Home | History | Annotate | Line # | Download | only in oea
cpu_subr.c revision 1.73.6.3
      1 /*	$NetBSD: cpu_subr.c,v 1.73.6.3 2017/12/03 11:36:37 jdolecek Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 Matt Thomas.
      5  * Copyright (c) 2001 Tsubai Masanari.
      6  * Copyright (c) 1998, 1999, 2001 Internet Research Institute, Inc.
      7  * All rights reserved.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed by
     20  *	Internet Research Institute, Inc.
     21  * 4. The name of the author may not be used to endorse or promote products
     22  *    derived from this software without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     25  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     26  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     27  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     29  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     30  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     31  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     32  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     33  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: cpu_subr.c,v 1.73.6.3 2017/12/03 11:36:37 jdolecek Exp $");
     38 
     39 #include "opt_ppcparam.h"
     40 #include "opt_ppccache.h"
     41 #include "opt_multiprocessor.h"
     42 #include "opt_altivec.h"
     43 #include "sysmon_envsys.h"
     44 
     45 #include <sys/param.h>
     46 #include <sys/systm.h>
     47 #include <sys/device.h>
     48 #include <sys/types.h>
     49 #include <sys/lwp.h>
     50 #include <sys/xcall.h>
     51 
     52 #include <uvm/uvm.h>
     53 
     54 #include <powerpc/pcb.h>
     55 #include <powerpc/psl.h>
     56 #include <powerpc/spr.h>
     57 #include <powerpc/oea/hid.h>
     58 #include <powerpc/oea/hid_601.h>
     59 #include <powerpc/oea/spr.h>
     60 #include <powerpc/oea/cpufeat.h>
     61 
     62 #include <dev/sysmon/sysmonvar.h>
     63 
     64 static void cpu_enable_l2cr(register_t);
     65 static void cpu_enable_l3cr(register_t);
     66 static void cpu_config_l2cr(int);
     67 static void cpu_config_l3cr(int);
     68 static void cpu_probe_speed(struct cpu_info *);
     69 static void cpu_idlespin(void);
     70 static void cpu_set_dfs_xcall(void *, void *);
     71 #if NSYSMON_ENVSYS > 0
     72 static void cpu_tau_setup(struct cpu_info *);
     73 static void cpu_tau_refresh(struct sysmon_envsys *, envsys_data_t *);
     74 #endif
     75 
     76 int cpu = -1;
     77 int ncpus;
     78 
     79 struct fmttab {
     80 	register_t fmt_mask;
     81 	register_t fmt_value;
     82 	const char *fmt_string;
     83 };
     84 
     85 /*
     86  * This should be one per CPU but since we only support it on 750 variants it
     87  * doesn't realy matter since none of them supports SMP
     88  */
     89 envsys_data_t sensor;
     90 
     91 static const struct fmttab cpu_7450_l2cr_formats[] = {
     92 	{ L2CR_L2E, 0, " disabled" },
     93 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
     94 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
     95 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
     96 	{ L2CR_L2E, ~0, " 256KB L2 cache" },
     97 	{ L2CR_L2PE, 0, " no parity" },
     98 	{ L2CR_L2PE, ~0, " parity enabled" },
     99 	{ 0, 0, NULL }
    100 };
    101 
    102 static const struct fmttab cpu_7448_l2cr_formats[] = {
    103 	{ L2CR_L2E, 0, " disabled" },
    104 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
    105 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
    106 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
    107 	{ L2CR_L2E, ~0, " 1MB L2 cache" },
    108 	{ L2CR_L2PE, 0, " no parity" },
    109 	{ L2CR_L2PE, ~0, " parity enabled" },
    110 	{ 0, 0, NULL }
    111 };
    112 
    113 static const struct fmttab cpu_7457_l2cr_formats[] = {
    114 	{ L2CR_L2E, 0, " disabled" },
    115 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
    116 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
    117 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
    118 	{ L2CR_L2E, ~0, " 512KB L2 cache" },
    119 	{ L2CR_L2PE, 0, " no parity" },
    120 	{ L2CR_L2PE, ~0, " parity enabled" },
    121 	{ 0, 0, NULL }
    122 };
    123 
    124 static const struct fmttab cpu_7450_l3cr_formats[] = {
    125 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3DO, " data-only" },
    126 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3IO, " instruction-only" },
    127 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3DO|L3CR_L3IO, " locked" },
    128 	{ L3CR_L3SIZ, L3SIZ_2M, " 2MB" },
    129 	{ L3CR_L3SIZ, L3SIZ_1M, " 1MB" },
    130 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3PE|L3CR_L3APE, " parity" },
