_vecsw, EVCNT_TYPE_TRAP,
    697 		    &ci->ci_ev_vec, xname, "AltiVec context switches");
    698 	}
    699 #endif
    700 	evcnt_attach_dynamic(&ci->ci_ev_ipi, EVCNT_TYPE_INTR,
    701 		NULL, xname, "IPIs");
    702 }
    703 
    704 /*
    705  * According to a document labeled "PVR Register Settings":
    706  ** For integrated microprocessors the PVR register inside the device
    707  ** will identify the version of the microprocessor core. You must also
    708  ** read the Device ID, PCI register 02, to identify the part and the
    709  ** Revision ID, PCI register 08, to identify the revision of the
    710  ** integrated microprocessor.
    711  * This apparently applies to 8240/8245/8241, PVR 00810101 and 80811014
    712  */
    713 
    714 void
    715 cpu_identify(char *str, size_t len)
    716 {
    717 	u_int pvr, major, minor;
    718 	uint16_t vers, rev, revfmt;
    719 	const struct cputab *cp;
    720 	const char *name;
    721 	size_t n;
    722 
    723 	pvr = mfpvr();
    724 	vers = pvr >> 16;
    725 	rev = pvr;
    726 
    727 	switch (vers) {
    728 	case MPC7410:
    729 		minor = (pvr >> 0) & 0xff;
    730 		major = minor <= 4 ? 1 : 2;
    731 		break;
    732 	case MPCG2: /*XXX see note above */
    733 		major = (pvr >> 4) & 0xf;
    734 		minor = (pvr >> 0) & 0xf;
    735 		break;
    736 	default:
    737 		major = (pvr >>  8) & 0xf;
    738 		minor = (pvr >>  0) & 0xf;
    739 	}
    740 
    741 	for (cp = models; cp->name[0] != '\0'; cp++) {
    742 		if (cp->version == vers)
    743 			break;
    744 	}
    745 
    746 	if (str == NULL) {
    747 		str = cpu_model;
    748 		len = sizeof(cpu_model);
    749 		cpu = vers;
    750 	}
    751 
    752 	revfmt = cp->revfmt;
    753 	name = cp->name;
    754 	if (rev == MPC750 && pvr == 15) {
    755 		name = "755";
    756 		revfmt = REVFMT_HEX;
    757 	}
    758 
    759 	if (cp->name[0] != '\0') {
    760 		n = snprintf(str, len, "%s (Revision ", cp->name);
    761 	} else {
    762 		n = snprintf(str, len, "Version %#x (Revision ", vers);
    763 	}
    764 	if (len > n) {
    765 		switch (revfmt) {
    766 		case REVFMT_MAJMIN:
    767 			snprintf(str + n, len - n, "%u.%u)", major, minor);
    768 			break;
    769 		case REVFMT_HEX:
    770 			snprintf(str + n, len - n, "0x%04x)", rev);
    771 			break;
    772 		case REVFMT_DEC:
    773 			snprintf(str + n, len - n, "%u)", rev);
    774 			break;
    775 		}
    776 	}
    777 }
    778 
    779 #ifdef L2CR_CONFIG
    780 u_int l2cr_config = L2CR_CONFIG;
    781 #else
    782 u_int l2cr_config = 0;
    783 #endif
    784 
    785 #ifdef L3CR_CONFIG
    786 u_int l3cr_config = L3CR_CONFIG;
    787 #else
    788 u_int l3cr_config = 0;
    789 #endif
    790 
    791 void
    792 cpu_enable_l2cr(register_t l2cr)
    793 {
    794 	register_t msr, x;
    795 	uint16_t vers;
    796 
