Home | History | Annotate | Line # | Download | only in oea
cpu_subr.c revision 1.70.6.1
      1 /*	$NetBSD: cpu_subr.c,v 1.70.6.1 2012/02/18 07:32:56 mrg Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 Matt Thomas.
      5  * Copyright (c) 2001 Tsubai Masanari.
      6  * Copyright (c) 1998, 1999, 2001 Internet Research Institute, Inc.
      7  * All rights reserved.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed by
     20  *	Internet Research Institute, Inc.
     21  * 4. The name of the author may not be used to endorse or promote products
     22  *    derived from this software without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     25  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     26  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     27  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     29  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     30  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     31  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     32  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     33  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: cpu_subr.c,v 1.70.6.1 2012/02/18 07:32:56 mrg Exp $");
     38 
     39 #include "opt_ppcparam.h"
     40 #include "opt_multiprocessor.h"
     41 #include "opt_altivec.h"
     42 #include "sysmon_envsys.h"
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/device.h>
     47 #include <sys/types.h>
     48 #include <sys/lwp.h>
     49 #include <sys/xcall.h>
     50 
     51 #include <uvm/uvm.h>
     52 
     53 #include <powerpc/pcb.h>
     54 #include <powerpc/psl.h>
     55 #include <powerpc/spr.h>
     56 #include <powerpc/oea/hid.h>
     57 #include <powerpc/oea/hid_601.h>
     58 #include <powerpc/oea/spr.h>
     59 #include <powerpc/oea/cpufeat.h>
     60 
     61 #include <dev/sysmon/sysmonvar.h>
     62 
     63 static void cpu_enable_l2cr(register_t);
     64 static void cpu_enable_l3cr(register_t);
     65 static void cpu_config_l2cr(int);
     66 static void cpu_config_l3cr(int);
     67 static void cpu_probe_speed(struct cpu_info *);
     68 static void cpu_idlespin(void);
     69 static void cpu_set_dfs_xcall(void *, void *);
     70 #if NSYSMON_ENVSYS > 0
     71 static void cpu_tau_setup(struct cpu_info *);
     72 static void cpu_tau_refresh(struct sysmon_envsys *, envsys_data_t *);
     73 #endif
     74 
     75 int cpu;
     76 int ncpus;
     77 
     78 struct fmttab {
     79 	register_t fmt_mask;
     80 	register_t fmt_value;
     81 	const char *fmt_string;
     82 };
     83 
     84 /*
     85  * This should be one per CPU but since we only support it on 750 variants it
     86  * doesn't realy matter since none of them supports SMP
     87  */
     88 envsys_data_t sensor;
     89 
     90 static const struct fmttab cpu_7450_l2cr_formats[] = {
     91 	{ L2CR_L2E, 0, " disabled" },
     92 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
     93 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
     94 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
     95 	{ L2CR_L2E, ~0, " 256KB L2 cache" },
     96 	{ L2CR_L2PE, 0, " no parity" },
     97 	{ L2CR_L2PE, ~0, " parity enabled" },
     98 	{ 0, 0, NULL }
     99 };
    100 
    101 static const struct fmttab cpu_7448_l2cr_formats[] = {
    102 	{ L2CR_L2E, 0, " disabled" },
    103 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
    104 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
    105 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
    106 	{ L2CR_L2E, ~0, " 1MB L2 cache" },
    107 	{ L2CR_L2PE, 0, " no parity" },
    108 	{ L2CR_L2PE, ~0, " parity enabled" },
    109 	{ 0, 0, NULL }
    110 };
    111 
    112 static const struct fmttab cpu_7457_l2cr_formats[] = {
    113 	{ L2CR_L2E, 0, " disabled" },
    114 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
    115 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
    116 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
    117 	{ L2CR_L2E, ~0, " 512KB L2 cache" },
    118 	{ L2CR_L2PE, 0, " no parity" },
    119 	{ L2CR_L2PE, ~0, " parity enabled" },
    120 	{ 0, 0, NULL }
    121 };
    122 
    123 static const struct fmttab cpu_7450_l3cr_formats[] = {
    124 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3DO, " data-only" },
    125 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3IO, " instruction-only" },
    126 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3DO|L3CR_L3IO, " locked" },
    127 	{ L3CR_L3SIZ, L3SIZ_2M, " 2MB" },
    128 	{ L3CR_L3SIZ, L3SIZ_1M, " 1MB" },
    129 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3PE|L3CR_L3APE, " parity" },
    130 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3PE, " data-parity" },
    131 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3APE, " address-parity" },
    132 	{ L3CR_L3PE|L3CR_L3APE, 0, " no-parity" },
    133 	{ L3CR_L3SIZ, ~0, " L3 cache" },
    134 	{ L3CR_L3RT, L3RT_MSUG2_DDR, " (DDR SRAM)" },
    135 	{ L3CR_L3RT, L3RT_PIPELINE_LATE, " (LW SRAM)" },
    136 	{ L3CR_L3RT, L3RT_PB2_SRAM, " (PB2 SRAM)" },
    137 	{ L3CR_L3CLK, ~0, " at" },
    138 	{ L3CR_L3CLK, L3CLK_20, " 2:1" },
    139 	{ L3CR_L3CLK, L3CLK_25, " 2.5:1" },
    140 	{ L3CR_L3CLK, L3CLK_30, " 3:1" },
    141 	{ L3CR_L3CLK, L3CLK_35, " 3.5:1" },
    142 	{ L3CR_L3CLK, L3CLK_40, " 4:1" },
    143 	{ L3CR_L3CLK, L3CLK_50, " 5:1" },
