Home | History | Annotate | Line # | Download | only in oea
cpu_subr.c revision 1.73.6.1
      1 /*	$NetBSD: cpu_subr.c,v 1.73.6.1 2012/11/20 03:01:39 tls Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 Matt Thomas.
      5  * Copyright (c) 2001 Tsubai Masanari.
      6  * Copyright (c) 1998, 1999, 2001 Internet Research Institute, Inc.
      7  * All rights reserved.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed by
     20  *	Internet Research Institute, Inc.
     21  * 4. The name of the author may not be used to endorse or promote products
     22  *    derived from this software without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     25  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     26  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     27  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     29  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     30  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     31  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     32  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     33  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: cpu_subr.c,v 1.73.6.1 2012/11/20 03:01:39 tls Exp $");
     38 
     39 #include "opt_ppcparam.h"
     40 #include "opt_ppccache.h"
     41 #include "opt_multiprocessor.h"
     42 #include "opt_altivec.h"
     43 #include "sysmon_envsys.h"
     44 
     45 #include <sys/param.h>
     46 #include <sys/systm.h>
     47 #include <sys/device.h>
     48 #include <sys/types.h>
     49 #include <sys/lwp.h>
     50 #include <sys/xcall.h>
     51 
     52 #include <uvm/uvm.h>
     53 
     54 #include <powerpc/pcb.h>
     55 #include <powerpc/psl.h>
     56 #include <powerpc/spr.h>
     57 #include <powerpc/oea/hid.h>
     58 #include <powerpc/oea/hid_601.h>
     59 #include <powerpc/oea/spr.h>
     60 #include <powerpc/oea/cpufeat.h>
     61 
     62 #include <dev/sysmon/sysmonvar.h>
     63 
     64 static void cpu_enable_l2cr(register_t);
     65 static void cpu_enable_l3cr(register_t);
     66 static void cpu_config_l2cr(int);
     67 static void cpu_config_l3cr(int);
     68 static void cpu_probe_speed(struct cpu_info *);
     69 static void cpu_idlespin(void);
     70 static void cpu_set_dfs_xcall(void *, void *);
     71 #if NSYSMON_ENVSYS > 0
     72 static void cpu_tau_setup(struct cpu_info *);
     73 static void cpu_tau_refresh(struct sysmon_envsys *, envsys_data_t *);
     74 #endif
     75 
     76 int cpu;
     77 int ncpus;
     78 
     79 struct fmttab {
     80 	register_t fmt_mask;
     81 	register_t fmt_value;
     82 	const char *fmt_string;
     83 };
     84 
     85 /*
     86  * This should be one per CPU but since we only support it on 750 variants it
     87  * doesn't realy matter since none of them supports SMP
     88  */
     89 envsys_data_t sensor;
     90 
     91 static const struct fmttab cpu_7450_l2cr_formats[] = {
     92 	{ L2CR_L2E, 0, " disabled" },
     93 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
     94 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
     95 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
     96 	{ L2CR_L2E, ~0, " 256KB L2 cache" },
     97 	{ L2CR_L2PE, 0, " no parity" },
     98 	{ L2CR_L2PE, ~0, " parity enabled" },
     99 	{ 0, 0, NULL }
    100 };
    101 
    102 static const struct fmttab cpu_7448_l2cr_formats[] = {
    103 	{ L2CR_L2E, 0, " disabled" },
    104 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
    105 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
    106 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
    107 	{ L2CR_L2E, ~0, " 1MB L2 cache" },
    108 	{ L2CR_L2PE, 0, " no parity" },
    109 	{ L2CR_L2PE, ~0, " parity enabled" },
    110 	{ 0, 0, NULL }
    111 };
    112 
    113 static const struct fmttab cpu_7457_l2cr_formats[] = {
    114 	{ L2CR_L2E, 0, " disabled" },
    115 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
    116 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
    117 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
    118 	{ L2CR_L2E, ~0, " 512KB L2 cache" },
    119 	{ L2CR_L2PE, 0, " no parity" },
    120 	{ L2CR_L2PE, ~0, " parity enabled" },
    121 	{ 0, 0, NULL }
    122 };
    123 
    124 static const struct fmttab cpu_7450_l3cr_formats[] = {
    125 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3DO, " data-only" },
    126 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3IO, " instruction-only" },
    127 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3DO|L3CR_L3IO, " locked" },
    128 	{ L3CR_L3SIZ, L3SIZ_2M, " 2MB" },
    129 	{ L3CR_L3SIZ, L3SIZ_1M, " 1MB" },
    130 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3PE|L3CR_L3APE, " parity" },
    131 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3PE, " data-parity" },
    132 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3APE, " address-parity" },
    133 	{ L3CR_L3PE|L3CR_L3APE, 0, " no-parity" },
    134 	{ L3CR_L3SIZ, ~0, " L3 cache" },
    135 	{ L3CR_L3RT, L3RT_MSUG2_DDR, " (DDR SRAM)" },
    136 	{ L3CR_L3RT, L3RT_PIPELINE_LATE, " (LW SRAM)" },
    137 	{ L3CR_L3RT, L3RT_PB2_SRAM, " (PB2 SRAM)" },
    138 	{ L3CR_L3CLK, ~0, " at" },
    139 	{ L3CR_L3CLK, L3CLK_20, " 2:1" },
    140 	{ L3CR_L3CLK, L3CLK_25, " 2.5:1" },
    141 	{ L3CR_L3CLK, L3CLK_30, " 3:1" },
    142 	{ L3CR_L3CLK, L3CLK_35, " 3.5:1" },
    143 	{ L3CR_L3CLK, L3CLK_40, " 4:1" },