    797 	vers = mfpvr() >> 16;
    798 
    799 	/* Disable interrupts and set the cache config bits. */
    800 	msr = mfmsr();
    801 	mtmsr(msr & ~PSL_EE);
    802 #ifdef ALTIVEC
    803 	if (cpu_altivec)
    804 		__asm volatile("dssall");
    805 #endif
    806 	__asm volatile("sync");
    807 	mtspr(SPR_L2CR, l2cr & ~L2CR_L2E);
    808 	__asm volatile("sync");
    809 
    810 	/* Wait for L2 clock to be stable (640 L2 clocks). */
    811 	delay(100);
    812 
    813 	/* Invalidate all L2 contents. */
    814 	if (MPC745X_P(vers)) {
    815 		mtspr(SPR_L2CR, l2cr | L2CR_L2I);
    816 		do {
    817 			x = mfspr(SPR_L2CR);
    818 		} while (x & L2CR_L2I);
    819 	} else {
    820 		mtspr(SPR_L2CR, l2cr | L2CR_L2I);
    821 		do {
    822 			x = mfspr(SPR_L2CR);
    823 		} while (x & L2CR_L2IP);
    824 	}
    825 	/* Enable L2 cache. */
    826 	l2cr |= L2CR_L2E;
    827 	mtspr(SPR_L2CR, l2cr);
    828 	mtmsr(msr);
    829 }
    830 
    831 void
    832 cpu_enable_l3cr(register_t l3cr)
    833 {
    834 	register_t x;
    835 
    836 	/* By The Book (numbered steps from section 3.7.1.3 of MPC7450UM) */
    837 
    838 	/*
    839 	 * 1: Set all L3CR bits for final config except L3E, L3I, L3PE, and
    840 	 *    L3CLKEN.  (also mask off reserved bits in case they were included
    841 	 *    in L3CR_CONFIG)
    842 	 */
    843 	l3cr &= ~(L3CR_L3E|L3CR_L3I|L3CR_L3PE|L3CR_L3CLKEN|L3CR_RESERVED);
    844 	mtspr(SPR_L3CR, l3cr);
    845 
    846 	/* 2: Set L3CR[5] (otherwise reserved bit) to 1 */
    847 	l3cr |= 0x04000000;
    848 	mtspr(SPR_L3CR, l3cr);
    849 
    850 	/* 3: Set L3CLKEN to 1*/
    851 	l3cr |= L3CR_L3CLKEN;
    852 	mtspr(SPR_L3CR, l3cr);
    853 
    854 	/* 4/5: Perform a global cache invalidate (ref section 3.7.3.6) */
    855 	__asm volatile("dssall;sync");
    856 	/* L3 cache is already disabled, no need to clear L3E */
    857 	mtspr(SPR_L3CR, l3cr|L3CR_L3I);
    858 	do {
    859 		x = mfspr(SPR_L3CR);
    860 	} while (x & L3CR_L3I);
    861 
    862 	/* 6: Clear L3CLKEN to 0 */
    863 	l3cr &= ~L3CR_L3CLKEN;
    864 	mtspr(SPR_L3CR, l3cr);
    865 
    866 	/* 7: Perform a 'sync' and wait at least 100 CPU cycles */
    867 	__asm volatile("sync");
    868 	delay(100);
    869 
    870 	/* 8: Set L3E and L3CLKEN */
    871 	l3cr |= (L3CR_L3E|L3CR_L3CLKEN);
    872 	mtspr(SPR_L3CR, l3cr);
    873 
    874 	/* 9: Perform a 'sync' and wait at least 100 CPU cycles */
    875 	__asm volatile("sync");
    876 	delay(100);
    877 }
    878 
    879 void
    880 cpu_config_l2cr(int pvr)
    881 {
    882 	register_t l2cr;
    883 	u_int vers = (pvr >> 16) & 0xffff;
    884 
    885 	l2cr = mfspr(SPR_L2CR);
    886 
    887 	/*
    888 	 * For MP systems, the firmware may only configure the L2 cache
    889 	 * on the first CPU.  In this case, assume that the other CPUs
    890 	 * should use the same value for L2CR.