    144 	{ L3CR_L3CLK, L3CLK_60, " 6:1" },
    145 	{ L3CR_L3CLK, ~0, " ratio" },
    146 	{ 0, 0, NULL },
    147 };
    148 
    149 static const struct fmttab cpu_ibm750_l2cr_formats[] = {
    150 	{ L2CR_L2E, 0, " disabled" },
    151 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
    152 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
    153 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
    154 	{ 0, ~0, " 512KB" },
    155 	{ L2CR_L2WT, L2CR_L2WT, " WT" },
    156 	{ L2CR_L2WT, 0, " WB" },
    157 	{ L2CR_L2PE, L2CR_L2PE, " with ECC" },
    158 	{ 0, ~0, " L2 cache" },
    159 	{ 0, 0, NULL }
    160 };
    161 
    162 static const struct fmttab cpu_l2cr_formats[] = {
    163 	{ L2CR_L2E, 0, " disabled" },
    164 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
    165 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
    166 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
    167 	{ L2CR_L2PE, L2CR_L2PE, " parity" },
    168 	{ L2CR_L2PE, 0, " no-parity" },
    169 	{ L2CR_L2SIZ, L2SIZ_2M, " 2MB" },
    170 	{ L2CR_L2SIZ, L2SIZ_1M, " 1MB" },
    171 	{ L2CR_L2SIZ, L2SIZ_512K, " 512KB" },
    172 	{ L2CR_L2SIZ, L2SIZ_256K, " 256KB" },
    173 	{ L2CR_L2WT, L2CR_L2WT, " WT" },
    174 	{ L2CR_L2WT, 0, " WB" },
    175 	{ L2CR_L2E, ~0, " L2 cache" },
    176 	{ L2CR_L2RAM, L2RAM_FLOWTHRU_BURST, " (FB SRAM)" },
    177 	{ L2CR_L2RAM, L2RAM_PIPELINE_LATE, " (LW SRAM)" },
    178 	{ L2CR_L2RAM, L2RAM_PIPELINE_BURST, " (PB SRAM)" },
    179 	{ L2CR_L2CLK, ~0, " at" },
    180 	{ L2CR_L2CLK, L2CLK_10, " 1:1" },
    181 	{ L2CR_L2CLK, L2CLK_15, " 1.5:1" },
    182 	{ L2CR_L2CLK, L2CLK_20, " 2:1" },
    183 	{ L2CR_L2CLK, L2CLK_25, " 2.5:1" },
    184 	{ L2CR_L2CLK, L2CLK_30, " 3:1" },
    185 	{ L2CR_L2CLK, L2CLK_35, " 3.5:1" },
    186 	{ L2CR_L2CLK, L2CLK_40, " 4:1" },
    187 	{ L2CR_L2CLK, ~0, " ratio" },
    188 	{ 0, 0, NULL }
    189 };
    190 
    191 static void cpu_fmttab_print(const struct fmttab *, register_t);
    192 
    193 struct cputab {
    194 	const char name[8];
    195 	uint16_t version;
    196 	uint16_t revfmt;
    197 };
    198 #define	REVFMT_MAJMIN	1		/* %u.%u */
    199 #define	REVFMT_HEX	2		/* 0x%04x */
    200 #define	REVFMT_DEC	3		/* %u */
    201 static const struct cputab models[] = {
    202 	{ "601",	MPC601,		REVFMT_DEC },
    203 	{ "602",	MPC602,		REVFMT_DEC },
    204 	{ "603",	MPC603,		REVFMT_MAJMIN },
    205 	{ "603e",	MPC603e,	REVFMT_MAJMIN },
    206 	{ "603ev",	MPC603ev,	REVFMT_MAJMIN },
    207 	{ "G2",		MPCG2,		REVFMT_MAJMIN },
    208 	{ "604",	MPC604,		REVFMT_MAJMIN },
    209 	{ "604e",	MPC604e,	REVFMT_MAJMIN },
    210 	{ "604ev",	MPC604ev,	REVFMT_MAJMIN },
    211 	{ "620",	MPC620,  	REVFMT_HEX },
    212 	{ "750",	MPC750,		REVFMT_MAJMIN },
    213 	{ "750FX",	IBM750FX,	REVFMT_MAJMIN },
    214 	{ "750GX",	IBM750GX,	REVFMT_MAJMIN },
    215 	{ "7400",	MPC7400,	REVFMT_MAJMIN },
    216 	{ "7410",	MPC7410,	REVFMT_MAJMIN },
    217 	{ "7450",	MPC7450,	REVFMT_MAJMIN },
    218 	{ "7455",	MPC7455,	REVFMT_MAJMIN },
    219 	{ "7457",	MPC7457,	REVFMT_MAJMIN },
    220 	{ "7447A",	MPC7447A,	REVFMT_MAJMIN },
    221 	{ "7448",	MPC7448,	REVFMT_MAJMIN },
    222 	{ "8240",	MPC8240,	REVFMT_MAJMIN },
    223 	{ "8245",	MPC8245,	REVFMT_MAJMIN },
    224 	{ "970",	IBM970,		REVFMT_MAJMIN },
    225 	{ "970FX",	IBM970FX,	REVFMT_MAJMIN },
    226 	{ "970MP",	IBM970MP,	REVFMT_MAJMIN },
    227 	{ "POWER3II",   IBMPOWER3II,    REVFMT_MAJMIN },
    228 	{ "",		0,		REVFMT_HEX }
    229 };
    230 
    231 #ifdef MULTIPROCESSOR
    232 struct cpu_info cpu_info[CPU_MAXNUM] = {
    233     [0] = {
    234 	.ci_curlwp = &lwp0,
    235     },
    236 };
    237 volatile struct cpu_hatch_data *cpu_hatch_data;
    238 volatile int cpu_hatch_stack;
    239 extern int ticks_per_intr;
    240 #include <powerpc/oea/bat.h>
    241 #include <powerpc/pic/picvar.h>
    242 #include <powerpc/pic/ipivar.h>
    243 extern struct bat battable[];
    244 #else
    245 struct cpu_info cpu_info[1] = {
    246     [0] = {
    247 	.ci_curlwp = &lwp0,
    248     },
    249 };
    250 #endif /*MULTIPROCESSOR*/
    251 
    252 int cpu_altivec;
    253 register_t cpu_psluserset;
    254 register_t cpu_pslusermod;
    255 register_t cpu_pslusermask = 0xffff;
    256 char cpu_model[80];
    257 
    258 /* This is to be called from locore.S, and nowhere else. */
    259 
    260 void
    261 cpu_model_init(void)
    262 {
    263 	u_int pvr, vers;
    264 
    265 	pvr = mfpvr();
    266 	vers = pvr >> 16;
    267 
    268 	oeacpufeat = 0;
    269 
    270 	if ((vers >= IBMRS64II && vers <= IBM970GX) || vers == MPC620 ||
    271 		vers == IBMCELL || vers == IBMPOWER6P5) {
    272 		oeacpufeat |= OEACPU_64;
    273 		oeacpufeat |= OEACPU_64_BRIDGE;
    274 		oeacpufeat |= OEACPU_NOBAT;
    275 
    276 	} else if (vers == MPC601) {
    277 		oeacpufeat |= OEACPU_601;
    278 
    279 	} else if (MPC745X_P(vers) && vers != MPC7450) {
    280 		oeacpufeat |= OEACPU_HIGHSPRG;
    281 		oeacpufeat |= OEACPU_XBSEN;
    282 		oeacpufeat |= OEACPU_HIGHBAT;
    283 		/* Enable more and larger BAT registers */
    284 		register_t hid0 = mfspr(SPR_HID0);
    285 		hid0 |= HID0_XBSEN;
    286 		hid0 |= HID0_HIGH_BAT_EN;
    287 		mtspr(SPR_HID0, hid0);
    288 
    289 	} else if (vers == IBM750FX || vers == IBM750GX) {
    290 		oeacpufeat |= OEACPU_HIGHBAT;
    291 	}
    292 }
    293 
    294 void