    131 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3PE, " data-parity" },
    132 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3APE, " address-parity" },
    133 	{ L3CR_L3PE|L3CR_L3APE, 0, " no-parity" },
    134 	{ L3CR_L3SIZ, ~0, " L3 cache" },
    135 	{ L3CR_L3RT, L3RT_MSUG2_DDR, " (DDR SRAM)" },
    136 	{ L3CR_L3RT, L3RT_PIPELINE_LATE, " (LW SRAM)" },
    137 	{ L3CR_L3RT, L3RT_PB2_SRAM, " (PB2 SRAM)" },
    138 	{ L3CR_L3CLK, ~0, " at" },
    139 	{ L3CR_L3CLK, L3CLK_20, " 2:1" },
    140 	{ L3CR_L3CLK, L3CLK_25, " 2.5:1" },
    141 	{ L3CR_L3CLK, L3CLK_30, " 3:1" },
    142 	{ L3CR_L3CLK, L3CLK_35, " 3.5:1" },
    143 	{ L3CR_L3CLK, L3CLK_40, " 4:1" },
    144 	{ L3CR_L3CLK, L3CLK_50, " 5:1" },
    145 	{ L3CR_L3CLK, L3CLK_60, " 6:1" },
    146 	{ L3CR_L3CLK, ~0, " ratio" },
    147 	{ 0, 0, NULL },
    148 };
    149 
    150 static const struct fmttab cpu_ibm750_l2cr_formats[] = {
    151 	{ L2CR_L2E, 0, " disabled" },
    152 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
    153 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
    154 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
    155 	{ 0, ~0, " 512KB" },
    156 	{ L2CR_L2WT, L2CR_L2WT, " WT" },
    157 	{ L2CR_L2WT, 0, " WB" },
    158 	{ L2CR_L2PE, L2CR_L2PE, " with ECC" },
    159 	{ 0, ~0, " L2 cache" },
    160 	{ 0, 0, NULL }
    161 };
    162 
    163 static const struct fmttab cpu_l2cr_formats[] = {
    164 	{ L2CR_L2E, 0, " disabled" },
    165 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
    166 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
    167 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
    168 	{ L2CR_L2PE, L2CR_L2PE, " parity" },
    169 	{ L2CR_L2PE, 0, " no-parity" },
    170 	{ L2CR_L2SIZ, L2SIZ_2M, " 2MB" },
    171 	{ L2CR_L2SIZ, L2SIZ_1M, " 1MB" },
    172 	{ L2CR_L2SIZ, L2SIZ_512K, " 512KB" },
    173 	{ L2CR_L2SIZ, L2SIZ_256K, " 256KB" },
    174 	{ L2CR_L2WT, L2CR_L2WT, " WT" },
    175 	{ L2CR_L2WT, 0, " WB" },
    176 	{ L2CR_L2E, ~0, " L2 cache" },
    177 	{ L2CR_L2RAM, L2RAM_FLOWTHRU_BURST, " (FB SRAM)" },
    178 	{ L2CR_L2RAM, L2RAM_PIPELINE_LATE, " (LW SRAM)" },
    179 	{ L2CR_L2RAM, L2RAM_PIPELINE_BURST, " (PB SRAM)" },
    180 	{ L2CR_L2CLK, ~0, " at" },
    181 	{ L2CR_L2CLK, L2CLK_10, " 1:1" },
    182 	{ L2CR_L2CLK, L2CLK_15, " 1.5:1" },
    183 	{ L2CR_L2CLK, L2CLK_20, " 2:1" },
    184 	{ L2CR_L2CLK, L2CLK_25, " 2.5:1" },
    185 	{ L2CR_L2CLK, L2CLK_30, " 3:1" },
    186 	{ L2CR_L2CLK, L2CLK_35, " 3.5:1" },
    187 	{ L2CR_L2CLK, L2CLK_40, " 4:1" },
    188 	{ L2CR_L2CLK, ~0, " ratio" },
    189 	{ 0, 0, NULL }
    190 };
    191 
    192 static void cpu_fmttab_print(const struct fmttab *, register_t);
    193 
    194 struct cputab {
    195 	const char name[8];
    196 	uint16_t version;
    197 	uint16_t revfmt;
    198 };
    199 #define	REVFMT_MAJMIN	1		/* %u.%u */
    200 #define	REVFMT_HEX	2		/* 0x%04x */
    201 #define	REVFMT_DEC	3		/* %u */
    202 static const struct cputab models[] = {
    203 	{ "601",	MPC601,		REVFMT_DEC },
    204 	{ "602",	MPC602,		REVFMT_DEC },
    205 	{ "603",	MPC603,		REVFMT_MAJMIN },
    206 	{ "603e",	MPC603e,	REVFMT_MAJMIN },
    207 	{ "603ev",	MPC603ev,	REVFMT_MAJMIN },
    208 	{ "G2",		MPCG2,		REVFMT_MAJMIN },
    209 	{ "604",	MPC604,		REVFMT_MAJMIN },
    210 	{ "604e",	MPC604e,	REVFMT_MAJMIN },
    211 	{ "604ev",	MPC604ev,	REVFMT_MAJMIN },
    212 	{ "620",	MPC620,  	REVFMT_HEX },
    213 	{ "750",	MPC750,		REVFMT_MAJMIN },
    214 	{ "750FX",	IBM750FX,	REVFMT_MAJMIN },
    215 	{ "750GX",	IBM750GX,	REVFMT_MAJMIN },
    216 	{ "7400",	MPC7400,	REVFMT_MAJMIN },
    217 	{ "7410",	MPC7410,	REVFMT_MAJMIN },
    218 	{ "7450",	MPC7450,	REVFMT_MAJMIN },
    219 	{ "7455",	MPC7455,	REVFMT_MAJMIN },
    220 	{ "7457",	MPC7457,	REVFMT_MAJMIN },
    221 	{ "7447A",	MPC7447A,	REVFMT_MAJMIN },
    222 	{ "7448",	MPC7448,	REVFMT_MAJMIN },
    223 	{ "8240",	MPC8240,	REVFMT_MAJMIN },
    224 	{ "8245",	MPC8245,	REVFMT_MAJMIN },
    225 	{ "970",	IBM970,		REVFMT_MAJMIN },
    226 	{ "970FX",	IBM970FX,	REVFMT_MAJMIN },
    227 	{ "970MP",	IBM970MP,	REVFMT_MAJMIN },
    228 	{ "POWER3II",   IBMPOWER3II,    REVFMT_MAJMIN },
    229 	{ "",		0,		REVFMT_HEX }
    230 };
    231 
    232 #ifdef MULTIPROCESSOR
    233 struct cpu_info cpu_info[CPU_MAXNUM] = {
    234     [0] = {
    235 	.ci_curlwp = &lwp0,
    236     },
    237 };
    238 volatile struct cpu_hatch_data *cpu_hatch_data;
    239 volatile int cpu_hatch_stack;
    240 #define HATCH_STACK_SIZE 0x1000
    241 extern int ticks_per_intr;
    242 #include <powerpc/oea/bat.h>
    243 #include <powerpc/pic/picvar.h>
    244 #include <powerpc/pic/ipivar.h>
    245 extern struct bat battable[];
    246 #else
    247 struct cpu_info cpu_info[1] = {