    891 	 */
    892 	if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
    893 		l2cr_config = l2cr;
    894 	}
    895 
    896 	/*
    897 	 * Configure L2 cache if not enabled.
    898 	 */
    899 	if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
    900 		cpu_enable_l2cr(l2cr_config);
    901 		l2cr = mfspr(SPR_L2CR);
    902 	}
    903 
    904 	if ((l2cr & L2CR_L2E) == 0) {
    905 		aprint_normal(" L2 cache present but not enabled ");
    906 		return;
    907 	}
    908 	aprint_normal(",");
    909 
    910 	switch (vers) {
    911 	case IBM750FX:
    912 	case IBM750GX:
    913 		cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
    914 		break;
    915 	case MPC750:
    916 		if ((pvr & 0xffffff00) == 0x00082200 /* IBM750CX */ ||
    917 		    (pvr & 0xffffef00) == 0x00082300 /* IBM750CXe */)
    918 			cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
    919 		else
    920 			cpu_fmttab_print(cpu_l2cr_formats, l2cr);
    921 		break;
    922 	case MPC7447A:
    923 	case MPC7457:
    924 		cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
    925 		return;
    926 	case MPC7448:
    927 		cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
    928 		return;
    929 	case MPC7450:
    930 	case MPC7455:
    931 		cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
    932 		break;
    933 	default:
    934 		cpu_fmttab_print(cpu_l2cr_formats, l2cr);
    935 		break;
    936 	}
    937 }
    938 
    939 void
    940 cpu_config_l3cr(int vers)
    941 {
    942 	register_t l2cr;
    943 	register_t l3cr;
    944 
    945 	l2cr = mfspr(SPR_L2CR);
    946 
    947 	/*
    948 	 * For MP systems, the firmware may only configure the L2 cache
    949 	 * on the first CPU.  In this case, assume that the other CPUs
    950 	 * should use the same value for L2CR.
    951 	 */
    952 	if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
    953 		l2cr_config = l2cr;
    954 	}
    955 
    956 	/*
    957 	 * Configure L2 cache if not enabled.
    958 	 */
    959 	if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
    960 		cpu_enable_l2cr(l2cr_config);
    961 		l2cr = mfspr(SPR_L2CR);
    962 	}
    963 
    964 	aprint_normal(",");
    965 	switch (vers) {
    966 	case MPC7447A:
    967 	case MPC7457:
    968 		cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
    969 		return;
    970 	case MPC7448:
    971 		cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
    972 		return;
    973 	default:
    974 		cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
    975 		break;
    976 	}
    977 
    978 	l3cr = mfspr(SPR_L3CR);
    979 
    980 	/*
    981 	 * For MP systems, the firmware may only configure the L3 cache
    982 	 * on the first CPU.  In this case, assume that the other CPUs
    983 	 * should use the same value for L3CR.
    984 	 */
    985 	if ((l3cr & L3CR_L3E) != 0 && l3cr_config == 0) {
    986 		l3cr_config = l3cr;
    987 	}
    988 
    989 	/*
    990 	 * Configure L3 cache if not enabled.
    991 	 */
    992 	if ((l3cr & L3CR_L3E) == 0 && l3cr_config != 0) {
    993 		cpu_enable_l3cr(l3cr_config);
    994 		l3cr = mfspr(SPR_L3CR);
    995 	}
    996 
    997 	if (l3cr & L3CR_L3E) {
    998 		aprint_normal(",");
    999 		cpu_fmttab_print(cpu_7450_l3cr_formats, l3cr);
   1000 	}
   1001 }
   1002 
   1003 void
   1004 cpu_probe_speed(struct cpu_info *ci)
   1005 {
   1006 	uint64_t cps;
   1007 
   1008 	mtspr(SPR_MMCR0, MMCR0_FC);
   1009 	mtspr(SPR_PMC1, 0);
   1010 	mtspr(SPR_MMCR0, MMCR0_PMC1SEL(PMCN_CYCLES));
   1011 	delay(100000);
   1012 	cps = (mfspr(SPR_PMC1) * 10) + 4999;
   1013 
   1014 	mtspr(SPR_MMCR0, MMCR0_FC);
   1015 
   1016 	ci->ci_khz = (cps * cpu_get_dfs()) / 1000;
   1017 }
   1018 
   1019 /*
   1020  * Read the Dynamic Frequency Switching state and return a divisor for
   1021  * the maximum frequency.