    295 cpu_fmttab_print(const struct fmttab *fmt, register_t data)
    296 {
    297 	for (; fmt->fmt_mask != 0 || fmt->fmt_value != 0; fmt++) {
    298 		if ((~fmt->fmt_mask & fmt->fmt_value) != 0 ||
    299 		    (data & fmt->fmt_mask) == fmt->fmt_value)
    300 			aprint_normal("%s", fmt->fmt_string);
    301 	}
    302 }
    303 
    304 void
    305 cpu_idlespin(void)
    306 {
    307 	register_t msr;
    308 
    309 	if (powersave <= 0)
    310 		return;
    311 
    312 	__asm volatile(
    313 		"sync;"
    314 		"mfmsr	%0;"
    315 		"oris	%0,%0,%1@h;"	/* enter power saving mode */
    316 		"mtmsr	%0;"
    317 		"isync;"
    318 	    :	"=r"(msr)
    319 	    :	"J"(PSL_POW));
    320 }
    321 
    322 void
    323 cpu_probe_cache(void)
    324 {
    325 	u_int assoc, pvr, vers;
    326 
    327 	pvr = mfpvr();
    328 	vers = pvr >> 16;
    329 
    330 
    331 	/* Presently common across almost all implementations. */
    332 	curcpu()->ci_ci.dcache_line_size = 32;
    333 	curcpu()->ci_ci.icache_line_size = 32;
    334 
    335 
    336 	switch (vers) {
    337 #define	K	*1024
    338 	case IBM750FX:
    339 	case IBM750GX:
    340 	case MPC601:
    341 	case MPC750:
    342 	case MPC7400:
    343 	case MPC7447A:
    344 	case MPC7448:
    345 	case MPC7450:
    346 	case MPC7455:
    347 	case MPC7457:
    348 		curcpu()->ci_ci.dcache_size = 32 K;
    349 		curcpu()->ci_ci.icache_size = 32 K;
    350 		assoc = 8;
    351 		break;
    352 	case MPC603:
    353 		curcpu()->ci_ci.dcache_size = 8 K;
    354 		curcpu()->ci_ci.icache_size = 8 K;
    355 		assoc = 2;
    356 		break;
    357 	case MPC603e:
    358 	case MPC603ev:
    359 	case MPC604:
    360 	case MPC8240:
    361 	case MPC8245:
    362 	case MPCG2:
    363 		curcpu()->ci_ci.dcache_size = 16 K;
    364 		curcpu()->ci_ci.icache_size = 16 K;
    365 		assoc = 4;
    366 		break;
    367 	case MPC604e:
    368 	case MPC604ev:
    369 		curcpu()->ci_ci.dcache_size = 32 K;
    370 		curcpu()->ci_ci.icache_size = 32 K;
    371 		assoc = 4;
    372 		break;
    373 	case IBMPOWER3II:
    374 		curcpu()->ci_ci.dcache_size = 64 K;
    375 		curcpu()->ci_ci.icache_size = 32 K;
    376 		curcpu()->ci_ci.dcache_line_size = 128;
    377 		curcpu()->ci_ci.icache_line_size = 128;
    378 		assoc = 128; /* not a typo */
    379 		break;
    380 	case IBM970:
    381 	case IBM970FX:
    382 	case IBM970MP:
    383 		curcpu()->ci_ci.dcache_size = 32 K;
    384 		curcpu()->ci_ci.icache_size = 64 K;
    385 		curcpu()->ci_ci.dcache_line_size = 128;
    386 		curcpu()->ci_ci.icache_line_size = 128;
    387 		assoc = 2;
    388 		break;
    389 
    390 	default:
    391 		curcpu()->ci_ci.dcache_size = PAGE_SIZE;
    392 		curcpu()->ci_ci.icache_size = PAGE_SIZE;
    393 		assoc = 1;
    394 #undef	K
    395 	}
    396 
    397 	/*
    398 	 * Possibly recolor.
    399 	 */
    400 	uvm_page_recolor(atop(curcpu()->ci_ci.dcache_size / assoc));
    401 }
    402 
    403 struct cpu_info *
    404 cpu_attach_common(device_t self, int id)
    405 {
    406 	struct cpu_info *ci;
    407 	u_int pvr, vers;
    408 
    409 	ci = &cpu_info[id];
    410 #ifndef MULTIPROCESSOR
    411 	/*
    412 	 * If this isn't the primary CPU, print an error message
    413 	 * and just bail out.
    414 	 */
    415 	if (id != 0) {
    416 		aprint_naive("\n");
    417 		aprint_normal(": ID %d\n", id);
    418 		aprint_normal_dev(self,
    419 		    "processor off-line; "
    420 		    "multiprocessor support not present in kernel\n");
    421 		return (NULL);
    422 	}
    423 #endif
    424 
    425 	ci->ci_cpuid = id;
    426 	ci->ci_idepth = -1;
    427 	ci->ci_dev = self;
    428 	ci->ci_idlespin = cpu_idlespin;
    429 
    430 	pvr = mfpvr();
    431 	vers = (pvr >> 16) & 0xffff;
    432 
    433 	switch (id) {
    434 	case 0:
    435 		/* load my cpu_number to PIR */
    436 		switch (vers) {
    437 		case MPC601:
    438 		case MPC604:
    439 		case MPC604e:
    440 		case MPC604ev:
    441 		case MPC7400:
    442 		case MPC7410:
    443 		case MPC7447A:
    444 		case MPC7448:
    445 		case MPC7450:
    446 		case MPC7455:
    447 		case MPC7457:
    448 			mtspr(SPR_PIR, id);
    449 		}
    450 		cpu_setup(self, ci);
    451 		break;
    452 	default:
    453 		aprint_naive("\n");
    454 		if (id >= CPU_MAXNUM) {
    455 			aprint_normal(": more than %d cpus?\n", CPU_MAXNUM);
    456 			panic("cpuattach");
    457 		}
    458 #ifndef MULTIPROCESSOR
    459 		aprint_normal(" not configured\n");
    460 		return NULL;
    461 #else
    462 		mi_cpu_attach(ci);
    463 		break;
    464 #endif
    465 	}
    466 	return (ci);
    467 }
    468 
    469 void
    470 cpu_setup(device_t self, struct cpu_info *ci)
    471 {
    472 	u_int hid0, hid0_save, pvr, vers;
    473 	const char * const xname = device_xname(self);
    474 	const char *bitmask;
    475 	char hidbuf[128];
    476 	char model[80];
    477 
    478 	pvr = mfpvr();
    479 	vers = (pvr >> 16) & 0xffff;
    480 
    481 	cpu_identify(model, sizeof(model));
    482 	aprint_naive("\n");
    483 	aprint_normal(": %s, ID %d%s\n", model,  cpu_number(),
    484 	    cpu_number() == 0 ? " (primary)" : "");
    485 
    486 	/* set the cpu number */
    487 	ci->ci_cpuid = cpu_number();
    488 	hid0_save = hid0 = mfspr(SPR_HID0);
    489 
    490 	cpu_probe_cache();
    491 
    492 	/*
    493 	 * Configure power-saving mode.