    248     [0] = {
    249 	.ci_curlwp = &lwp0,
    250     },
    251 };
    252 #endif /*MULTIPROCESSOR*/
    253 
    254 int cpu_altivec;
    255 register_t cpu_psluserset;
    256 register_t cpu_pslusermod;
    257 register_t cpu_pslusermask = 0xffff;
    258 
    259 /* This is to be called from locore.S, and nowhere else. */
    260 
    261 void
    262 cpu_model_init(void)
    263 {
    264 	u_int pvr, vers;
    265 
    266 	pvr = mfpvr();
    267 	vers = pvr >> 16;
    268 
    269 	oeacpufeat = 0;
    270 
    271 	if ((vers >= IBMRS64II && vers <= IBM970GX) || vers == MPC620 ||
    272 		vers == IBMCELL || vers == IBMPOWER6P5) {
    273 		oeacpufeat |= OEACPU_64;
    274 		oeacpufeat |= OEACPU_64_BRIDGE;
    275 		oeacpufeat |= OEACPU_NOBAT;
    276 
    277 	} else if (vers == MPC601) {
    278 		oeacpufeat |= OEACPU_601;
    279 
    280 	} else if (MPC745X_P(vers)) {
    281 		register_t hid1 = mfspr(SPR_HID1);
    282 
    283 		if (vers != MPC7450) {
    284 			register_t hid0 = mfspr(SPR_HID0);
    285 
    286 			/* Enable more SPRG registers */
    287 			oeacpufeat |= OEACPU_HIGHSPRG;
    288 
    289 			/* Enable more BAT registers */
    290 			oeacpufeat |= OEACPU_HIGHBAT;
    291 			hid0 |= HID0_HIGH_BAT_EN;
    292 
    293 			/* Enable larger BAT registers */
    294 			oeacpufeat |= OEACPU_XBSEN;
    295 			hid0 |= HID0_XBSEN;
    296 
    297 			mtspr(SPR_HID0, hid0);
    298 			__asm volatile("sync;isync");
    299 		}
    300 
    301 		/* Enable address broadcasting for MP systems */
    302 		hid1 |= HID1_SYNCBE | HID1_ABE;
    303 
    304 		mtspr(SPR_HID1, hid1);
    305 		__asm volatile("sync;isync");
    306 
    307 	} else if (vers == IBM750FX || vers == IBM750GX) {
    308 		oeacpufeat |= OEACPU_HIGHBAT;
    309 	}
    310 }
    311 
    312 void
    313 cpu_fmttab_print(const struct fmttab *fmt, register_t data)
    314 {
    315 	for (; fmt->fmt_mask != 0 || fmt->fmt_value != 0; fmt++) {
    316 		if ((~fmt->fmt_mask & fmt->fmt_value) != 0 ||
    317 		    (data & fmt->fmt_mask) == fmt->fmt_value)
    318 			aprint_normal("%s", fmt->fmt_string);
    319 	}
    320 }
    321 
    322 void
    323 cpu_idlespin(void)
    324 {
    325 	register_t msr;
    326 
    327 	if (powersave <= 0)
    328 		return;
    329 
    330 	__asm volatile(
    331 #if defined(_ARCH_PPC64) || defined (PPC_OEA64_BRIDGE)
    332 		"dssall;"
    333 #endif
    334 		"sync;"
    335 		"mfmsr	%0;"
    336 		"oris	%0,%0,%1@h;"	/* enter power saving mode */
    337 		"mtmsr	%0;"
    338 		"isync;"
    339 	    :	"=r"(msr)
    340 	    :	"J"(PSL_POW));
    341 }
    342 
    343 void
    344 cpu_probe_cache(void)
    345 {
    346 	u_int assoc, pvr, vers;
    347 
    348 	pvr = mfpvr();
    349 	vers = pvr >> 16;
    350 
    351 
    352 	/* Presently common across almost all implementations. */
    353 	curcpu()->ci_ci.dcache_line_size = 32;
    354 	curcpu()->ci_ci.icache_line_size = 32;
    355 
    356 
    357 	switch (vers) {
    358 #define	K	*1024
    359 	case IBM750FX:
    360 	case IBM750GX:
    361 	case MPC601:
    362 	case MPC750:
    363 	case MPC7400:
    364 	case MPC7447A:
    365 	case MPC7448:
    366 	case MPC7450:
    367 	case MPC7455:
    368 	case MPC7457:
    369 		curcpu()->ci_ci.dcache_size = 32 K;
    370 		curcpu()->ci_ci.icache_size = 32 K;
    371 		assoc = 8;
    372 		break;
    373 	case MPC603:
    374 		curcpu()->ci_ci.dcache_size = 8 K;
    375 		curcpu()->ci_ci.icache_size = 8 K;
    376 		assoc = 2;
    377 		break;
    378 	case MPC603e:
    379 	case MPC603ev:
    380 	case MPC604:
    381 	case MPC8240:
    382 	case MPC8245:
    383 	case MPCG2:
    384 		curcpu()->ci_ci.dcache_size = 16 K;
    385 		curcpu()->ci_ci.icache_size = 16 K;
    386 		assoc = 4;
    387 		break;
    388 	case MPC604e:
    389 	case MPC604ev:
    390 		curcpu()->ci_ci.dcache_size = 32 K;
    391 		curcpu()->ci_ci.icache_size = 32 K;
    392 		assoc = 4;
    393 		break;
    394 	case IBMPOWER3II:
    395 		curcpu()->ci_ci.dcache_size = 64 K;
    396 		curcpu()->ci_ci.icache_size = 32 K;
    397 		curcpu()->ci_ci.dcache_line_size = 128;
    398 		curcpu()->ci_ci.icache_line_size = 128;
    399 		assoc = 128; /* not a typo */
    400 		break;
    401 	case IBM970:
    402 	case IBM970FX:
    403 	case IBM970MP:
    404 		curcpu()->ci_ci.dcache_size = 32 K;
    405 		curcpu()->ci_ci.icache_size = 64 K;
    406 		curcpu()->ci_ci.dcache_line_size = 128;
    407 		curcpu()->ci_ci.icache_line_size = 128;
    408 		assoc = 2;
    409 		break;
    410 
    411 	default:
    412 		curcpu()->ci_ci.dcache_size = PAGE_SIZE;
    413 		curcpu()->ci_ci.icache_size = PAGE_SIZE;
    414 		assoc = 1;
    415 #undef	K
    416 	}
    417 
    418 	/*
    419 	 * Possibly recolor.