   1022  */
   1023 int
   1024 cpu_get_dfs(void)
   1025 {
   1026 	u_int pvr, vers;
   1027 
   1028 	pvr = mfpvr();
   1029 	vers = pvr >> 16;
   1030 
   1031 	switch (vers) {
   1032 	case MPC7448:
   1033 		if (mfspr(SPR_HID1) & HID1_DFS4)
   1034 			return 4;
   1035 	case MPC7447A:
   1036 		if (mfspr(SPR_HID1) & HID1_DFS2)
   1037 			return 2;
   1038 	}
   1039 	return 1;
   1040 }
   1041 
   1042 /*
   1043  * Set the Dynamic Frequency Switching divisor the same for all cpus.
   1044  */
   1045 void
   1046 cpu_set_dfs(int div)
   1047 {
   1048 	uint64_t where;
   1049 	u_int dfs_mask, pvr, vers;
   1050 
   1051 	pvr = mfpvr();
   1052 	vers = pvr >> 16;
   1053 	dfs_mask = 0;
   1054 
   1055 	switch (vers) {
   1056 	case MPC7448:
   1057 		dfs_mask |= HID1_DFS4;
   1058 	case MPC7447A:
   1059 		dfs_mask |= HID1_DFS2;
   1060 		break;
   1061 	default:
   1062 		printf("cpu_set_dfs: DFS not supported\n");
   1063 		return;
   1064 
   1065 	}
   1066 
   1067 	where = xc_broadcast(0, (xcfunc_t)cpu_set_dfs_xcall, &div, &dfs_mask);
   1068 	xc_wait(where);
   1069 }
   1070 
   1071 static void
   1072 cpu_set_dfs_xcall(void *arg1, void *arg2)
   1073 {
   1074 	u_int dfs_mask, hid1, old_hid1;
   1075 	int *divisor, s;
   1076 
   1077 	divisor = arg1;
   1078 	dfs_mask = *(u_int *)arg2;
   1079 
   1080 	s = splhigh();
   1081 	hid1 = old_hid1 = mfspr(SPR_HID1);
   1082 
   1083 	switch (*divisor) {
   1084 	case 1:
   1085 		hid1 &= ~dfs_mask;
   1086 		break;
   1087 	case 2:
   1088 		hid1 &= ~(dfs_mask & HID1_DFS4);
   1089 		hid1 |= dfs_mask & HID1_DFS2;
   1090 		break;
   1091 	case 4:
   1092 		hid1 &= ~(dfs_mask & HID1_DFS2);
   1093 		hid1 |= dfs_mask & HID1_DFS4;
   1094 		break;
   1095 	}
   1096 
   1097 	if (hid1 != old_hid1) {
   1098 		__asm volatile("sync");
   1099 		mtspr(SPR_HID1, hid1);
   1100 		__asm volatile("sync;isync");
   1101 	}
   1102 
   1103 	splx(s);
   1104 }
   1105 
   1106 #if NSYSMON_ENVSYS > 0
   1107 void
   1108 cpu_tau_setup(struct cpu_info *ci)
   1109 {
   1110 	struct sysmon_envsys *sme;
   1111 	int error, therm_delay;
   1112 
   1113 	mtspr(SPR_THRM1, SPR_THRM_VALID);
   1114 	mtspr(SPR_THRM2, 0);
   1115 
   1116 	/*
   1117 	 * we need to figure out how much 20+us in units of CPU clock cycles
   1118 	 * are
   1119 	 */
   1120 
   1121 	therm_delay = ci->ci_khz / 40;		/* 25us just to be safe */
   1122 
   1123         mtspr(SPR_THRM3, SPR_THRM_TIMER(therm_delay) | SPR_THRM_ENABLE);
   1124 
   1125 	sme = sysmon_envsys_create();
   1126 
   1127 	sensor.units = ENVSYS_STEMP;
   1128 	(void)strlcpy(sensor.desc, "CPU Temp", sizeof(sensor.desc));