    494 	 */
    495 	switch (vers) {
    496 	case MPC604:
    497 	case MPC604e:
    498 	case MPC604ev:
    499 		/*
    500 		 * Do not have HID0 support settings, but can support
    501 		 * MSR[POW] off
    502 		 */
    503 		powersave = 1;
    504 		break;
    505 
    506 	case MPC603:
    507 	case MPC603e:
    508 	case MPC603ev:
    509 	case MPC7400:
    510 	case MPC7410:
    511 	case MPC8240:
    512 	case MPC8245:
    513 	case MPCG2:
    514 		/* Select DOZE mode. */
    515 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
    516 		hid0 |= HID0_DOZE | HID0_DPM;
    517 		powersave = 1;
    518 		break;
    519 
    520 	case MPC750:
    521 	case IBM750FX:
    522 	case IBM750GX:
    523 		/* Select NAP mode. */
    524 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
    525 		hid0 |= HID0_NAP | HID0_DPM;
    526 		powersave = 1;
    527 		break;
    528 
    529 	case MPC7447A:
    530 	case MPC7448:
    531 	case MPC7457:
    532 	case MPC7455:
    533 	case MPC7450:
    534 		/* Enable the 7450 branch caches */
    535 		hid0 |= HID0_SGE | HID0_BTIC;
    536 		hid0 |= HID0_LRSTK | HID0_FOLD | HID0_BHT;
    537 		/* Disable BTIC on 7450 Rev 2.0 or earlier */
    538 		if (vers == MPC7450 && (pvr & 0xFFFF) <= 0x0200)
    539 			hid0 &= ~HID0_BTIC;
    540 		/* Select NAP mode. */
    541 		hid0 &= ~HID0_SLEEP;
    542 		hid0 |= HID0_NAP | HID0_DPM;
    543 		powersave = 1;
    544 		break;
    545 
    546 	case IBM970:
    547 	case IBM970FX:
    548 	case IBM970MP:
    549 	case IBMPOWER3II:
    550 	default:
    551 		/* No power-saving mode is available. */ ;
    552 	}
    553 
    554 #ifdef NAPMODE
    555 	switch (vers) {
    556 	case IBM750FX:
    557 	case IBM750GX:
    558 	case MPC750:
    559 	case MPC7400:
    560 		/* Select NAP mode. */
    561 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
    562 		hid0 |= HID0_NAP;
    563 		break;
    564 	}
    565 #endif
    566 
    567 	switch (vers) {
    568 	case IBM750FX:
    569 	case IBM750GX:
    570 	case MPC750:
    571 		hid0 &= ~HID0_DBP;		/* XXX correct? */
    572 		hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
    573 		break;
    574 
    575 	case MPC7400:
    576 	case MPC7410:
    577 		hid0 &= ~HID0_SPD;
    578 		hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
    579 		hid0 |= HID0_EIEC;
    580 		break;
    581 	}
    582 
    583 	if (hid0 != hid0_save) {
    584 		mtspr(SPR_HID0, hid0);
    585 		__asm volatile("sync;isync");
    586 	}
    587 
    588 
    589 	switch (vers) {
    590 	case MPC601:
    591 		bitmask = HID0_601_BITMASK;
    592 		break;
    593 	case MPC7450:
    594 	case MPC7455:
    595 	case MPC7457:
    596 		bitmask = HID0_7450_BITMASK;
    597 		break;
    598 	case IBM970:
    599 	case IBM970FX:
    600 	case IBM970MP:
    601 		bitmask = 0;
    602 		break;
    603 	default:
    604 		bitmask = HID0_BITMASK;
    605 		break;
    606 	}
    607 	snprintb(hidbuf, sizeof hidbuf, bitmask, hid0);
    608 	aprint_normal_dev(self, "HID0 %s, powersave: %d\n", hidbuf, powersave);
    609 
    610 	ci->ci_khz = 0;
    611 
    612 	/*
    613 	 * Display speed and cache configuration.
    614 	 */
    615 	switch (vers) {
    616 	case MPC604:
    617 	case MPC604e:
    618 	case MPC604ev:
    619 	case MPC750:
    620 	case IBM750FX:
    621 	case IBM750GX:
    622 	case MPC7400:
    623 	case MPC7410:
    624 	case MPC7447A:
    625 	case MPC7448:
    626 	case MPC7450:
    627 	case MPC7455:
    628 	case MPC7457:
    629 		aprint_normal_dev(self, "");
    630 		cpu_probe_speed(ci);
    631 		aprint_normal("%u.%02u MHz",
    632 			      ci->ci_khz / 1000, (ci->ci_khz / 10) % 100);
    633 		switch (vers) {
    634 		case MPC7450: /* 7441 does not have L3! */
    635 		case MPC7455: /* 7445 does not have L3! */
    636 		case MPC7457: /* 7447 does not have L3! */
    637 			cpu_config_l3cr(vers);
    638 			break;
    639 		case IBM750FX:
    640 		case IBM750GX:
    641 		case MPC750:
    642 		case MPC7400:
    643 		case MPC7410:
    644 		case MPC7447A:
    645 		case MPC7448:
    646 			cpu_config_l2cr(pvr);
    647 			break;
    648 		default:
    649 			break;
    650 		}
    651 		aprint_normal("\n");
    652 		break;
    653 	}
    654 
    655 #if NSYSMON_ENVSYS > 0
    656 	/*
    657 	 * Attach MPC750 temperature sensor to the envsys subsystem.
    658 	 * XXX the 74xx series also has this sensor, but it is not
    659 	 * XXX supported by Motorola and may return values that are off by
    660 	 * XXX 35-55 degrees C.
    661 	 */
    662 	if (vers == MPC750 || vers == IBM750FX || vers == IBM750GX)
    663 		cpu_tau_setup(ci);
    664 #endif
    665 
    666 	evcnt_attach_dynamic(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
    667 		NULL, xname, "clock");
    668 	evcnt_attach_dynamic(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
    669 		NULL, xname, "traps");
    670 	evcnt_attach_dynamic(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
    671 		&ci->ci_ev_traps, xname, "kernel DSI traps");
    672 	evcnt_attach_dynamic(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
    673 		&ci->ci_ev_traps, xname, "user DSI traps");
    674 	evcnt_attach_dynamic(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
    675 		&ci->ci_ev_udsi, xname, "user DSI failures");
    676 	evcnt_attach_dynamic(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP,
    677 		&ci->ci_ev_traps, xname, "kernel ISI traps");
    678 	evcnt_attach_dynamic(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
    679 		&ci->ci_ev_traps, xname, "user ISI traps");
    680 	evcnt_attach_dynamic(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
    681 		&ci->ci_ev_isi, xname, "user ISI failures");
    682 	evcnt_attach_dynamic(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
    683 		&ci->ci_ev_traps, xname, "system call traps");
    684 	evcnt_attach_dynamic(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
    685 		&ci->ci_ev_traps, xname, "PGM traps");
    686 	evcnt_attach_dynamic(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
    687 		&ci->ci_ev_traps, xname, "FPU unavailable traps");
    688 	evcnt_attach_dynamic(&ci->ci_ev_fpusw, EVCNT_TYPE_TRAP,
    689 		&ci->ci_ev_fpu, xname, "FPU context switches");
    690 	evcnt_attach_dynamic(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
    691 		&ci->ci_ev_traps, xname, "user alignment traps");
    692 	evcnt_attach_dynamic(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
    693 		&ci->ci_ev_ali, xname, "user alignment traps");
    694 	evcnt_attach_dynamic(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
    695 		&ci->ci_ev_umchk, xname, "user MCHK failures");
    696 	evcnt_attach_dynamic(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
    697 		&ci->ci_ev_traps, xname, "AltiVec unavailable");
    698 #ifdef ALTIVEC
    699 	if (cpu_altivec) {
    700 		evcnt_attach_dynamic(&ci->ci_ev_vecsw, EVCNT_TYPE_TRAP,
    701 		    &ci->ci_ev_vec, xname, "AltiVec context switches");
    702 	}
    703 #endif
    704 	evcnt_attach_dynamic(&ci->ci_ev_ipi, EVCNT_TYPE_INTR,
    705 		NULL, xname, "IPIs");
    706 }
    707 
    708 /*
    709  * According to a document labeled "PVR Register Settings":
    710  ** For integrated microprocessors the PVR register inside the device
    711  ** will identify the version of the microprocessor core. You must also
    712  ** read the Device ID, PCI register 02, to identify the part and the
    713  ** Revision ID, PCI register 08, to identify the revision of the
    714  ** integrated microprocessor.