    420 	 */
    421 	uvm_page_recolor(atop(curcpu()->ci_ci.dcache_size / assoc));
    422 }
    423 
    424 struct cpu_info *
    425 cpu_attach_common(device_t self, int id)
    426 {
    427 	struct cpu_info *ci;
    428 	u_int pvr, vers;
    429 
    430 	ci = &cpu_info[id];
    431 #ifndef MULTIPROCESSOR
    432 	/*
    433 	 * If this isn't the primary CPU, print an error message
    434 	 * and just bail out.
    435 	 */
    436 	if (id != 0) {
    437 		aprint_naive("\n");
    438 		aprint_normal(": ID %d\n", id);
    439 		aprint_normal_dev(self,
    440 		    "processor off-line; "
    441 		    "multiprocessor support not present in kernel\n");
    442 		return (NULL);
    443 	}
    444 #endif
    445 
    446 	ci->ci_cpuid = id;
    447 	ci->ci_idepth = -1;
    448 	ci->ci_dev = self;
    449 	ci->ci_idlespin = cpu_idlespin;
    450 
    451 	pvr = mfpvr();
    452 	vers = (pvr >> 16) & 0xffff;
    453 
    454 	switch (id) {
    455 	case 0:
    456 		/* load my cpu_number to PIR */
    457 		switch (vers) {
    458 		case MPC601:
    459 		case MPC604:
    460 		case MPC604e:
    461 		case MPC604ev:
    462 		case MPC7400:
    463 		case MPC7410:
    464 		case MPC7447A:
    465 		case MPC7448:
    466 		case MPC7450:
    467 		case MPC7455:
    468 		case MPC7457:
    469 			mtspr(SPR_PIR, id);
    470 		}
    471 		cpu_setup(self, ci);
    472 		break;
    473 	default:
    474 		aprint_naive("\n");
    475 		if (id >= CPU_MAXNUM) {
    476 			aprint_normal(": more than %d cpus?\n", CPU_MAXNUM);
    477 			panic("cpuattach");
    478 		}
    479 #ifndef MULTIPROCESSOR
    480 		aprint_normal(" not configured\n");
    481 		return NULL;
    482 #else
    483 		mi_cpu_attach(ci);
    484 		break;
    485 #endif
    486 	}
    487 	return (ci);
    488 }
    489 
    490 void
    491 cpu_setup(device_t self, struct cpu_info *ci)
    492 {
    493 	u_int pvr, vers;
    494 	const char * const xname = device_xname(self);
    495 	const char *bitmask;
    496 	char hidbuf[128];
    497 	char model[80];
    498 #if defined(PPC_OEA64_BRIDGE) || defined(_ARCH_PPC64)
    499 	char hidbuf_u[128];
    500 	const char *bitmasku = NULL;
    501 #endif
    502 #if defined(PPC_OEA64_BRIDGE)
    503 	volatile uint64_t hid0;
    504 #else
    505 	register_t hid0;
    506 #endif
    507 
    508 	pvr = mfpvr();
    509 	vers = (pvr >> 16) & 0xffff;
    510 
    511 	cpu_identify(model, sizeof(model));
    512 	aprint_naive("\n");
    513 	aprint_normal(": %s, ID %d%s\n", model,  cpu_number(),
    514 	    cpu_number() == 0 ? " (primary)" : "");
    515 
    516 	/* set the cpu number */
    517 	ci->ci_cpuid = cpu_number();
    518 #if defined(_ARCH_PPC64)
    519 	__asm volatile("mfspr %0,%1" : "=r"(hid0) : "K"(SPR_HID0));
    520 #else
    521 	hid0 = mfspr(SPR_HID0);
    522 #endif
    523 
    524 	cpu_probe_cache();
    525 
    526 	/*
    527 	 * Configure power-saving mode.