   1129 	if (sysmon_envsys_sensor_attach(sme, &sensor)) {
   1130 		sysmon_envsys_destroy(sme);
   1131 		return;
   1132 	}
   1133 
   1134 	sme->sme_name = device_xname(ci->ci_dev);
   1135 	sme->sme_cookie = ci;
   1136 	sme->sme_refresh = cpu_tau_refresh;
   1137 
   1138 	if ((error = sysmon_envsys_register(sme)) != 0) {
   1139 		aprint_error_dev(ci->ci_dev,
   1140 		    " unable to register with sysmon (%d)\n", error);
   1141 		sysmon_envsys_destroy(sme);
   1142 	}
   1143 }
   1144 
   1145 
   1146 /* Find the temperature of the CPU. */
   1147 void
   1148 cpu_tau_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
   1149 {
   1150 	int i, threshold, count;
   1151 
   1152 	threshold = 64; /* Half of the 7-bit sensor range */
   1153 
   1154 	/* Successive-approximation code adapted from Motorola
   1155 	 * application note AN1800/D, "Programming the Thermal Assist
   1156 	 * Unit in the MPC750 Microprocessor".
   1157 	 */
   1158 	for (i = 5; i >= 0 ; i--) {
   1159 		mtspr(SPR_THRM1,
   1160 		    SPR_THRM_THRESHOLD(threshold) | SPR_THRM_VALID);
   1161 		count = 0;
   1162 		while ((count < 100000) &&
   1163 		    ((mfspr(SPR_THRM1) & SPR_THRM_TIV) == 0)) {
   1164 			count++;
   1165 			delay(1);
   1166 		}
   1167 		if (mfspr(SPR_THRM1) & SPR_THRM_TIN) {
   1168 			/* The interrupt bit was set, meaning the
   1169 			 * temperature was above the threshold
   1170 			 */
   1171 			threshold += 1 << i;
   1172 		} else {
   1173 			/* Temperature was below the threshold */
   1174 			threshold -= 1 << i;
   1175 		}
   1176 
   1177 	}
   1178 	threshold += 2;
   1179 
   1180 	/* Convert the temperature in degrees C to microkelvin */
   1181 	edata->value_cur = (threshold * 1000000) + 273150000;
   1182 	edata->state = ENVSYS_SVALID;
   1183 }
   1184 #endif /* NSYSMON_ENVSYS > 0 */
   1185 
   1186 #ifdef MULTIPROCESSOR
   1187 extern volatile u_int cpu_spinstart_ack;
   1188 
   1189 int
   1190 cpu_spinup(device_t self, struct cpu_info *ci)
   1191 {
   1192 	volatile struct cpu_hatch_data hatch_data, *h = &hatch_data;
   1193 	struct pglist mlist;
   1194 	int i, error, pvr, vers;
   1195 	char *hp;
   1196 
   1197 	pvr = mfpvr();
   1198 	vers = pvr >> 16;
   1199 	KASSERT(ci != curcpu());
   1200 
   1201 	/* Now allocate a hatch stack */
   1202 	error = uvm_pglistalloc(0x1000, 0x10000, 0x10000000, 16, 0,
   1203 	    &mlist, 1, 1);
   1204 	if (error) {
   1205 		aprint_error(": unable to allocate hatch stack\n");
   1206 		return -1;
   1207 	}
   1208 
   1209 	hp = (void *)VM_PAGE_TO_PHYS(TAILQ_FIRST(&mlist));
   1210 	memset(hp, 0, 0x1000);
   1211 
   1212 	/* Initialize secondary cpu's initial lwp to its idlelwp. */