    144 	{ L3CR_L3CLK, L3CLK_50, " 5:1" },
    145 	{ L3CR_L3CLK, L3CLK_60, " 6:1" },
    146 	{ L3CR_L3CLK, ~0, " ratio" },
    147 	{ 0, 0, NULL },
    148 };
    149 
    150 static const struct fmttab cpu_ibm750_l2cr_formats[] = {
    151 	{ L2CR_L2E, 0, " disabled" },
    152 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
    153 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
    154 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
    155 	{ 0, ~0, " 512KB" },
    156 	{ L2CR_L2WT, L2CR_L2WT, " WT" },
    157 	{ L2CR_L2WT, 0, " WB" },
    158 	{ L2CR_L2PE, L2CR_L2PE, " with ECC" },
    159 	{ 0, ~0, " L2 cache" },
    160 	{ 0, 0, NULL }
    161 };
    162 
    163 static const struct fmttab cpu_l2cr_formats[] = {
    164 	{ L2CR_L2E, 0, " disabled" },
    165 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
    166 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
    167 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
    168 	{ L2CR_L2PE, L2CR_L2PE, " parity" },
    169 	{ L2CR_L2PE, 0, " no-parity" },
    170 	{ L2CR_L2SIZ, L2SIZ_2M, " 2MB" },
    171 	{ L2CR_L2SIZ, L2SIZ_1M, " 1MB" },
    172 	{ L2CR_L2SIZ, L2SIZ_512K, " 512KB" },
    173 	{ L2CR_L2SIZ, L2SIZ_256K, " 256KB" },
    174 	{ L2CR_L2WT, L2CR_L2WT, " WT" },
    175 	{ L2CR_L2WT, 0, " WB" },
    176 	{ L2CR_L2E, ~0, " L2 cache" },
    177 	{ L2CR_L2RAM, L2RAM_FLOWTHRU_BURST, " (FB SRAM)" },
    178 	{ L2CR_L2RAM, L2RAM_PIPELINE_LATE, " (LW SRAM)" },
    179 	{ L2CR_L2RAM, L2RAM_PIPELINE_BURST, " (PB SRAM)" },
    180 	{ L2CR_L2CLK, ~0, " at" },
    181 	{ L2CR_L2CLK, L2CLK_10, " 1:1" },
    182 	{ L2CR_L2CLK, L2CLK_15, " 1.5:1" },
    183 	{ L2CR_L2CLK, L2CLK_20, " 2:1" },
    184 	{ L2CR_L2CLK, L2CLK_25, " 2.5:1" },
    185 	{ L2CR_L2CLK, L2CLK_30, " 3:1" },
    186 	{ L2CR_L2CLK, L2CLK_35, " 3.5:1" },
    187 	{ L2CR_L2CLK, L2CLK_40, " 4:1" },
    188 	{ L2CR_L2CLK, ~0, " ratio" },
    189 	{ 0, 0, NULL }
    190 };
    191 
    192 static void cpu_fmttab_print(const struct fmttab *, register_t);
    193 
    194 struct cputab {
    195 	const char name[8];
    196 	uint16_t version;
    197 	uint16_t revfmt;
    198 };
    199 #define	REVFMT_MAJMIN	1		/* %u.%u */
    200 #define	REVFMT_HEX	2		/* 0x%04x */
    201 #define	REVFMT_DEC	3		/* %u */
    202 static const struct cputab models[] = {
    203 	{ "601",	MPC601,		REVFMT_DEC },
    204 	{ "602",	MPC602,		REVFMT_DEC },
    205 	{ "603",	MPC603,		REVFMT_MAJMIN },
    206 	{ "603e",	MPC603e,	REVFMT_MAJMIN },
    207 	{ "603ev",	MPC603ev,	REVFMT_MAJMIN },
    208 	{ "G2",		MPCG2,		REVFMT_MAJMIN },
    209 	{ "604",	MPC604,		REVFMT_MAJMIN },
    210 	{ "604e",	MPC604e,	REVFMT_MAJMIN },
    211 	{ "604ev",	MPC604ev,	REVFMT_MAJMIN },
    212 	{ "620",	MPC620,  	REVFMT_HEX },
    213 	{ "750",	MPC750,		REVFMT_MAJMIN },
    214 	{ "750FX",	IBM750FX,	REVFMT_MAJMIN },
    215 	{ "750GX",	IBM750GX,	REVFMT_MAJMIN },
    216 	{ "7400",	MPC7400,	REVFMT_MAJMIN },
    217 	{ "7410",	MPC7410,	REVFMT_MAJMIN },
    218 	{ "7450",	MPC7450,	REVFMT_MAJMIN },
    219 	{ "7455",	MPC7455,	REVFMT_MAJMIN },
    220 	{ "7457",	MPC7457,	REVFMT_MAJMIN },
    221 	{ "7447A",	MPC7447A,	REVFMT_MAJMIN },
    222 	{ "7448",	MPC7448,	REVFMT_MAJMIN },
    223 	{ "8240",	MPC8240,	REVFMT_MAJMIN },
    224 	{ "8245",	MPC8245,	REVFMT_MAJMIN },
    225 	{ "970",	IBM970,		REVFMT_MAJMIN },
    226 	{ "970FX",	IBM970FX,	REVFMT_MAJMIN },
    227 	{ "970MP",	IBM970MP,	REVFMT_MAJMIN },
    228 	{ "POWER3II",   IBMPOWER3II,    REVFMT_MAJMIN },
    229 	{ "",		0,		REVFMT_HEX }
    230 };
    231 
    232 #ifdef MULTIPROCESSOR
    233 struct cpu_info cpu_info[CPU_MAXNUM] = {
    234     [0] = {
    235 	.ci_curlwp = &lwp0,
    236     },
    237 };
    238 volatile struct cpu_hatch_data *cpu_hatch_data;
    239 volatile int cpu_hatch_stack;
    240 #define HATCH_STACK_SIZE 0x1000
    241 extern int ticks_per_intr;
    242 #include <powerpc/oea/bat.h>
    243 #include <powerpc/pic/picvar.h>
    244 #include <powerpc/pic/ipivar.h>
    245 extern struct bat battable[];
    246 #else
    247 struct cpu_info cpu_info[1] = {
    248     [0] = {
    249 	.ci_curlwp = &lwp0,
    250     },
    251 };
    252 #endif /*MULTIPROCESSOR*/
    253 
    254 int cpu_altivec;
    255 register_t cpu_psluserset;
    256 register_t cpu_pslusermod;
    257 register_t cpu_pslusermask = 0xffff;
    258 char cpu_model[80];
    259 
    260 /* This is to be called from locore.S, and nowhere else. */
    261 
    262 void
    263 cpu_model_init(void)
    264 {
    265 	u_int pvr, vers;
    266 
    267 	pvr = mfpvr();
    268 	vers = pvr >> 16;
    269 
    270 	oeacpufeat = 0;
    271 
    272 	if ((vers >= IBMRS64II && vers <= IBM970GX) || vers == MPC620 ||
    273 		vers == IBMCELL || vers == IBMPOWER6P5) {
    274 		oeacpufeat |= OEACPU_64;
    275 		oeacpufeat |= OEACPU_64_BRIDGE;
    276 		oeacpufeat |= OEACPU_NOBAT;
    277 
    278 	} else if (vers == MPC601) {
    279 		oeacpufeat |= OEACPU_601;
    280 
    281 	} else if (MPC745X_P(vers) && vers != MPC7450) {
    282 		oeacpufeat |= OEACPU_HIGHSPRG;
    283 		oeacpufeat |= OEACPU_XBSEN;
    284 		oeacpufeat |= OEACPU_HIGHBAT;
    285 		/* Enable more and larger BAT registers */
    286 		register_t hid0 = mfspr(SPR_HID0);
    287 		hid0 |= HID0_XBSEN;
    288 		hid0 |= HID0_HIGH_BAT_EN;
    289 		mtspr(SPR_HID0, hid0);
    290 
    291 	} else if (vers == IBM750FX || vers == IBM750GX) {
    292 		oeacpufeat |= OEACPU_HIGHBAT;
    293 	}