    715  * This apparently applies to 8240/8245/8241, PVR 00810101 and 80811014
    716  */
    717 
    718 void
    719 cpu_identify(char *str, size_t len)
    720 {
    721 	u_int pvr, major, minor;
    722 	uint16_t vers, rev, revfmt;
    723 	const struct cputab *cp;
    724 	const char *name;
    725 	size_t n;
    726 
    727 	pvr = mfpvr();
    728 	vers = pvr >> 16;
    729 	rev = pvr;
    730 
    731 	switch (vers) {
    732 	case MPC7410:
    733 		minor = (pvr >> 0) & 0xff;
    734 		major = minor <= 4 ? 1 : 2;
    735 		break;
    736 	case MPCG2: /*XXX see note above */
    737 		major = (pvr >> 4) & 0xf;
    738 		minor = (pvr >> 0) & 0xf;
    739 		break;
    740 	default:
    741 		major = (pvr >>  8) & 0xf;
    742 		minor = (pvr >>  0) & 0xf;
    743 	}
    744 
    745 	for (cp = models; cp->name[0] != '\0'; cp++) {
    746 		if (cp->version == vers)
    747 			break;
    748 	}
    749 
    750 	if (str == NULL) {
    751 		str = cpu_model;
    752 		len = sizeof(cpu_model);
    753 		cpu = vers;
    754 	}
    755 
    756 	revfmt = cp->revfmt;
    757 	name = cp->name;
    758 	if (rev == MPC750 && pvr == 15) {
    759 		name = "755";
    760 		revfmt = REVFMT_HEX;
    761 	}
    762 
    763 	if (cp->name[0] != '\0') {
    764 		n = snprintf(str, len, "%s (Revision ", cp->name);
    765 	} else {
    766 		n = snprintf(str, len, "Version %#x (Revision ", vers);
    767 	}
    768 	if (len > n) {
    769 		switch (revfmt) {
    770 		case REVFMT_MAJMIN:
    771 			snprintf(str + n, len - n, "%u.%u)", major, minor);
    772 			break;
    773 		case REVFMT_HEX:
    774 			snprintf(str + n, len - n, "0x%04x)", rev);
    775 			break;
    776 		case REVFMT_DEC:
    777 			snprintf(str + n, len - n, "%u)", rev);
    778 			break;
    779 		}
    780 	}
    781 }
    782 
    783 #ifdef L2CR_CONFIG
    784 u_int l2cr_config = L2CR_CONFIG;
    785 #else
    786 u_int l2cr_config = 0;
    787 #endif
    788 
    789 #ifdef L3CR_CONFIG
    790 u_int l3cr_config = L3CR_CONFIG;
    791 #else
    792 u_int l3cr_config = 0;
    793 #endif
    794 
    795 void
    796 cpu_enable_l2cr(register_t l2cr)
    797 {
    798 	register_t msr, x;
    799 	uint16_t vers;
    800 
    801 	vers = mfpvr() >> 16;
    802 
    803 	/* Disable interrupts and set the cache config bits. */
    804 	msr = mfmsr();
    805 	mtmsr(msr & ~PSL_EE);
    806 #ifdef ALTIVEC
    807 	if (cpu_altivec)
    808 		__asm volatile("dssall");
    809 #endif
    810 	__asm volatile("sync");
    811 	mtspr(SPR_L2CR, l2cr & ~L2CR_L2E);
    812 	__asm volatile("sync");
    813 
    814 	/* Wait for L2 clock to be stable (640 L2 clocks). */
    815 	delay(100);
    816 
    817 	/* Invalidate all L2 contents. */
    818 	if (MPC745X_P(vers)) {
    819 		mtspr(SPR_L2CR, l2cr | L2CR_L2I);
    820 		do {
    821 			x = mfspr(SPR_L2CR);
    822 		} while (x & L2CR_L2I);
    823 	} else {
    824 		mtspr(SPR_L2CR, l2cr | L2CR_L2I);
    825 		do {
    826 			x = mfspr(SPR_L2CR);
    827 		} while (x & L2CR_L2IP);
    828 	}
    829 	/* Enable L2 cache. */
    830 	l2cr |= L2CR_L2E;
    831 	mtspr(SPR_L2CR, l2cr);
    832 	mtmsr(msr);
    833 }
    834 
    835 void
    836 cpu_enable_l3cr(register_t l3cr)
    837 {
    838 	register_t x;
    839 
    840 	/* By The Book (numbered steps from section 3.7.1.3 of MPC7450UM) */
    841 
    842 	/*
    843 	 * 1: Set all L3CR bits for final config except L3E, L3I, L3PE, and
    844 	 *    L3CLKEN.  (also mask off reserved bits in case they were included
    845 	 *    in L3CR_CONFIG)
    846 	 */
    847 	l3cr &= ~(L3CR_L3E|L3CR_L3I|L3CR_L3PE|L3CR_L3CLKEN|L3CR_RESERVED);
    848 	mtspr(SPR_L3CR, l3cr);
    849 
    850 	/* 2: Set L3CR[5] (otherwise reserved bit) to 1 */
    851 	l3cr |= 0x04000000;
    852 	mtspr(SPR_L3CR, l3cr);
    853 
    854 	/* 3: Set L3CLKEN to 1*/
    855 	l3cr |= L3CR_L3CLKEN;
    856 	mtspr(SPR_L3CR, l3cr);
    857 
    858 	/* 4/5: Perform a global cache invalidate (ref section 3.7.3.6) */
    859 	__asm volatile("dssall;sync");
    860 	/* L3 cache is already disabled, no need to clear L3E */
    861 	mtspr(SPR_L3CR, l3cr|L3CR_L3I);
    862 	do {
    863 		x = mfspr(SPR_L3CR);
    864 	} while (x & L3CR_L3I);
    865 
    866 	/* 6: Clear L3CLKEN to 0 */
    867 	l3cr &= ~L3CR_L3CLKEN;
    868 	mtspr(SPR_L3CR, l3cr);
    869 
    870 	/* 7: Perform a 'sync' and wait at least 100 CPU cycles */
    871 	__asm volatile("sync");
    872 	delay(100);
    873 
    874 	/* 8: Set L3E and L3CLKEN */
    875 	l3cr |= (L3CR_L3E|L3CR_L3CLKEN);
    876 	mtspr(SPR_L3CR, l3cr);
    877 
    878 	/* 9: Perform a 'sync' and wait at least 100 CPU cycles */
    879 	__asm volatile("sync");
    880 	delay(100);
    881 }
    882 
    883 void
    884 cpu_config_l2cr(int pvr)
    885 {
    886 	register_t l2cr;
    887 	u_int vers = (pvr >> 16) & 0xffff;
    888 
    889 	l2cr = mfspr(SPR_L2CR);
    890 
    891 	/*
    892 	 * For MP systems, the firmware may only configure the L2 cache
    893 	 * on the first CPU.  In this case, assume that the other CPUs
    894 	 * should use the same value for L2CR.