    528 	 */
    529 	switch (vers) {
    530 	case MPC604:
    531 	case MPC604e:
    532 	case MPC604ev:
    533 		/*
    534 		 * Do not have HID0 support settings, but can support
    535 		 * MSR[POW] off
    536 		 */
    537 		powersave = 1;
    538 		break;
    539 
    540 	case MPC603:
    541 	case MPC603e:
    542 	case MPC603ev:
    543 	case MPC7400:
    544 	case MPC7410:
    545 	case MPC8240:
    546 	case MPC8245:
    547 	case MPCG2:
    548 		/* Select DOZE mode. */
    549 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
    550 		hid0 |= HID0_DOZE | HID0_DPM;
    551 		powersave = 1;
    552 		break;
    553 
    554 	case MPC750:
    555 	case IBM750FX:
    556 	case IBM750GX:
    557 		/* Select NAP mode. */
    558 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
    559 		hid0 |= HID0_NAP | HID0_DPM;
    560 		powersave = 1;
    561 		break;
    562 
    563 	case MPC7447A:
    564 	case MPC7448:
    565 	case MPC7457:
    566 	case MPC7455:
    567 	case MPC7450:
    568 		/* Enable the 7450 branch caches */
    569 		hid0 |= HID0_SGE | HID0_BTIC;
    570 		hid0 |= HID0_LRSTK | HID0_FOLD | HID0_BHT;
    571 		/* Disable BTIC on 7450 Rev 2.0 or earlier */
    572 		if (vers == MPC7450 && (pvr & 0xFFFF) <= 0x0200)
    573 			hid0 &= ~HID0_BTIC;
    574 		/* Select NAP mode. */
    575 		hid0 &= ~HID0_SLEEP;
    576 		hid0 |= HID0_NAP | HID0_DPM;
    577 		powersave = 1;
    578 		break;
    579 
    580 	case IBM970:
    581 	case IBM970FX:
    582 	case IBM970MP:
    583 #if defined(_ARCH_PPC64) || defined (PPC_OEA64_BRIDGE)
    584 		hid0 &= ~(HID0_64_DOZE | HID0_64_NAP | HID0_64_DEEPNAP);
    585 		hid0 |= HID0_64_DOZE | HID0_64_DPM | HID0_64_EX_TBEN |
    586 			HID0_64_TB_CTRL | HID0_64_EN_MCHK;
    587 		powersave = 1;
    588 		break;
    589 #endif
    590 	case IBMPOWER3II:
    591 	default:
    592 		/* No power-saving mode is available. */ ;
    593 	}
    594 
    595 #ifdef NAPMODE
    596 	switch (vers) {
    597 	case IBM750FX:
    598 	case IBM750GX:
    599 	case MPC750:
    600 	case MPC7400:
    601 		/* Select NAP mode. */
    602 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
    603 		hid0 |= HID0_NAP;
    604 		break;
    605 	}
    606 #endif
    607 
    608 	switch (vers) {
    609 	case IBM750FX:
    610 	case IBM750GX:
    611 	case MPC750:
    612 		hid0 &= ~HID0_DBP;		/* XXX correct? */
    613 		hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
    614 		break;
    615 
    616 	case MPC7400:
    617 	case MPC7410:
    618 		hid0 &= ~HID0_SPD;
    619 		hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
    620 		hid0 |= HID0_EIEC;
    621 		break;
    622 	}
    623 
    624 	/*
    625 	 * according to the 603e manual this is necessary for an external L2
    626 	 * cache to work properly
    627 	 */
    628 	switch (vers) {
    629 	case MPC603e:
    630 		hid0 |= HID0_ABE;
    631 	}
    632 
    633 #if defined(_ARCH_PPC64)
    634 	/* ppc970 needs extre goop around writes to HID0 */
    635 	__asm volatile( "sync;" \
    636 			"mtspr %0,%1;" \
    637 			"mfspr %1,%0;" \
    638 			"mfspr %1,%0;" \
    639 			"mfspr %1,%0;" \
    640 			"mfspr %1,%0;" \
    641 			"mfspr %1,%0;" \
    642 			"mfspr %1,%0;" \
    643 			 : : "K"(SPR_HID0), "r"(hid0));
    644 #else
    645 	mtspr(SPR_HID0, hid0);
    646 #endif
    647 	__asm volatile("sync;isync");
    648 
    649 
    650 
    651 	switch (vers) {
    652 	case MPC601:
    653 		bitmask = HID0_601_BITMASK;
    654 		break;
    655 	case MPC7447A:
    656 	case MPC7448:
    657 	case MPC7450:
    658 	case MPC7455:
    659 	case MPC7457:
    660 		bitmask = HID0_7450_BITMASK;
    661 		break;
    662 	case IBM970:
    663 	case IBM970FX:
    664 	case IBM970MP:
    665 		bitmask = HID0_970_BITMASK;
    666 #if defined(PPC_OEA64_BRIDGE) || defined(_ARCH_PPC64)
    667 		bitmasku = HID0_970_BITMASK_U;
    668 #endif
    669 		break;
    670 	default:
    671 		bitmask = HID0_BITMASK;
    672 		break;
    673 	}
    674 
    675 #if defined(PPC_OEA64_BRIDGE) || defined(_ARCH_PPC64)
    676 	if (bitmasku != NULL) {
    677 		snprintb(hidbuf, sizeof hidbuf, bitmask, hid0 & 0xffffffff);
    678 		snprintb(hidbuf_u, sizeof hidbuf_u, bitmasku, hid0 >> 32);
    679 		aprint_normal_dev(self, "HID0 %s %s, powersave: %d\n",
    680 		    hidbuf_u, hidbuf, powersave);
    681 	} else
    682 #endif
    683 	{
    684 		snprintb(hidbuf, sizeof hidbuf, bitmask, hid0);
    685 		aprint_normal_dev(self, "HID0 %s, powersave: %d\n",
    686 		    hidbuf, powersave);
    687 	}
    688 
    689 	ci->ci_khz = 0;
    690 
    691 	/*
    692 	 * Display speed and cache configuration.