    294 }
    295 
    296 void
    297 cpu_fmttab_print(const struct fmttab *fmt, register_t data)
    298 {
    299 	for (; fmt->fmt_mask != 0 || fmt->fmt_value != 0; fmt++) {
    300 		if ((~fmt->fmt_mask & fmt->fmt_value) != 0 ||
    301 		    (data & fmt->fmt_mask) == fmt->fmt_value)
    302 			aprint_normal("%s", fmt->fmt_string);
    303 	}
    304 }
    305 
    306 void
    307 cpu_idlespin(void)
    308 {
    309 	register_t msr;
    310 
    311 	if (powersave <= 0)
    312 		return;
    313 
    314 	__asm volatile(
    315 		"sync;"
    316 		"mfmsr	%0;"
    317 		"oris	%0,%0,%1@h;"	/* enter power saving mode */
    318 		"mtmsr	%0;"
    319 		"isync;"
    320 	    :	"=r"(msr)
    321 	    :	"J"(PSL_POW));
    322 }
    323 
    324 void
    325 cpu_probe_cache(void)
    326 {
    327 	u_int assoc, pvr, vers;
    328 
    329 	pvr = mfpvr();
    330 	vers = pvr >> 16;
    331 
    332 
    333 	/* Presently common across almost all implementations. */
    334 	curcpu()->ci_ci.dcache_line_size = 32;
    335 	curcpu()->ci_ci.icache_line_size = 32;
    336 
    337 
    338 	switch (vers) {
    339 #define	K	*1024
    340 	case IBM750FX:
    341 	case IBM750GX:
    342 	case MPC601:
    343 	case MPC750:
    344 	case MPC7400:
    345 	case MPC7447A:
    346 	case MPC7448:
    347 	case MPC7450:
    348 	case MPC7455:
    349 	case MPC7457:
    350 		curcpu()->ci_ci.dcache_size = 32 K;
    351 		curcpu()->ci_ci.icache_size = 32 K;
    352 		assoc = 8;
    353 		break;
    354 	case MPC603:
    355 		curcpu()->ci_ci.dcache_size = 8 K;
    356 		curcpu()->ci_ci.icache_size = 8 K;
    357 		assoc = 2;
    358 		break;
    359 	case MPC603e:
    360 	case MPC603ev:
    361 	case MPC604:
    362 	case MPC8240:
    363 	case MPC8245:
    364 	case MPCG2:
    365 		curcpu()->ci_ci.dcache_size = 16 K;
    366 		curcpu()->ci_ci.icache_size = 16 K;
    367 		assoc = 4;
    368 		break;
    369 	case MPC604e:
    370 	case MPC604ev:
    371 		curcpu()->ci_ci.dcache_size = 32 K;
    372 		curcpu()->ci_ci.icache_size = 32 K;
    373 		assoc = 4;
    374 		break;
    375 	case IBMPOWER3II:
    376 		curcpu()->ci_ci.dcache_size = 64 K;
    377 		curcpu()->ci_ci.icache_size = 32 K;
    378 		curcpu()->ci_ci.dcache_line_size = 128;
    379 		curcpu()->ci_ci.icache_line_size = 128;
    380 		assoc = 128; /* not a typo */
    381 		break;
    382 	case IBM970:
    383 	case IBM970FX:
    384 	case IBM970MP:
    385 		curcpu()->ci_ci.dcache_size = 32 K;
    386 		curcpu()->ci_ci.icache_size = 64 K;
    387 		curcpu()->ci_ci.dcache_line_size = 128;
    388 		curcpu()->ci_ci.icache_line_size = 128;
    389 		assoc = 2;
    390 		break;
    391 
    392 	default:
    393 		curcpu()->ci_ci.dcache_size = PAGE_SIZE;
    394 		curcpu()->ci_ci.icache_size = PAGE_SIZE;
    395 		assoc = 1;
    396 #undef	K
    397 	}
    398 
    399 	/*
    400 	 * Possibly recolor.
    401 	 */
    402 	uvm_page_recolor(atop(curcpu()->ci_ci.dcache_size / assoc));
    403 }
    404 
    405 struct cpu_info *
    406 cpu_attach_common(device_t self, int id)
    407 {
    408 	struct cpu_info *ci;
    409 	u_int pvr, vers;
    410 
    411 	ci = &cpu_info[id];
    412 #ifndef MULTIPROCESSOR
    413 	/*
    414 	 * If this isn't the primary CPU, print an error message
    415 	 * and just bail out.
    416 	 */
    417 	if (id != 0) {
    418 		aprint_naive("\n");
    419 		aprint_normal(": ID %d\n", id);
    420 		aprint_normal_dev(self,
    421 		    "processor off-line; "
    422 		    "multiprocessor support not present in kernel\n");
    423 		return (NULL);
    424 	}
    425 #endif
    426 
    427 	ci->ci_cpuid = id;
    428 	ci->ci_idepth = -1;
    429 	ci->ci_dev = self;
    430 	ci->ci_idlespin = cpu_idlespin;
    431 
    432 	pvr = mfpvr();
    433 	vers = (pvr >> 16) & 0xffff;
    434 
    435 	switch (id) {
    436 	case 0:
    437 		/* load my cpu_number to PIR */
    438 		switch (vers) {
    439 		case MPC601:
    440 		case MPC604:
    441 		case MPC604e:
    442 		case MPC604ev:
    443 		case MPC7400:
    444 		case MPC7410:
    445 		case MPC7447A:
    446 		case MPC7448:
    447 		case MPC7450:
    448 		case MPC7455:
    449 		case MPC7457:
    450 			mtspr(SPR_PIR, id);
    451 		}
    452 		cpu_setup(self, ci);
    453 		break;
    454 	default:
    455 		aprint_naive("\n");
    456 		if (id >= CPU_MAXNUM) {
    457 			aprint_normal(": more than %d cpus?\n", CPU_MAXNUM);
    458 			panic("cpuattach");
    459 		}
    460 #ifndef MULTIPROCESSOR
    461 		aprint_normal(" not configured\n");
    462 		return NULL;
    463 #else
    464 		mi_cpu_attach(ci);
    465 		break;
    466 #endif
    467 	}
    468 	return (ci);
    469 }
    470 
    471 void
    472 cpu_setup(device_t self, struct cpu_info *ci)
    473 {
    474 	u_int hid0, hid0_save, pvr, vers;
    475 	const char * const xname = device_xname(self);
    476 	const char *bitmask;
    477 	char hidbuf[128];
    478 	char model[80];
    479 
    480 	pvr = mfpvr();
    481 	vers = (pvr >> 16) & 0xffff;
    482 
    483 	cpu_identify(model, sizeof(model));
    484 	aprint_naive("\n");
    485 	aprint_normal(": %s, ID %d%s\n", model,  cpu_number(),
    486 	    cpu_number() == 0 ? " (primary)" : "");
    487 
    488 	/* set the cpu number */
    489 	ci->ci_cpuid = cpu_number();
    490 	hid0_save = hid0 = mfspr(SPR_HID0);
    491 
    492 	cpu_probe_cache();
    493 
    494 	/*
    495 	 * Configure power-saving mode.