    895 	 */
    896 	if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
    897 		l2cr_config = l2cr;
    898 	}
    899 
    900 	/*
    901 	 * Configure L2 cache if not enabled.
    902 	 */
    903 	if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
    904 		cpu_enable_l2cr(l2cr_config);
    905 		l2cr = mfspr(SPR_L2CR);
    906 	}
    907 
    908 	if ((l2cr & L2CR_L2E) == 0) {
    909 		aprint_normal(" L2 cache present but not enabled ");
    910 		return;
    911 	}
    912 	aprint_normal(",");
    913 
    914 	switch (vers) {
    915 	case IBM750FX:
    916 	case IBM750GX:
    917 		cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
    918 		break;
    919 	case MPC750:
    920 		if ((pvr & 0xffffff00) == 0x00082200 /* IBM750CX */ ||
    921 		    (pvr & 0xffffef00) == 0x00082300 /* IBM750CXe */)
    922 			cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
    923 		else
    924 			cpu_fmttab_print(cpu_l2cr_formats, l2cr);
    925 		break;
    926 	case MPC7447A:
    927 	case MPC7457:
    928 		cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
    929 		return;
    930 	case MPC7448:
    931 		cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
    932 		return;
    933 	case MPC7450:
    934 	case MPC7455:
    935 		cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
    936 		break;
    937 	default:
    938 		cpu_fmttab_print(cpu_l2cr_formats, l2cr);
    939 		break;
    940 	}
    941 }
    942 
    943 void
    944 cpu_config_l3cr(int vers)
    945 {
    946 	register_t l2cr;
    947 	register_t l3cr;
    948 
    949 	l2cr = mfspr(SPR_L2CR);
    950 
    951 	/*
    952 	 * For MP systems, the firmware may only configure the L2 cache
    953 	 * on the first CPU.  In this case, assume that the other CPUs
    954 	 * should use the same value for L2CR.
    955 	 */
    956 	if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
    957 		l2cr_config = l2cr;
    958 	}
    959 
    960 	/*
    961 	 * Configure L2 cache if not enabled.
    962 	 */
    963 	if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
    964 		cpu_enable_l2cr(l2cr_config);
    965 		l2cr = mfspr(SPR_L2CR);
    966 	}
    967 
    968 	aprint_normal(",");
    969 	switch (vers) {
    970 	case MPC7447A:
    971 	case MPC7457:
    972 		cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
    973 		return;
    974 	case MPC7448:
    975 		cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
    976 		return;
    977 	default:
    978 		cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
    979 		break;
    980 	}
    981 
    982 	l3cr = mfspr(SPR_L3CR);
    983 
    984 	/*
    985 	 * For MP systems, the firmware may only configure the L3 cache
    986 	 * on the first CPU.  In this case, assume that the other CPUs
    987 	 * should use the same value for L3CR.
    988 	 */
    989 	if ((l3cr & L3CR_L3E) != 0 && l3cr_config == 0) {
    990 		l3cr_config = l3cr;
    991 	}
    992 
    993 	/*
    994 	 * Configure L3 cache if not enabled.
    995 	 */
    996 	if ((l3cr & L3CR_L3E) == 0 && l3cr_config != 0) {
    997 		cpu_enable_l3cr(l3cr_config);
    998 		l3cr = mfspr(SPR_L3CR);
    999 	}
   1000 
   1001 	if (l3cr & L3CR_L3E) {
   1002 		aprint_normal(",");
   1003 		cpu_fmttab_print(cpu_7450_l3cr_formats, l3cr);
   1004 	}
   1005 }
   1006 
   1007 void
   1008 cpu_probe_speed(struct cpu_info *ci)
   1009 {
   1010 	uint64_t cps;
   1011 
   1012 	mtspr(SPR_MMCR0, MMCR0_FC);
   1013 	mtspr(SPR_PMC1, 0);
   1014 	mtspr(SPR_MMCR0, MMCR0_PMC1SEL(PMCN_CYCLES));
   1015 	delay(100000);
   1016 	cps = (mfspr(SPR_PMC1) * 10) + 4999;
   1017 
   1018 	mtspr(SPR_MMCR0, MMCR0_FC);
   1019 
   1020 	ci->ci_khz = (cps * cpu_get_dfs()) / 1000;
   1021 }
   1022 
   1023 /*
   1024  * Read the Dynamic Frequency Switching state and return a divisor for
   1025  * the maximum frequency.
   1026  */
   1027 int
   1028 cpu_get_dfs(void)
   1029 {
   1030 	u_int pvr, vers;
   1031 
   1032 	pvr = mfpvr();
   1033 	vers = pvr >> 16;
   1034 
   1035 	switch (vers) {
   1036 	case MPC7448:
   1037 		if (mfspr(SPR_HID1) & HID1_DFS4)
   1038 			return 4;
   1039 	case MPC7447A:
   1040 		if (mfspr(SPR_HID1) & HID1_DFS2)
   1041 			return 2;
   1042 	}
   1043 	return 1;
   1044 }
   1045 
   1046 /*
   1047  * Set the Dynamic Frequency Switching divisor the same for all cpus.