    693 	 */
    694 	switch (vers) {
    695 	case MPC604:
    696 	case MPC604e:
    697 	case MPC604ev:
    698 	case MPC750:
    699 	case IBM750FX:
    700 	case IBM750GX:
    701 	case MPC7400:
    702 	case MPC7410:
    703 	case MPC7447A:
    704 	case MPC7448:
    705 	case MPC7450:
    706 	case MPC7455:
    707 	case MPC7457:
    708 		aprint_normal_dev(self, "");
    709 		cpu_probe_speed(ci);
    710 		aprint_normal("%u.%02u MHz",
    711 			      ci->ci_khz / 1000, (ci->ci_khz / 10) % 100);
    712 		switch (vers) {
    713 		case MPC7450: /* 7441 does not have L3! */
    714 		case MPC7455: /* 7445 does not have L3! */
    715 		case MPC7457: /* 7447 does not have L3! */
    716 			cpu_config_l3cr(vers);
    717 			break;
    718 		case IBM750FX:
    719 		case IBM750GX:
    720 		case MPC750:
    721 		case MPC7400:
    722 		case MPC7410:
    723 		case MPC7447A:
    724 		case MPC7448:
    725 			cpu_config_l2cr(pvr);
    726 			break;
    727 		default:
    728 			break;
    729 		}
    730 		aprint_normal("\n");
    731 		break;
    732 	}
    733 
    734 #if NSYSMON_ENVSYS > 0
    735 	/*
    736 	 * Attach MPC750 temperature sensor to the envsys subsystem.
    737 	 * XXX the 74xx series also has this sensor, but it is not
    738 	 * XXX supported by Motorola and may return values that are off by
    739 	 * XXX 35-55 degrees C.
    740 	 */
    741 	if (vers == MPC750 || vers == IBM750FX || vers == IBM750GX)
    742 		cpu_tau_setup(ci);
    743 #endif
    744 
    745 	evcnt_attach_dynamic(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
    746 		NULL, xname, "clock");
    747 	evcnt_attach_dynamic(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
    748 		NULL, xname, "traps");
    749 	evcnt_attach_dynamic(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
    750 		&ci->ci_ev_traps, xname, "kernel DSI traps");
    751 	evcnt_attach_dynamic(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
    752 		&ci->ci_ev_traps, xname, "user DSI traps");
    753 	evcnt_attach_dynamic(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
    754 		&ci->ci_ev_udsi, xname, "user DSI failures");
    755 	evcnt_attach_dynamic(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP,
    756 		&ci->ci_ev_traps, xname, "kernel ISI traps");
    757 	evcnt_attach_dynamic(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
    758 		&ci->ci_ev_traps, xname, "user ISI traps");
    759 	evcnt_attach_dynamic(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
    760 		&ci->ci_ev_isi, xname, "user ISI failures");
    761 	evcnt_attach_dynamic(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
    762 		&ci->ci_ev_traps, xname, "system call traps");
    763 	evcnt_attach_dynamic(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
    764 		&ci->ci_ev_traps, xname, "PGM traps");
    765 	evcnt_attach_dynamic(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
    766 		&ci->ci_ev_traps, xname, "FPU unavailable traps");
    767 	evcnt_attach_dynamic(&ci->ci_ev_fpusw, EVCNT_TYPE_TRAP,
    768 		&ci->ci_ev_fpu, xname, "FPU context switches");
    769 	evcnt_attach_dynamic(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
    770 		&ci->ci_ev_traps, xname, "user alignment traps");
    771 	evcnt_attach_dynamic(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
    772 		&ci->ci_ev_ali, xname, "user alignment traps");
    773 	evcnt_attach_dynamic(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
    774 		&ci->ci_ev_umchk, xname, "user MCHK failures");
    775 	evcnt_attach_dynamic(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
    776 		&ci->ci_ev_traps, xname, "AltiVec unavailable");
    777 #ifdef ALTIVEC
    778 	if (cpu_altivec) {
    779 		evcnt_attach_dynamic(&ci->ci_ev_vecsw, EVCNT_TYPE_TRAP,
    780 		    &ci->ci_ev_vec, xname, "AltiVec context switches");
    781 	}
    782 #endif
    783 	evcnt_attach_dynamic(&ci->ci_ev_ipi, EVCNT_TYPE_INTR,
    784 		NULL, xname, "IPIs");
    785 }
    786 
    787 /*
    788  * According to a document labeled "PVR Register Settings":
    789  ** For integrated microprocessors the PVR register inside the device
    790  ** will identify the version of the microprocessor core. You must also
    791  ** read the Device ID, PCI register 02, to identify the part and the
    792  ** Revision ID, PCI register 08, to identify the revision of the
    793  ** integrated microprocessor.