    496 	 */
    497 	switch (vers) {
    498 	case MPC604:
    499 	case MPC604e:
    500 	case MPC604ev:
    501 		/*
    502 		 * Do not have HID0 support settings, but can support
    503 		 * MSR[POW] off
    504 		 */
    505 		powersave = 1;
    506 		break;
    507 
    508 	case MPC603:
    509 	case MPC603e:
    510 	case MPC603ev:
    511 	case MPC7400:
    512 	case MPC7410:
    513 	case MPC8240:
    514 	case MPC8245:
    515 	case MPCG2:
    516 		/* Select DOZE mode. */
    517 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
    518 		hid0 |= HID0_DOZE | HID0_DPM;
    519 		powersave = 1;
    520 		break;
    521 
    522 	case MPC750:
    523 	case IBM750FX:
    524 	case IBM750GX:
    525 		/* Select NAP mode. */
    526 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
    527 		hid0 |= HID0_NAP | HID0_DPM;
    528 		powersave = 1;
    529 		break;
    530 
    531 	case MPC7447A:
    532 	case MPC7448:
    533 	case MPC7457:
    534 	case MPC7455:
    535 	case MPC7450:
    536 		/* Enable the 7450 branch caches */
    537 		hid0 |= HID0_SGE | HID0_BTIC;
    538 		hid0 |= HID0_LRSTK | HID0_FOLD | HID0_BHT;
    539 		/* Disable BTIC on 7450 Rev 2.0 or earlier */
    540 		if (vers == MPC7450 && (pvr & 0xFFFF) <= 0x0200)
    541 			hid0 &= ~HID0_BTIC;
    542 		/* Select NAP mode. */
    543 		hid0 &= ~HID0_SLEEP;
    544 		hid0 |= HID0_NAP | HID0_DPM;
    545 		powersave = 1;
    546 		break;
    547 
    548 	case IBM970:
    549 	case IBM970FX:
    550 	case IBM970MP:
    551 	case IBMPOWER3II:
    552 	default:
    553 		/* No power-saving mode is available. */ ;
    554 	}
    555 
    556 #ifdef NAPMODE
    557 	switch (vers) {
    558 	case IBM750FX:
    559 	case IBM750GX:
    560 	case MPC750:
    561 	case MPC7400:
    562 		/* Select NAP mode. */
    563 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
    564 		hid0 |= HID0_NAP;
    565 		break;
    566 	}
    567 #endif
    568 
    569 	switch (vers) {
    570 	case IBM750FX:
    571 	case IBM750GX:
    572 	case MPC750:
    573 		hid0 &= ~HID0_DBP;		/* XXX correct? */
    574 		hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
    575 		break;
    576 
    577 	case MPC7400:
    578 	case MPC7410:
    579 		hid0 &= ~HID0_SPD;
    580 		hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
    581 		hid0 |= HID0_EIEC;
    582 		break;
    583 	}
    584 
    585 #ifdef MULTIPROCESSOR
    586 	switch (vers) {
    587 	case MPC603e:
    588 		hid0 |= HID0_ABE;
    589 	}
    590 #endif
    591 
    592 	if (hid0 != hid0_save) {
    593 		mtspr(SPR_HID0, hid0);
    594 		__asm volatile("sync;isync");
    595 	}
    596 
    597 
    598 	switch (vers) {
    599 	case MPC601:
    600 		bitmask = HID0_601_BITMASK;
    601 		break;
    602 	case MPC7450:
    603 	case MPC7455:
    604 	case MPC7457:
    605 		bitmask = HID0_7450_BITMASK;
    606 		break;
    607 	case IBM970:
    608 	case IBM970FX:
    609 	case IBM970MP:
    610 		bitmask = 0;
    611 		break;
    612 	default:
    613 		bitmask = HID0_BITMASK;
    614 		break;
    615 	}
    616 	snprintb(hidbuf, sizeof hidbuf, bitmask, hid0);
    617 	aprint_normal_dev(self, "HID0 %s, powersave: %d\n", hidbuf, powersave);
    618 
    619 	ci->ci_khz = 0;
    620 
    621 	/*
    622 	 * Display speed and cache configuration.
    623 	 */
    624 	switch (vers) {
    625 	case MPC604:
    626 	case MPC604e:
    627 	case MPC604ev:
    628 	case MPC750:
    629 	case IBM750FX:
    630 	case IBM750GX:
    631 	case MPC7400:
    632 	case MPC7410:
    633 	case MPC7447A:
    634 	case MPC7448:
    635 	case MPC7450:
    636 	case MPC7455:
    637 	case MPC7457:
    638 		aprint_normal_dev(self, "");
    639 		cpu_probe_speed(ci);
    640 		aprint_normal("%u.%02u MHz",
    641 			      ci->ci_khz / 1000, (ci->ci_khz / 10) % 100);
    642 		switch (vers) {
    643 		case MPC7450: /* 7441 does not have L3! */
    644 		case MPC7455: /* 7445 does not have L3! */
    645 		case MPC7457: /* 7447 does not have L3! */
    646 			cpu_config_l3cr(vers);
    647 			break;
    648 		case IBM750FX:
    649 		case IBM750GX:
    650 		case MPC750:
    651 		case MPC7400:
    652 		case MPC7410:
    653 		case MPC7447A:
    654 		case MPC7448:
    655 			cpu_config_l2cr(pvr);
    656 			break;
    657 		default:
    658 			break;
    659 		}
    660 		aprint_normal("\n");
    661 		break;
    662 	}
    663 
    664 #if NSYSMON_ENVSYS > 0
    665 	/*
    666 	 * Attach MPC750 temperature sensor to the envsys subsystem.
    667 	 * XXX the 74xx series also has this sensor, but it is not
    668 	 * XXX supported by Motorola and may return values that are off by
    669 	 * XXX 35-55 degrees C.
    670 	 */
    671 	if (vers == MPC750 || vers == IBM750FX || vers == IBM750GX)
    672 		cpu_tau_setup(ci);
    673 #endif
    674 
    675 	evcnt_attach_dynamic(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
    676 		NULL, xname, "clock");
    677 	evcnt_attach_dynamic(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
    678 		NULL, xname, "traps");
    679 	evcnt_attach_dynamic(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
    680 		&ci->ci_ev_traps, xname, "kernel DSI traps");
    681 	evcnt_attach_dynamic(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
    682 		&ci->ci_ev_traps, xname, "user DSI traps");
    683 	evcnt_attach_dynamic(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
    684 		&ci->ci_ev_udsi, xname, "user DSI failures");
    685 	evcnt_attach_dynamic(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP,
    686 		&ci->ci_ev_traps, xname, "kernel ISI traps");
    687 	evcnt_attach_dynamic(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
    688 		&ci->ci_ev_traps, xname, "user ISI traps");
    689 	evcnt_attach_dynamic(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
    690 		&ci->ci_ev_isi, xname, "user ISI failures");
    691 	evcnt_attach_dynamic(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
    692 		&ci->ci_ev_traps, xname, "system call traps");
    693 	evcnt_attach_dynamic(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
    694 		&ci->ci_ev_traps, xname, "PGM traps");
    695 	evcnt_attach_dynamic(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
    696 		&ci->ci_ev_traps, xname, "FPU unavailable traps");
    697 	evcnt_attach_dynamic(&ci->ci_ev_fpusw, EVCNT_TYPE_TRAP,
    698 		&ci->ci_ev_fpu, xname, "FPU context switches");
    699 	evcnt_attach_dynamic(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
    700 		&ci->ci_ev_traps, xname, "user alignment traps");
    701 	evcnt_attach_dynamic(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
    702 		&ci->ci_ev_ali, xname, "user alignment traps");
    703 	evcnt_attach_dynamic(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
    704 		&ci->ci_ev_umchk, xname, "user MCHK failures");
    705 	evcnt_attach_dynamic(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
    706 		&ci->ci_ev_traps, xname, "AltiVec unavailable");
    707 #ifdef ALTIVEC
    708 	if (cpu_altivec) {
    709 		evcnt_attach_dynamic(&ci->ci_ev_vecsw, EVCNT_TYPE_TRAP,
    710 		    &ci->ci_ev_vec, xname, "AltiVec context switches");
    711 	}
    712 #endif
    713 	evcnt_attach_dynamic(&ci->ci_ev_ipi, EVCNT_TYPE_INTR,
    714 		NULL, xname, "IPIs");
    715 }
    716 
    717 /*
    718  * According to a document labeled "PVR Register Settings":
    719  ** For integrated microprocessors the PVR register inside the device
    720  ** will identify the version of the microprocessor core. You must also
    721  ** read the Device ID, PCI register 02, to identify the part and the
    722  ** Revision ID, PCI register 08, to identify the revision of the
    723  ** integrated microprocessor.