   1048  */
   1049 void
   1050 cpu_set_dfs(int div)
   1051 {
   1052 	uint64_t where;
   1053 	u_int dfs_mask, pvr, vers;
   1054 
   1055 	pvr = mfpvr();
   1056 	vers = pvr >> 16;
   1057 	dfs_mask = 0;
   1058 
   1059 	switch (vers) {
   1060 	case MPC7448:
   1061 		dfs_mask |= HID1_DFS4;
   1062 	case MPC7447A:
   1063 		dfs_mask |= HID1_DFS2;
   1064 		break;
   1065 	default:
   1066 		printf("cpu_set_dfs: DFS not supported\n");
   1067 		return;
   1068 
   1069 	}
   1070 
   1071 	where = xc_broadcast(0, (xcfunc_t)cpu_set_dfs_xcall, &div, &dfs_mask);
   1072 	xc_wait(where);
   1073 }
   1074 
   1075 static void
   1076 cpu_set_dfs_xcall(void *arg1, void *arg2)
   1077 {
   1078 	u_int dfs_mask, hid1, old_hid1;
   1079 	int *divisor, s;
   1080 
   1081 	divisor = arg1;
   1082 	dfs_mask = *(u_int *)arg2;
   1083 
   1084 	s = splhigh();
   1085 	hid1 = old_hid1 = mfspr(SPR_HID1);
   1086 
   1087 	switch (*divisor) {
   1088 	case 1:
   1089 		hid1 &= ~dfs_mask;
   1090 		break;
   1091 	case 2:
   1092 		hid1 &= ~(dfs_mask & HID1_DFS4);
   1093 		hid1 |= dfs_mask & HID1_DFS2;
   1094 		break;
   1095 	case 4:
   1096 		hid1 &= ~(dfs_mask & HID1_DFS2);
   1097 		hid1 |= dfs_mask & HID1_DFS4;
   1098 		break;
   1099 	}
   1100 
   1101 	if (hid1 != old_hid1) {
   1102 		__asm volatile("sync");
   1103 		mtspr(SPR_HID1, hid1);
   1104 		__asm volatile("sync;isync");
   1105 	}
   1106 
   1107 	splx(s);
   1108 }
   1109 
   1110 #if NSYSMON_ENVSYS > 0
   1111 void
   1112 cpu_tau_setup(struct cpu_info *ci)
   1113 {
   1114 	struct sysmon_envsys *sme;
   1115 	int error, therm_delay;
   1116 
   1117 	mtspr(SPR_THRM1, SPR_THRM_VALID);
   1118 	mtspr(SPR_THRM2, 0);
   1119 
   1120 	/*
   1121 	 * we need to figure out how much 20+us in units of CPU clock cycles
   1122 	 * are
   1123 	 */
   1124 
   1125 	therm_delay = ci->ci_khz / 40;		/* 25us just to be safe */
   1126 
   1127         mtspr(SPR_THRM3, SPR_THRM_TIMER(therm_delay) | SPR_THRM_ENABLE);
   1128 
   1129 	sme = sysmon_envsys_create();
   1130 
   1131 	sensor.units = ENVSYS_STEMP;
   1132 	sensor.state = ENVSYS_SINVALID;
   1133 	(void)strlcpy(sensor.desc, "CPU Temp", sizeof(sensor.desc));
   1134 	if (sysmon_envsys_sensor_attach(sme, &sensor)) {
   1135 		sysmon_envsys_destroy(sme);
   1136 		return;
   1137 	}
   1138 
   1139 	sme->sme_name = device_xname(ci->ci_dev);
   1140 	sme->sme_cookie = ci;
   1141 	sme->sme_refresh = cpu_tau_refresh;
   1142 
   1143 	if ((error = sysmon_envsys_register(sme)) != 0) {
   1144 		aprint_error_dev(ci->ci_dev,
   1145 		    " unable to register with sysmon (%d)\n", error);
   1146 		sysmon_envsys_destroy(sme);
   1147 	}
   1148 }
   1149 
   1150 
   1151 /* Find the temperature of the CPU. */
   1152 void
   1153 cpu_tau_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
   1154 {
   1155 	int i, threshold, count;
   1156 
   1157 	threshold = 64; /* Half of the 7-bit sensor range */
   1158 
   1159 	/* Successive-approximation code adapted from Motorola
   1160 	 * application note AN1800/D, "Programming the Thermal Assist
   1161 	 * Unit in the MPC750 Microprocessor".
   1162 	 */
   1163 	for (i = 5; i >= 0 ; i--) {
   1164 		mtspr(SPR_THRM1,
   1165 		    SPR_THRM_THRESHOLD(threshold) | SPR_THRM_VALID);
   1166 		count = 0;
   1167 		while ((count < 100000) &&
   1168 		    ((mfspr(SPR_THRM1) & SPR_THRM_TIV) == 0)) {
   1169 			count++;
   1170 			delay(1);
   1171 		}
   1172 		if (mfspr(SPR_THRM1) & SPR_THRM_TIN) {
   1173 			/* The interrupt bit was set, meaning the
   1174 			 * temperature was above the threshold
   1175 			 */
   1176 			threshold += 1 << i;
   1177 		} else {
   1178 			/* Temperature was below the threshold */
   1179 			threshold -= 1 << i;
   1180 		}
   1181 
   1182 	}
   1183 	threshold += 2;
   1184 
   1185 	/* Convert the temperature in degrees C to microkelvin */
   1186 	edata->value_cur = (threshold * 1000000) + 273150000;
   1187 	edata->state = ENVSYS_SVALID;
   1188 }
   1189 #endif /* NSYSMON_ENVSYS > 0 */
   1190 
   1191 #ifdef MULTIPROCESSOR
   1192 extern volatile u_int cpu_spinstart_ack;
   1193 
   1194 int
   1195 cpu_spinup(device_t self, struct cpu_info *ci)
   1196 {
   1197 	volatile struct cpu_hatch_data hatch_data, *h = &hatch_data;
   1198 	struct pglist mlist;
   1199 	int i, error, pvr, vers;
   1200 	char *hp;
   1201 
   1202 	pvr = mfpvr();
   1203 	vers = pvr >> 16;
   1204 	KASSERT(ci != curcpu());
   1205 
   1206 	/* Now allocate a hatch stack */
   1207 	error = uvm_pglistalloc(0x1000, 0x10000, 0x10000000, 16, 0,
   1208 	    &mlist, 1, 1);
   1209 	if (error) {
   1210 		aprint_error(": unable to allocate hatch stack\n");
   1211 		return -1;
   1212 	}
   1213 
   1214 	hp = (void *)VM_PAGE_TO_PHYS(TAILQ_FIRST(&mlist));
   1215 	memset(hp, 0, 0x1000);
   1216 
   1217 	/* Initialize secondary cpu's initial lwp to its idlelwp. */
   1218 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
   1219 	ci->ci_curpcb = lwp_getpcb(ci->ci_curlwp);
   1220 	ci->ci_curpm = ci->ci_curpcb->pcb_pm;
   1221 
   1222 	cpu_hatch_data = h;
   1223 	h->hatch_running = 0;
   1224 	h->hatch_self = self;