   1213 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
   1214 	ci->ci_curpcb = lwp_getpcb(ci->ci_curlwp);
   1215 	ci->ci_curpm = ci->ci_curpcb->pcb_pm;
   1216 
   1217 	cpu_hatch_data = h;
   1218 	h->running = 0;
   1219 	h->self = self;
   1220 	h->ci = ci;
   1221 	h->pir = ci->ci_cpuid;
   1222 
   1223 	cpu_hatch_stack = (uint32_t)hp;
   1224 	ci->ci_lasttb = cpu_info[0].ci_lasttb;
   1225 
   1226 	/* copy special registers */
   1227 
   1228 	h->hid0 = mfspr(SPR_HID0);
   1229 
   1230 	__asm volatile ("mfsdr1 %0" : "=r"(h->sdr1));
   1231 	for (i = 0; i < 16; i++) {
   1232 		__asm ("mfsrin %0,%1" : "=r"(h->sr[i]) :
   1233 		       "r"(i << ADDR_SR_SHFT));
   1234 	}
   1235 	if (oeacpufeat & OEACPU_64)
   1236 		h->asr = mfspr(SPR_ASR);
   1237 	else
   1238 		h->asr = 0;
   1239 
   1240 	/* copy the bat regs */
   1241 	__asm volatile ("mfibatu %0,0" : "=r"(h->batu[0]));
   1242 	__asm volatile ("mfibatl %0,0" : "=r"(h->batl[0]));
   1243 	__asm volatile ("mfibatu %0,1" : "=r"(h->batu[1]));
   1244 	__asm volatile ("mfibatl %0,1" : "=r"(h->batl[1]));
   1245 	__asm volatile ("mfibatu %0,2" : "=r"(h->batu[2]));
   1246 	__asm volatile ("mfibatl %0,2" : "=r"(h->batl[2]));
   1247 	__asm volatile ("mfibatu %0,3" : "=r"(h->batu[3]));
   1248 	__asm volatile ("mfibatl %0,3" : "=r"(h->batl[3]));
   1249 	__asm volatile ("sync; isync");
   1250 
   1251 	if (md_setup_trampoline(h, ci) == -1)
   1252 		return -1;
   1253 	md_presync_timebase(h);
   1254 	md_start_timebase(h);
   1255 
   1256 	/* wait for secondary printf */
   1257 
   1258 	delay(200000);
   1259 
   1260 	if (h->running < 1) {
   1261 		aprint_error("%d:CPU %d didn't start %d\n", cpu_spinstart_ack,
   1262 		    ci->ci_cpuid, cpu_spinstart_ack);
   1263 		Debugger();
   1264 		return -1;
   1265 	}
   1266 
   1267 	/* Register IPI Interrupt */
   1268 	if (ipiops.ppc_establish_ipi)
   1269 		ipiops.ppc_establish_ipi(IST_LEVEL, IPL_HIGH, NULL);
   1270 
   1271 	return 0;
   1272 }
   1273 
   1274 static volatile int start_secondary_cpu;
   1275 extern void tlbia(void);
   1276 
   1277 register_t
   1278 cpu_hatch(void)
   1279 {
   1280 	volatile struct cpu_hatch_data *h = cpu_hatch_data;
   1281 	struct cpu_info * const ci = h->ci;
   1282 	struct pcb *pcb;
   1283 	u_int msr;
   1284 	int i;
   1285 
   1286 	/* Initialize timebase. */
   1287 	__asm ("mttbl %0; mttbu %0; mttbl %0" :: "r"(0));
   1288 
   1289 	/*
   1290 	 * Set PIR (Processor Identification Register).  i.e. whoami
   1291 	 * Note that PIR is read-only on some CPU versions, so we write to it
   1292 	 * only if it has a different value than we need.