    724  * This apparently applies to 8240/8245/8241, PVR 00810101 and 80811014
    725  */
    726 
    727 void
    728 cpu_identify(char *str, size_t len)
    729 {
    730 	u_int pvr, major, minor;
    731 	uint16_t vers, rev, revfmt;
    732 	const struct cputab *cp;
    733 	const char *name;
    734 	size_t n;
    735 
    736 	pvr = mfpvr();
    737 	vers = pvr >> 16;
    738 	rev = pvr;
    739 
    740 	switch (vers) {
    741 	case MPC7410:
    742 		minor = (pvr >> 0) & 0xff;
    743 		major = minor <= 4 ? 1 : 2;
    744 		break;
    745 	case MPCG2: /*XXX see note above */
    746 		major = (pvr >> 4) & 0xf;
    747 		minor = (pvr >> 0) & 0xf;
    748 		break;
    749 	default:
    750 		major = (pvr >>  8) & 0xf;
    751 		minor = (pvr >>  0) & 0xf;
    752 	}
    753 
    754 	for (cp = models; cp->name[0] != '\0'; cp++) {
    755 		if (cp->version == vers)
    756 			break;
    757 	}
    758 
    759 	if (str == NULL) {
    760 		str = cpu_model;
    761 		len = sizeof(cpu_model);
    762 		cpu = vers;
    763 	}
    764 
    765 	revfmt = cp->revfmt;
    766 	name = cp->name;
    767 	if (rev == MPC750 && pvr == 15) {
    768 		name = "755";
    769 		revfmt = REVFMT_HEX;
    770 	}
    771 
    772 	if (cp->name[0] != '\0') {
    773 		n = snprintf(str, len, "%s (Revision ", cp->name);
    774 	} else {
    775 		n = snprintf(str, len, "Version %#x (Revision ", vers);
    776 	}
    777 	if (len > n) {
    778 		switch (revfmt) {
    779 		case REVFMT_MAJMIN:
    780 			snprintf(str + n, len - n, "%u.%u)", major, minor);
    781 			break;
    782 		case REVFMT_HEX:
    783 			snprintf(str + n, len - n, "0x%04x)", rev);
    784 			break;
    785 		case REVFMT_DEC:
    786 			snprintf(str + n, len - n, "%u)", rev);
    787 			break;
    788 		}
    789 	}
    790 }
    791 
    792 #ifdef L2CR_CONFIG
    793 u_int l2cr_config = L2CR_CONFIG;
    794 #else
    795 u_int l2cr_config = 0;
    796 #endif
    797 
    798 #ifdef L3CR_CONFIG
    799 u_int l3cr_config = L3CR_CONFIG;
    800 #else
    801 u_int l3cr_config = 0;
    802 #endif
    803 
    804 void
    805 cpu_enable_l2cr(register_t l2cr)
    806 {
    807 	register_t msr, x;
    808 	uint16_t vers;
    809 
    810 	vers = mfpvr() >> 16;
    811 
    812 	/* Disable interrupts and set the cache config bits. */
    813 	msr = mfmsr();
    814 	mtmsr(msr & ~PSL_EE);
    815 #ifdef ALTIVEC
    816 	if (cpu_altivec)
    817 		__asm volatile("dssall");
    818 #endif
    819 	__asm volatile("sync");
    820 	mtspr(SPR_L2CR, l2cr & ~L2CR_L2E);
    821 	__asm volatile("sync");
    822 
    823 	/* Wait for L2 clock to be stable (640 L2 clocks). */
    824 	delay(100);
    825 
    826 	/* Invalidate all L2 contents. */
    827 	if (MPC745X_P(vers)) {
    828 		mtspr(SPR_L2CR, l2cr | L2CR_L2I);
    829 		do {
    830 			x = mfspr(SPR_L2CR);
    831 		} while (x & L2CR_L2I);
    832 	} else {
    833 		mtspr(SPR_L2CR, l2cr | L2CR_L2I);
    834 		do {
    835 			x = mfspr(SPR_L2CR);
    836 		} while (x & L2CR_L2IP);
    837 	}
    838 	/* Enable L2 cache. */
    839 	l2cr |= L2CR_L2E;
    840 	mtspr(SPR_L2CR, l2cr);
    841 	mtmsr(msr);
    842 }
    843 
    844 void
    845 cpu_enable_l3cr(register_t l3cr)
    846 {
    847 	register_t x;
    848 
    849 	/* By The Book (numbered steps from section 3.7.1.3 of MPC7450UM) */
    850 
    851 	/*
    852 	 * 1: Set all L3CR bits for final config except L3E, L3I, L3PE, and
    853 	 *    L3CLKEN.  (also mask off reserved bits in case they were included
    854 	 *    in L3CR_CONFIG)
    855 	 */
    856 	l3cr &= ~(L3CR_L3E|L3CR_L3I|L3CR_L3PE|L3CR_L3CLKEN|L3CR_RESERVED);
    857 	mtspr(SPR_L3CR, l3cr);
    858 
    859 	/* 2: Set L3CR[5] (otherwise reserved bit) to 1 */
    860 	l3cr |= 0x04000000;
    861 	mtspr(SPR_L3CR, l3cr);
    862 
    863 	/* 3: Set L3CLKEN to 1*/
    864 	l3cr |= L3CR_L3CLKEN;
    865 	mtspr(SPR_L3CR, l3cr);
    866 
    867 	/* 4/5: Perform a global cache invalidate (ref section 3.7.3.6) */
    868 	__asm volatile("dssall;sync");
    869 	/* L3 cache is already disabled, no need to clear L3E */
    870 	mtspr(SPR_L3CR, l3cr|L3CR_L3I);
    871 	do {
    872 		x = mfspr(SPR_L3CR);
    873 	} while (x & L3CR_L3I);
    874 
    875 	/* 6: Clear L3CLKEN to 0 */
    876 	l3cr &= ~L3CR_L3CLKEN;
    877 	mtspr(SPR_L3CR, l3cr);
    878 
    879 	/* 7: Perform a 'sync' and wait at least 100 CPU cycles */
    880 	__asm volatile("sync");
    881 	delay(100);
    882 
    883 	/* 8: Set L3E and L3CLKEN */
    884 	l3cr |= (L3CR_L3E|L3CR_L3CLKEN);
    885 	mtspr(SPR_L3CR, l3cr);
    886 
    887 	/* 9: Perform a 'sync' and wait at least 100 CPU cycles */
    888 	__asm volatile("sync");
    889 	delay(100);
    890 }
    891 
    892 void
    893 cpu_config_l2cr(int pvr)
    894 {
    895 	register_t l2cr;
    896 	u_int vers = (pvr >> 16) & 0xffff;
    897 
    898 	l2cr = mfspr(SPR_L2CR);
    899 
    900 	/*
    901 	 * For MP systems, the firmware may only configure the L2 cache
    902 	 * on the first CPU.  In this case, assume that the other CPUs
    903 	 * should use the same value for L2CR.
    904 	 */
    905 	if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
    906 		l2cr_config = l2cr;
    907 	}
    908 
    909 	/*
    910 	 * Configure L2 cache if not enabled.