   1225 	h->hatch_ci = ci;
   1226 	h->hatch_pir = ci->ci_cpuid;
   1227 
   1228 	cpu_hatch_stack = (uint32_t)hp;
   1229 	ci->ci_lasttb = cpu_info[0].ci_lasttb;
   1230 
   1231 	/* copy special registers */
   1232 
   1233 	h->hatch_hid0 = mfspr(SPR_HID0);
   1234 
   1235 	__asm volatile ("mfsdr1 %0" : "=r"(h->hatch_sdr1));
   1236 	for (i = 0; i < 16; i++) {
   1237 		__asm ("mfsrin %0,%1" : "=r"(h->hatch_sr[i]) :
   1238 		       "r"(i << ADDR_SR_SHFT));
   1239 	}
   1240 	if (oeacpufeat & OEACPU_64)
   1241 		h->hatch_asr = mfspr(SPR_ASR);
   1242 	else
   1243 		h->hatch_asr = 0;
   1244 
   1245 	/* copy the bat regs */
   1246 	__asm volatile ("mfibatu %0,0" : "=r"(h->hatch_batu[0]));
   1247 	__asm volatile ("mfibatl %0,0" : "=r"(h->hatch_batl[0]));
   1248 	__asm volatile ("mfibatu %0,1" : "=r"(h->hatch_batu[1]));
   1249 	__asm volatile ("mfibatl %0,1" : "=r"(h->hatch_batl[1]));
   1250 	__asm volatile ("mfibatu %0,2" : "=r"(h->hatch_batu[2]));
   1251 	__asm volatile ("mfibatl %0,2" : "=r"(h->hatch_batl[2]));
   1252 	__asm volatile ("mfibatu %0,3" : "=r"(h->hatch_batu[3]));
   1253 	__asm volatile ("mfibatl %0,3" : "=r"(h->hatch_batl[3]));
   1254 	__asm volatile ("sync; isync");
   1255 
   1256 	if (md_setup_trampoline(h, ci) == -1)
   1257 		return -1;
   1258 	md_presync_timebase(h);
   1259 	md_start_timebase(h);
   1260 
   1261 	/* wait for secondary printf */
   1262 
   1263 	delay(200000);
   1264 
   1265 	if (h->hatch_running < 1) {
   1266 		aprint_error("%d:CPU %d didn't start %d\n", cpu_spinstart_ack,
   1267 		    ci->ci_cpuid, cpu_spinstart_ack);
   1268 		Debugger();
   1269 		return -1;
   1270 	}
   1271 
   1272 	/* Register IPI Interrupt */
   1273 	if (ipiops.ppc_establish_ipi)
   1274 		ipiops.ppc_establish_ipi(IST_LEVEL, IPL_HIGH, NULL);
   1275 
   1276 	return 0;
   1277 }
   1278 
   1279 static volatile int start_secondary_cpu;
   1280 extern void tlbia(void);
   1281 
   1282 register_t
   1283 cpu_hatch(void)
   1284 {
   1285 	volatile struct cpu_hatch_data *h = cpu_hatch_data;
   1286 	struct cpu_info * const ci = h->hatch_ci;
   1287 	struct pcb *pcb;
   1288 	u_int msr;
   1289 	int i;
   1290 
   1291 	/* Initialize timebase. */
   1292 	__asm ("mttbl %0; mttbu %0; mttbl %0" :: "r"(0));
   1293 
   1294 	/*
   1295 	 * Set PIR (Processor Identification Register).  i.e. whoami
   1296 	 * Note that PIR is read-only on some CPU versions, so we write to it
   1297 	 * only if it has a different value than we need.
   1298 	 */
   1299 
   1300 	msr = mfspr(SPR_PIR);
   1301 	if (msr != h->hatch_pir)
   1302 		mtspr(SPR_PIR, h->hatch_pir);
   1303 
   1304 	__asm volatile ("mtsprg0 %0" :: "r"(ci));
   1305 	curlwp = ci->ci_curlwp;
   1306 	cpu_spinstart_ack = 0;
   1307 
   1308 	/* Initialize MMU. */
   1309 	__asm ("mtibatu 0,%0" :: "r"(h->hatch_batu[0]));
   1310 	__asm ("mtibatl 0,%0" :: "r"(h->hatch_batl[0]));
   1311 	__asm ("mtibatu 1,%0" :: "r"(h->hatch_batu[1]));
   1312 	__asm ("mtibatl 1,%0" :: "r"(h->hatch_batl[1]));
   1313 	__asm ("mtibatu 2,%0" :: "r"(h->hatch_batu[2]));
   1314 	__asm ("mtibatl 2,%0" :: "r"(h->hatch_batl[2]));
   1315 	__asm ("mtibatu 3,%0" :: "r"(h->hatch_batu[3]));
   1316 	__asm ("mtibatl 3,%0" :: "r"(h->hatch_batl[3]));
   1317 
   1318 	mtspr(SPR_HID0, h->hatch_hid0);
   1319 
   1320 	__asm ("mtibatl 0,%0; mtibatu 0,%1; mtdbatl 0,%0; mtdbatu 0,%1;"
   1321 	    :: "r"(battable[0].batl), "r"(battable[0].batu));
   1322 
   1323 	__asm volatile ("sync");
   1324 	for (i = 0; i < 16; i++)
   1325 		__asm ("mtsrin %0,%1" :: "r"(h->hatch_sr[i]), "r"(i << ADDR_SR_SHFT));
   1326 	__asm volatile ("sync; isync");
   1327 
   1328 	if (oeacpufeat & OEACPU_64)
   1329 		mtspr(SPR_ASR, h->hatch_asr);
   1330 
   1331 	cpu_spinstart_ack = 1;
   1332 	__asm ("ptesync");
   1333 	__asm ("mtsdr1 %0" :: "r"(h->hatch_sdr1));
   1334 	__asm volatile ("sync; isync");
   1335 
   1336 	cpu_spinstart_ack = 5;
   1337 	for (i = 0; i < 16; i++)
   1338 		__asm ("mfsrin %0,%1" : "=r"(h->hatch_sr[i]) :
   1339 		       "r"(i << ADDR_SR_SHFT));
   1340 
   1341 	/* Enable I/D address translations. */
   1342 	msr = mfmsr();
   1343 	msr |= PSL_IR|PSL_DR|PSL_ME|PSL_RI;
   1344 	mtmsr(msr);
   1345 	__asm volatile ("sync; isync");
   1346 	cpu_spinstart_ack = 2;
   1347 
   1348 	md_sync_timebase(h);
   1349 
   1350 	cpu_setup(h->hatch_self, ci);
   1351 
   1352 	h->hatch_running = 1;
   1353 	__asm volatile ("sync; isync");
   1354 
   1355 	while (start_secondary_cpu == 0)
   1356 		;
   1357 
   1358 	__asm volatile ("sync; isync");
   1359 
   1360 	aprint_normal("cpu%d started\n", curcpu()->ci_index);
   1361 	__asm volatile ("mtdec %0" :: "r"(ticks_per_intr));
   1362 
   1363 	md_setup_interrupts();
   1364 
   1365 	ci->ci_ipending = 0;
   1366 	ci->ci_cpl = 0;
   1367 
   1368 	mtmsr(mfmsr() | PSL_EE);
   1369 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
   1370 	return pcb->pcb_sp;
   1371 }
   1372 
   1373 void
   1374 cpu_boot_secondary_processors(void)
   1375 {
   1376 	start_secondary_cpu = 1;
   1377 	__asm volatile ("sync");
   1378 }
   1379 
   1380 #endif /*MULTIPROCESSOR*/
   1381