    794  * This apparently applies to 8240/8245/8241, PVR 00810101 and 80811014
    795  */
    796 
    797 void
    798 cpu_identify(char *str, size_t len)
    799 {
    800 	u_int pvr, major, minor;
    801 	uint16_t vers, rev, revfmt;
    802 	const struct cputab *cp;
    803 	size_t n;
    804 
    805 	pvr = mfpvr();
    806 	vers = pvr >> 16;
    807 	rev = pvr;
    808 
    809 	switch (vers) {
    810 	case MPC7410:
    811 		minor = (pvr >> 0) & 0xff;
    812 		major = minor <= 4 ? 1 : 2;
    813 		break;
    814 	case MPCG2: /*XXX see note above */
    815 		major = (pvr >> 4) & 0xf;
    816 		minor = (pvr >> 0) & 0xf;
    817 		break;
    818 	default:
    819 		major = (pvr >>  8) & 0xf;
    820 		minor = (pvr >>  0) & 0xf;
    821 	}
    822 
    823 	for (cp = models; cp->name[0] != '\0'; cp++) {
    824 		if (cp->version == vers)
    825 			break;
    826 	}
    827 
    828 	if (cpu == -1)
    829 		cpu = vers;
    830 
    831 	revfmt = cp->revfmt;
    832 	if (rev == MPC750 && pvr == 15) {
    833 		revfmt = REVFMT_HEX;
    834 	}
    835 
    836 	if (cp->name[0] != '\0') {
    837 		n = snprintf(str, len, "%s (Revision ", cp->name);
    838 	} else {
    839 		n = snprintf(str, len, "Version %#x (Revision ", vers);
    840 	}
    841 	if (len > n) {
    842 		switch (revfmt) {
    843 		case REVFMT_MAJMIN:
    844 			snprintf(str + n, len - n, "%u.%u)", major, minor);
    845 			break;
    846 		case REVFMT_HEX:
    847 			snprintf(str + n, len - n, "0x%04x)", rev);
    848 			break;
    849 		case REVFMT_DEC:
    850 			snprintf(str + n, len - n, "%u)", rev);
    851 			break;
    852 		}
    853 	}
    854 }
    855 
    856 #ifdef L2CR_CONFIG
    857 u_int l2cr_config = L2CR_CONFIG;
    858 #else
    859 u_int l2cr_config = 0;
    860 #endif
    861 
    862 #ifdef L3CR_CONFIG
    863 u_int l3cr_config = L3CR_CONFIG;
    864 #else
    865 u_int l3cr_config = 0;
    866 #endif
    867 
    868 void
    869 cpu_enable_l2cr(register_t l2cr)
    870 {
    871 	register_t msr, x;
    872 	uint16_t vers;
    873 
    874 	vers = mfpvr() >> 16;
    875 
    876 	/* Disable interrupts and set the cache config bits. */
    877 	msr = mfmsr();
    878 	mtmsr(msr & ~PSL_EE);
    879 #ifdef ALTIVEC
    880 	if (cpu_altivec)
    881 		__asm volatile("dssall");
    882 #endif
    883 	__asm volatile("sync");
    884 	mtspr(SPR_L2CR, l2cr & ~L2CR_L2E);
    885 	__asm volatile("sync");
    886 
    887 	/* Wait for L2 clock to be stable (640 L2 clocks). */
    888 	delay(100);
    889 
    890 	/* Invalidate all L2 contents. */
    891 	if (MPC745X_P(vers)) {
    892 		mtspr(SPR_L2CR, l2cr | L2CR_L2I);
    893 		do {
    894 			x = mfspr(SPR_L2CR);
    895 		} while (x & L2CR_L2I);
    896 	} else {
    897 		mtspr(SPR_L2CR, l2cr | L2CR_L2I);
    898 		do {
    899 			x = mfspr(SPR_L2CR);
    900 		} while (x & L2CR_L2IP);
    901 	}
    902 	/* Enable L2 cache. */
    903 	l2cr |= L2CR_L2E;
    904 	mtspr(SPR_L2CR, l2cr);
    905 	mtmsr(msr);
    906 }
    907 
    908 void
    909 cpu_enable_l3cr(register_t l3cr)
    910 {
    911 	register_t x;
    912 
    913 	/* By The Book (numbered steps from section 3.7.1.3 of MPC7450UM) */
    914 
    915 	/*
    916 	 * 1: Set all L3CR bits for final config except L3E, L3I, L3PE, and
    917 	 *    L3CLKEN.  (also mask off reserved bits in case they were included
    918 	 *    in L3CR_CONFIG)
    919 	 */
    920 	l3cr &= ~(L3CR_L3E|L3CR_L3I|L3CR_L3PE|L3CR_L3CLKEN|L3CR_RESERVED);
    921 	mtspr(SPR_L3CR, l3cr);
    922 
    923 	/* 2: Set L3CR[5] (otherwise reserved bit) to 1 */
    924 	l3cr |= 0x04000000;
    925 	mtspr(SPR_L3CR, l3cr);
    926 
    927 	/* 3: Set L3CLKEN to 1*/
    928 	l3cr |= L3CR_L3CLKEN;
    929 	mtspr(SPR_L3CR, l3cr);
    930 
    931 	/* 4/5: Perform a global cache invalidate (ref section 3.7.3.6) */
    932 	__asm volatile("dssall;sync");
    933 	/* L3 cache is already disabled, no need to clear L3E */
    934 	mtspr(SPR_L3CR, l3cr|L3CR_L3I);
    935 	do {
    936 		x = mfspr(SPR_L3CR);
    937 	} while (x & L3CR_L3I);
    938 
    939 	/* 6: Clear L3CLKEN to 0 */
    940 	l3cr &= ~L3CR_L3CLKEN;
    941 	mtspr(SPR_L3CR, l3cr);
    942 
    943 	/* 7: Perform a 'sync' and wait at least 100 CPU cycles */
    944 	__asm volatile("sync");
    945 	delay(100);
    946 
    947 	/* 8: Set L3E and L3CLKEN */
    948 	l3cr |= (L3CR_L3E|L3CR_L3CLKEN);
    949 	mtspr(SPR_L3CR, l3cr);
    950 
    951 	/* 9: Perform a 'sync' and wait at least 100 CPU cycles */
    952 	__asm volatile("sync");
    953 	delay(100);
    954 }
    955 
    956 void
    957 cpu_config_l2cr(int pvr)
    958 {
    959 	register_t l2cr;
    960 	u_int vers = (pvr >> 16) & 0xffff;
    961 
    962 	l2cr = mfspr(SPR_L2CR);
    963 
    964 	/*
    965 	 * For MP systems, the firmware may only configure the L2 cache
    966 	 * on the first CPU.  In this case, assume that the other CPUs
    967 	 * should use the same value for L2CR.
    968 	 */
    969 	if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
    970 		l2cr_config = l2cr;
    971 	}
    972 
    973 	/*
    974 	 * Configure L2 cache if not enabled.