    911 	 */
    912 	if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
    913 		cpu_enable_l2cr(l2cr_config);
    914 		l2cr = mfspr(SPR_L2CR);
    915 	}
    916 
    917 	if ((l2cr & L2CR_L2E) == 0) {
    918 		aprint_normal(" L2 cache present but not enabled ");
    919 		return;
    920 	}
    921 	aprint_normal(",");
    922 
    923 	switch (vers) {
    924 	case IBM750FX:
    925 	case IBM750GX:
    926 		cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
    927 		break;
    928 	case MPC750:
    929 		if ((pvr & 0xffffff00) == 0x00082200 /* IBM750CX */ ||
    930 		    (pvr & 0xffffef00) == 0x00082300 /* IBM750CXe */)
    931 			cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
    932 		else
    933 			cpu_fmttab_print(cpu_l2cr_formats, l2cr);
    934 		break;
    935 	case MPC7447A:
    936 	case MPC7457:
    937 		cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
    938 		return;
    939 	case MPC7448:
    940 		cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
    941 		return;
    942 	case MPC7450:
    943 	case MPC7455:
    944 		cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
    945 		break;
    946 	default:
    947 		cpu_fmttab_print(cpu_l2cr_formats, l2cr);
    948 		break;
    949 	}
    950 }
    951 
    952 void
    953 cpu_config_l3cr(int vers)
    954 {
    955 	register_t l2cr;
    956 	register_t l3cr;
    957 
    958 	l2cr = mfspr(SPR_L2CR);
    959 
    960 	/*
    961 	 * For MP systems, the firmware may only configure the L2 cache
    962 	 * on the first CPU.  In this case, assume that the other CPUs
    963 	 * should use the same value for L2CR.
    964 	 */
    965 	if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
    966 		l2cr_config = l2cr;
    967 	}
    968 
    969 	/*
    970 	 * Configure L2 cache if not enabled.
    971 	 */
    972 	if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
    973 		cpu_enable_l2cr(l2cr_config);
    974 		l2cr = mfspr(SPR_L2CR);
    975 	}
    976 
    977 	aprint_normal(",");
    978 	switch (vers) {
    979 	case MPC7447A:
    980 	case MPC7457:
    981 		cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
    982 		return;
    983 	case MPC7448:
    984 		cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
    985 		return;
    986 	default:
    987 		cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
    988 		break;
    989 	}
    990 
    991 	l3cr = mfspr(SPR_L3CR);
    992 
    993 	/*
    994 	 * For MP systems, the firmware may only configure the L3 cache
    995 	 * on the first CPU.  In this case, assume that the other CPUs
    996 	 * should use the same value for L3CR.
    997 	 */
    998 	if ((l3cr & L3CR_L3E) != 0 && l3cr_config == 0) {
    999 		l3cr_config = l3cr;
   1000 	}
   1001 
   1002 	/*
   1003 	 * Configure L3 cache if not enabled.
   1004 	 */
   1005 	if ((l3cr & L3CR_L3E) == 0 && l3cr_config != 0) {
   1006 		cpu_enable_l3cr(l3cr_config);
   1007 		l3cr = mfspr(SPR_L3CR);
   1008 	}
   1009 
   1010 	if (l3cr & L3CR_L3E) {
   1011 		aprint_normal(",");
   1012 		cpu_fmttab_print(cpu_7450_l3cr_formats, l3cr);
   1013 	}
   1014 }
   1015 
   1016 void
   1017 cpu_probe_speed(struct cpu_info *ci)
   1018 {
   1019 	uint64_t cps;
   1020 
   1021 	mtspr(SPR_MMCR0, MMCR0_FC);
   1022 	mtspr(SPR_PMC1, 0);
   1023 	mtspr(SPR_MMCR0, MMCR0_PMC1SEL(PMCN_CYCLES));
   1024 	delay(100000);
   1025 	cps = (mfspr(SPR_PMC1) * 10) + 4999;
   1026 
   1027 	mtspr(SPR_MMCR0, MMCR0_FC);
   1028 
   1029 	ci->ci_khz = (cps * cpu_get_dfs()) / 1000;
   1030 }
   1031 
   1032 /*
   1033  * Read the Dynamic Frequency Switching state and return a divisor for
   1034  * the maximum frequency.
   1035  */
   1036 int
   1037 cpu_get_dfs(void)
   1038 {
   1039 	u_int pvr, vers;
   1040 
   1041 	pvr = mfpvr();
   1042 	vers = pvr >> 16;
   1043 
   1044 	switch (vers) {
   1045 	case MPC7448:
   1046 		if (mfspr(SPR_HID1) & HID1_DFS4)
   1047 			return 4;
   1048 	case MPC7447A:
   1049 		if (mfspr(SPR_HID1) & HID1_DFS2)
   1050 			return 2;
   1051 	}
   1052 	return 1;
   1053 }
   1054 
   1055 /*
   1056  * Set the Dynamic Frequency Switching divisor the same for all cpus.
   1057  */
   1058 void
   1059 cpu_set_dfs(int div)
   1060 {
   1061 	uint64_t where;
   1062 	u_int dfs_mask, pvr, vers;
   1063 
   1064 	pvr = mfpvr();
   1065 	vers = pvr >> 16;
   1066 	dfs_mask = 0;
   1067 
   1068 	switch (vers) {
   1069 	case MPC7448:
   1070 		dfs_mask |= HID1_DFS4;
   1071 	case MPC7447A:
   1072 		dfs_mask |= HID1_DFS2;
   1073 		break;
   1074 	default:
   1075 		printf("cpu_set_dfs: DFS not supported\n");
   1076 		return;
   1077 
   1078 	}
   1079 
   1080 	where = xc_broadcast(0, (xcfunc_t)cpu_set_dfs_xcall, &div, &dfs_mask);
   1081 	xc_wait(where);
   1082 }
   1083 
   1084 static void
   1085 cpu_set_dfs_xcall(void *arg1, void *arg2)
   1086 {
   1087 	u_int dfs_mask, hid1, old_hid1;
   1088 	int *divisor, s;
   1089 
   1090 	divisor = arg1;
   1091 	dfs_mask = *(u_int *)arg2;
   1092 
   1093 	s = splhigh();
   1094 	hid1 = old_hid1 = mfspr(SPR_HID1);
   1095 
   1096 	switch (*divisor) {
   1097 	case 1:
   1098 		hid1 &= ~dfs_mask;
   1099 		break;
   1100 	case 2:
   1101 		hid1 &= ~(dfs_mask & HID1_DFS4);
   1102 		hid1 |= dfs_mask & HID1_DFS2;
   1103 		break;
   1104 	case 4:
   1105 		hid1 &= ~(dfs_mask & HID1_DFS2);
   1106 		hid1 |= dfs_mask & HID1_DFS4;
   1107 		break;
   1108 	}
   1109 
   1110 	if (hid1 != old_hid1) {
   1111 		__asm volatile("sync");
   1112 		mtspr(SPR_HID1, hid1);
   1113 		__asm volatile("sync;isync");
   1114 	}
   1115 
   1116 	splx(s);
   1117 }
   1118 
   1119 #if NSYSMON_ENVSYS > 0
   1120 void
   1121 cpu_tau_setup(struct cpu_info *ci)
   1122 {
   1123 	struct sysmon_envsys *sme;
   1124 	int error, therm_delay;
   1125 
   1126 	mtspr(SPR_THRM1, SPR_THRM_VALID);
   1127 	mtspr(SPR_THRM2, 0);
   1128 
   1129 	/*
   1130 	 * we need to figure out how much 20+us in units of CPU clock cycles
   1131 	 * are
   1132 	 */
   1133 
   1134 	therm_delay = ci->ci_khz / 40;		/* 25us just to be safe */
   1135 
   1136         mtspr(SPR_THRM3, SPR_THRM_TIMER(therm_delay) | SPR_THRM_ENABLE);
   1137 
   1138 	sme = sysmon_envsys_create();
   1139 
   1140 	sensor.units = ENVSYS_STEMP;
   1141 	sensor.state = ENVSYS_SINVALID;
   1142 	(void)strlcpy(sensor.desc, "CPU Temp", sizeof(sensor.desc));
   1143 	if (sysmon_envsys_sensor_attach(sme, &sensor)) {
   1144 		sysmon_envsys_destroy(sme);
   1145 		return;
   1146 	}
   1147 
   1148 	sme->sme_name = device_xname(ci->ci_dev);
   1149 	sme->sme_cookie = ci;
   1150 	sme->sme_refresh = cpu_tau_refresh;
   1151 
   1152 	if ((error = sysmon_envsys_register(sme)) != 0) {
   1153 		aprint_error_dev(ci->ci_dev,
   1154 		    " unable to register with sysmon (%d)\n", error);
   1155 		sysmon_envsys_destroy(sme);
   1156 	}
   1157 }
   1158 
   1159 
   1160 /* Find the temperature of the CPU. */
   1161 void
   1162 cpu_tau_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
   1163 {
   1164 	int i, threshold, count;
   1165 
   1166 	threshold = 64; /* Half of the 7-bit sensor range */
   1167 
   1168 	/* Successive-approximation code adapted from Motorola
   1169 	 * application note AN1800/D, "Programming the Thermal Assist
   1170 	 * Unit in the MPC750 Microprocessor".