   1293 	 */
   1294 
   1295 	msr = mfspr(SPR_PIR);
   1296 	if (msr != h->pir)
   1297 		mtspr(SPR_PIR, h->pir);
   1298 
   1299 	__asm volatile ("mtsprg0 %0" :: "r"(ci));
   1300 	curlwp = ci->ci_curlwp;
   1301 	cpu_spinstart_ack = 0;
   1302 
   1303 	/* Initialize MMU. */
   1304 	__asm ("mtibatu 0,%0" :: "r"(h->batu[0]));
   1305 	__asm ("mtibatl 0,%0" :: "r"(h->batl[0]));
   1306 	__asm ("mtibatu 1,%0" :: "r"(h->batu[1]));
   1307 	__asm ("mtibatl 1,%0" :: "r"(h->batl[1]));
   1308 	__asm ("mtibatu 2,%0" :: "r"(h->batu[2]));
   1309 	__asm ("mtibatl 2,%0" :: "r"(h->batl[2]));
   1310 	__asm ("mtibatu 3,%0" :: "r"(h->batu[3]));
   1311 	__asm ("mtibatl 3,%0" :: "r"(h->batl[3]));
   1312 
   1313 	mtspr(SPR_HID0, h->hid0);
   1314 
   1315 	__asm ("mtibatl 0,%0; mtibatu 0,%1; mtdbatl 0,%0; mtdbatu 0,%1;"
   1316 	    :: "r"(battable[0].batl), "r"(battable[0].batu));
   1317 
   1318 	__asm volatile ("sync");
   1319 	for (i = 0; i < 16; i++)
   1320 		__asm ("mtsrin %0,%1" :: "r"(h->sr[i]), "r"(i << ADDR_SR_SHFT));
   1321 	__asm volatile ("sync; isync");
   1322 
   1323 	if (oeacpufeat & OEACPU_64)
   1324 		mtspr(SPR_ASR, h->asr);
   1325 
   1326 	cpu_spinstart_ack = 1;
   1327 	__asm ("ptesync");
   1328 	__asm ("mtsdr1 %0" :: "r"(h->sdr1));
   1329 	__asm volatile ("sync; isync");
   1330 
   1331 	cpu_spinstart_ack = 5;
   1332 	for (i = 0; i < 16; i++)
   1333 		__asm ("mfsrin %0,%1" : "=r"(h->sr[i]) :
   1334 		       "r"(i << ADDR_SR_SHFT));
   1335 
   1336 	/* Enable I/D address translations. */
   1337 	msr = mfmsr();
   1338 	msr |= PSL_IR|PSL_DR|PSL_ME|PSL_RI;
   1339 	mtmsr(msr);
   1340 	__asm volatile ("sync; isync");
   1341 	cpu_spinstart_ack = 2;
   1342 
   1343 	md_sync_timebase(h);
   1344 
   1345 	cpu_setup(h->self, ci);
   1346 
   1347 	h->running = 1;
   1348 	__asm volatile ("sync; isync");
   1349 
   1350 	while (start_secondary_cpu == 0)
   1351 		;
   1352 
   1353 	__asm volatile ("sync; isync");
   1354 
   1355 	aprint_normal("cpu%d started\n", curcpu()->ci_index);
   1356 	__asm volatile ("mtdec %0" :: "r"(ticks_per_intr));
   1357 
   1358 	md_setup_interrupts();
   1359 
   1360 	ci->ci_ipending = 0;
   1361 	ci->ci_cpl = 0;
   1362 
   1363 	mtmsr(mfmsr() | PSL_EE);
   1364 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
   1365 	return pcb->pcb_sp;
   1366 }
   1367 
   1368 void
   1369 cpu_boot_secondary_processors(void)
   1370 {
   1371 	start_secondary_cpu = 1;
   1372 	__asm volatile ("sync");
   1373 }
   1374 
   1375 #endif /*MULTIPROCESSOR*/
   1376