   1171 	 */
   1172 	for (i = 5; i >= 0 ; i--) {
   1173 		mtspr(SPR_THRM1,
   1174 		    SPR_THRM_THRESHOLD(threshold) | SPR_THRM_VALID);
   1175 		count = 0;
   1176 		while ((count < 100000) &&
   1177 		    ((mfspr(SPR_THRM1) & SPR_THRM_TIV) == 0)) {
   1178 			count++;
   1179 			delay(1);
   1180 		}
   1181 		if (mfspr(SPR_THRM1) & SPR_THRM_TIN) {
   1182 			/* The interrupt bit was set, meaning the
   1183 			 * temperature was above the threshold
   1184 			 */
   1185 			threshold += 1 << i;
   1186 		} else {
   1187 			/* Temperature was below the threshold */
   1188 			threshold -= 1 << i;
   1189 		}
   1190 	}
   1191 	threshold += 2;
   1192 
   1193 	/* Convert the temperature in degrees C to microkelvin */
   1194 	edata->value_cur = (threshold * 1000000) + 273150000;
   1195 	edata->state = ENVSYS_SVALID;
   1196 }
   1197 #endif /* NSYSMON_ENVSYS > 0 */
   1198 
   1199 #ifdef MULTIPROCESSOR
   1200 volatile u_int cpu_spinstart_ack, cpu_spinstart_cpunum;
   1201 
   1202 int
   1203 cpu_spinup(device_t self, struct cpu_info *ci)
   1204 {
   1205 	volatile struct cpu_hatch_data hatch_data, *h = &hatch_data;
   1206 	struct pglist mlist;
   1207 	int i, error, pvr, vers;
   1208 	char *hp;
   1209 
   1210 	pvr = mfpvr();
   1211 	vers = pvr >> 16;
   1212 	KASSERT(ci != curcpu());
   1213 
   1214 	/* Now allocate a hatch stack */
   1215 	error = uvm_pglistalloc(HATCH_STACK_SIZE, 0x10000, 0x10000000, 16, 0,
   1216 	    &mlist, 1, 1);
   1217 	if (error) {
   1218 		aprint_error(": unable to allocate hatch stack\n");
   1219 		return -1;
   1220 	}
   1221 
   1222 	hp = (void *)VM_PAGE_TO_PHYS(TAILQ_FIRST(&mlist));
   1223 	memset(hp, 0, HATCH_STACK_SIZE);
   1224 
   1225 	/* Initialize secondary cpu's initial lwp to its idlelwp. */
   1226 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
   1227 	ci->ci_curpcb = lwp_getpcb(ci->ci_curlwp);
   1228 	ci->ci_curpm = ci->ci_curpcb->pcb_pm;
   1229 
   1230 	cpu_hatch_data = h;
   1231 	h->hatch_running = 0;
   1232 	h->hatch_self = self;
   1233 	h->hatch_ci = ci;
   1234 	h->hatch_pir = ci->ci_cpuid;
   1235 
   1236 	cpu_hatch_stack = (uint32_t)hp + HATCH_STACK_SIZE - CALLFRAMELEN;
   1237 	ci->ci_lasttb = cpu_info[0].ci_lasttb;
   1238 
   1239 	/* copy special registers */
   1240 
   1241 	h->hatch_hid0 = mfspr(SPR_HID0);
   1242 
   1243 	__asm volatile ("mfsdr1 %0" : "=r"(h->hatch_sdr1));
   1244 	for (i = 0; i < 16; i++) {
   1245 		__asm ("mfsrin %0,%1" : "=r"(h->hatch_sr[i]) :
   1246 		       "r"(i << ADDR_SR_SHFT));
   1247 	}
   1248 	if (oeacpufeat & OEACPU_64)
   1249 		h->hatch_asr = mfspr(SPR_ASR);
   1250 	else
   1251 		h->hatch_asr = 0;
   1252 
   1253 	/* copy the bat regs */
   1254 	__asm volatile ("mfibatu %0,0" : "=r"(h->hatch_ibatu[0]));
   1255 	__asm volatile ("mfibatl %0,0" : "=r"(h->hatch_ibatl[0]));
   1256 	__asm volatile ("mfibatu %0,1" : "=r"(h->hatch_ibatu[1]));
   1257 	__asm volatile ("mfibatl %0,1" : "=r"(h->hatch_ibatl[1]));
   1258 	__asm volatile ("mfibatu %0,2" : "=r"(h->hatch_ibatu[2]));
   1259 	__asm volatile ("mfibatl %0,2" : "=r"(h->hatch_ibatl[2]));
   1260 	__asm volatile ("mfibatu %0,3" : "=r"(h->hatch_ibatu[3]));
   1261 	__asm volatile ("mfibatl %0,3" : "=r"(h->hatch_ibatl[3]));
   1262 	__asm volatile ("mfdbatu %0,0" : "=r"(h->hatch_dbatu[0]));
   1263 	__asm volatile ("mfdbatl %0,0" : "=r"(h->hatch_dbatl[0]));
   1264 	__asm volatile ("mfdbatu %0,1" : "=r"(h->hatch_dbatu[1]));
   1265 	__asm volatile ("mfdbatl %0,1" : "=r"(h->hatch_dbatl[1]));
   1266 	__asm volatile ("mfdbatu %0,2" : "=r"(h->hatch_dbatu[2]));
   1267 	__asm volatile ("mfdbatl %0,2" : "=r"(h->hatch_dbatl[2]));
   1268 	__asm volatile ("mfdbatu %0,3" : "=r"(h->hatch_dbatu[3]));
   1269 	__asm volatile ("mfdbatl %0,3" : "=r"(h->hatch_dbatl[3]));
   1270 	__asm volatile ("sync; isync");
   1271 
   1272 	if (md_setup_trampoline(h, ci) == -1)
   1273 		return -1;
   1274 	md_presync_timebase(h);
   1275 	md_start_timebase(h);
   1276 
   1277 	/* wait for secondary printf */
   1278 
   1279 	delay(200000);
   1280 
   1281 #ifdef CACHE_PROTO_MEI
   1282 	__asm volatile ("dcbi 0,%0"::"r"(&h->hatch_running):"memory");
   1283 	__asm volatile ("sync; isync");
   1284 	__asm volatile ("dcbst 0,%0"::"r"(&h->hatch_running):"memory");
   1285 	__asm volatile ("sync; isync");
   1286 #endif
   1287 	if (h->hatch_running < 1) {
   1288 #ifdef CACHE_PROTO_MEI
   1289 		__asm volatile ("dcbi 0,%0"::"r"(&cpu_spinstart_ack):"memory");
   1290 		__asm volatile ("sync; isync");
   1291 		__asm volatile ("dcbst 0,%0"::"r"(&cpu_spinstart_ack):"memory");
   1292 		__asm volatile ("sync; isync");
   1293 #endif
   1294 		aprint_error("%d:CPU %d didn't start %d\n", cpu_spinstart_ack,
   1295 		    ci->ci_cpuid, cpu_spinstart_ack);
   1296 		Debugger();
   1297 		return -1;
   1298 	}
   1299 
   1300 	/* Register IPI Interrupt */
   1301 	if (ipiops.ppc_establish_ipi)
   1302 		ipiops.ppc_establish_ipi(IST_LEVEL, IPL_HIGH, NULL);
   1303 
   1304 	return 0;
   1305 }
   1306 
   1307 static volatile int start_secondary_cpu;
   1308 
   1309 register_t
   1310 cpu_hatch(void)
   1311 {
   1312 	volatile struct cpu_hatch_data *h = cpu_hatch_data;
   1313 	struct cpu_info * const ci = h->hatch_ci;
   1314 	struct pcb *pcb;
   1315 	u_int msr;
   1316 	int i;
   1317 
   1318 	/* Initialize timebase. */
   1319 	__asm ("mttbl %0; mttbu %0; mttbl %0" :: "r"(0));
   1320 
   1321 	/*
   1322 	 * Set PIR (Processor Identification Register).  i.e. whoami
   1323 	 * Note that PIR is read-only on some CPU versions, so we write to it
   1324 	 * only if it has a different value than we need.
   1325 	 */
   1326 
   1327 	msr = mfspr(SPR_PIR);
   1328 	if (msr != h->hatch_pir)
   1329 		mtspr(SPR_PIR, h->hatch_pir);
   1330 
   1331 	__asm volatile ("mtsprg0 %0" :: "r"(ci));
   1332 	curlwp = ci->ci_curlwp;
   1333 	cpu_spinstart_ack = 0;
   1334 
   1335 	/* Initialize MMU. */
   1336 	__asm ("mtibatu 0,%0" :: "r"(h->hatch_ibatu[0]));
   1337 	__asm ("mtibatl 0,%0" :: "r"(h->hatch_ibatl[0]));
   1338 	__asm ("mtibatu 1,%0" :: "r"(h->hatch_ibatu[1]));
   1339 	__asm ("mtibatl 1,%0" :: "r"(h->hatch_ibatl[1]));
   1340 	__asm ("mtibatu 2,%0" :: "r"(h->hatch_ibatu[2]));
   1341 	__asm ("mtibatl 2,%0" :: "r"(h->hatch_ibatl[2]));
   1342 	__asm ("mtibatu 3,%0" :: "r"(h->hatch_ibatu[3]));
   1343 	__asm ("mtibatl 3,%0" :: "r"(h->hatch_ibatl[3]));
   1344 	__asm ("mtdbatu 0,%0" :: "r"(h->hatch_dbatu[0]));
   1345 	__asm ("mtdbatl 0,%0" :: "r"(h->hatch_dbatl[0]));
   1346 	__asm ("mtdbatu 1,%0" :: "r"(h->hatch_dbatu[1]));
   1347 	__asm ("mtdbatl 1,%0" :: "r"(h->hatch_dbatl[1]));
   1348 	__asm ("mtdbatu 2,%0" :: "r"(h->hatch_dbatu[2]));
   1349 	__asm ("mtdbatl 2,%0" :: "r"(h->hatch_dbatl[2]));
   1350 	__asm ("mtdbatu 3,%0" :: "r"(h->hatch_dbatu[3]));
   1351 	__asm ("mtdbatl 3,%0" :: "r"(h->hatch_dbatl[3]));
   1352 
   1353 	mtspr(SPR_HID0, h->hatch_hid0);
   1354 
   1355 	__asm ("mtibatl 0,%0; mtibatu 0,%1; mtdbatl 0,%0; mtdbatu 0,%1;"
   1356 	    :: "r"(battable[0].batl), "r"(battable[0].batu));
   1357 
   1358 	__asm volatile ("sync");
   1359 	for (i = 0; i < 16; i++)
   1360 		__asm ("mtsrin %0,%1" :: "r"(h->hatch_sr[i]), "r"(i << ADDR_SR_SHFT));
   1361 	__asm volatile ("sync; isync");
   1362 
   1363 	if (oeacpufeat & OEACPU_64)
   1364 		mtspr(SPR_ASR, h->hatch_asr);
   1365 
   1366 	cpu_spinstart_ack = 1;
   1367 	__asm ("ptesync");
   1368 	__asm ("mtsdr1 %0" :: "r"(h->hatch_sdr1));
   1369 	__asm volatile ("sync; isync");
   1370 
   1371 	cpu_spinstart_ack = 5;
   1372 	for (i = 0; i < 16; i++)
   1373 		__asm ("mfsrin %0,%1" : "=r"(h->hatch_sr[i]) :
   1374 		       "r"(i << ADDR_SR_SHFT));
   1375 
   1376 	/* Enable I/D address translations. */
   1377 	msr = mfmsr();
   1378 	msr |= PSL_IR|PSL_DR|PSL_ME|PSL_RI;
   1379 	mtmsr(msr);
   1380 	__asm volatile ("sync; isync");
   1381 	cpu_spinstart_ack = 2;
   1382 
   1383 	md_sync_timebase(h);
   1384 
   1385 	cpu_setup(h->hatch_self, ci);
   1386 
   1387 	h->hatch_running = 1;
   1388 	__asm volatile ("sync; isync");
   1389 
   1390 	while (start_secondary_cpu == 0)
   1391 		;
   1392 
   1393 	__asm volatile ("sync; isync");
   1394 
   1395 	aprint_normal("cpu%d started\n", curcpu()->ci_index);
   1396 	__asm volatile ("mtdec %0" :: "r"(ticks_per_intr));
   1397 
   1398 	md_setup_interrupts();
   1399 
   1400 	ci->ci_ipending = 0;
   1401 	ci->ci_cpl = 0;
   1402 
   1403 	mtmsr(mfmsr() | PSL_EE);
   1404 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
   1405 	return pcb->pcb_sp;
   1406 }
   1407 
   1408 void
   1409 cpu_boot_secondary_processors(void)
   1410 {
   1411 	start_secondary_cpu = 1;
   1412 	__asm volatile ("sync");
   1413 }
   1414 
   1415 #endif /*MULTIPROCESSOR*/
   1416