    975 	 */
    976 	if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
    977 		cpu_enable_l2cr(l2cr_config);
    978 		l2cr = mfspr(SPR_L2CR);
    979 	}
    980 
    981 	if ((l2cr & L2CR_L2E) == 0) {
    982 		aprint_normal(" L2 cache present but not enabled ");
    983 		return;
    984 	}
    985 	aprint_normal(",");
    986 
    987 	switch (vers) {
    988 	case IBM750FX:
    989 	case IBM750GX:
    990 		cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
    991 		break;
    992 	case MPC750:
    993 		if ((pvr & 0xffffff00) == 0x00082200 /* IBM750CX */ ||
    994 		    (pvr & 0xffffef00) == 0x00082300 /* IBM750CXe */)
    995 			cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
    996 		else
    997 			cpu_fmttab_print(cpu_l2cr_formats, l2cr);
    998 		break;
    999 	case MPC7447A:
   1000 	case MPC7457:
   1001 		cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
   1002 		return;
   1003 	case MPC7448:
   1004 		cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
   1005 		return;
   1006 	case MPC7450:
   1007 	case MPC7455:
   1008 		cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
   1009 		break;
   1010 	default:
   1011 		cpu_fmttab_print(cpu_l2cr_formats, l2cr);
   1012 		break;
   1013 	}
   1014 }
   1015 
   1016 void
   1017 cpu_config_l3cr(int vers)
   1018 {
   1019 	register_t l2cr;
   1020 	register_t l3cr;
   1021 
   1022 	l2cr = mfspr(SPR_L2CR);
   1023 
   1024 	/*
   1025 	 * For MP systems, the firmware may only configure the L2 cache
   1026 	 * on the first CPU.  In this case, assume that the other CPUs
   1027 	 * should use the same value for L2CR.
   1028 	 */
   1029 	if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
   1030 		l2cr_config = l2cr;
   1031 	}
   1032 
   1033 	/*
   1034 	 * Configure L2 cache if not enabled.
   1035 	 */
   1036 	if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
   1037 		cpu_enable_l2cr(l2cr_config);
   1038 		l2cr = mfspr(SPR_L2CR);
   1039 	}
   1040 
   1041 	aprint_normal(",");
   1042 	switch (vers) {
   1043 	case MPC7447A:
   1044 	case MPC7457:
   1045 		cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
   1046 		return;
   1047 	case MPC7448:
   1048 		cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
   1049 		return;
   1050 	default:
   1051 		cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
   1052 		break;
   1053 	}
   1054 
   1055 	l3cr = mfspr(SPR_L3CR);
   1056 
   1057 	/*
   1058 	 * For MP systems, the firmware may only configure the L3 cache
   1059 	 * on the first CPU.  In this case, assume that the other CPUs
   1060 	 * should use the same value for L3CR.
   1061 	 */
   1062 	if ((l3cr & L3CR_L3E) != 0 && l3cr_config == 0) {
   1063 		l3cr_config = l3cr;
   1064 	}
   1065 
   1066 	/*
   1067 	 * Configure L3 cache if not enabled.
   1068 	 */
   1069 	if ((l3cr & L3CR_L3E) == 0 && l3cr_config != 0) {
   1070 		cpu_enable_l3cr(l3cr_config);
   1071 		l3cr = mfspr(SPR_L3CR);
   1072 	}
   1073 
   1074 	if (l3cr & L3CR_L3E) {
   1075 		aprint_normal(",");
   1076 		cpu_fmttab_print(cpu_7450_l3cr_formats, l3cr);
   1077 	}
   1078 }
   1079 
   1080 void
   1081 cpu_probe_speed(struct cpu_info *ci)
   1082 {
   1083 	uint64_t cps;
   1084 
   1085 	mtspr(SPR_MMCR0, MMCR0_FC);
   1086 	mtspr(SPR_PMC1, 0);
   1087 	mtspr(SPR_MMCR0, MMCR0_PMC1SEL(PMCN_CYCLES));
   1088 	delay(100000);
   1089 	cps = (mfspr(SPR_PMC1) * 10) + 4999;
   1090 
   1091 	mtspr(SPR_MMCR0, MMCR0_FC);
   1092 
   1093 	ci->ci_khz = (cps * cpu_get_dfs()) / 1000;
   1094 }
   1095 
   1096 /*
   1097  * Read the Dynamic Frequency Switching state and return a divisor for
   1098  * the maximum frequency.
   1099  */
   1100 int
   1101 cpu_get_dfs(void)
   1102 {
   1103 	u_int pvr, vers;
   1104 
   1105 	pvr = mfpvr();
   1106 	vers = pvr >> 16;
   1107 
   1108 	switch (vers) {
   1109 	case MPC7448:
   1110 		if (mfspr(SPR_HID1) & HID1_DFS4)
   1111 			return 4;
   1112 	case MPC7447A:
   1113 		if (mfspr(SPR_HID1) & HID1_DFS2)
   1114 			return 2;
   1115 	}
   1116 	return 1;
   1117 }
   1118 
   1119 /*
   1120  * Set the Dynamic Frequency Switching divisor the same for all cpus.
   1121  */
   1122 void
   1123 cpu_set_dfs(int div)
   1124 {
   1125 	uint64_t where;
   1126 	u_int dfs_mask, pvr, vers;
   1127 
   1128 	pvr = mfpvr();
   1129 	vers = pvr >> 16;
   1130 	dfs_mask = 0;
   1131 
   1132 	switch (vers) {
   1133 	case MPC7448:
   1134 		dfs_mask |= HID1_DFS4;
   1135 	case MPC7447A:
   1136 		dfs_mask |= HID1_DFS2;
   1137 		break;
   1138 	default:
   1139 		printf("cpu_set_dfs: DFS not supported\n");
   1140 		return;
   1141 
   1142 	}
   1143 
   1144 	where = xc_broadcast(0, (xcfunc_t)cpu_set_dfs_xcall, &div, &dfs_mask);
   1145 	xc_wait(where);
   1146 }
   1147 
   1148 static void
   1149 cpu_set_dfs_xcall(void *arg1, void *arg2)
   1150 {
   1151 	u_int dfs_mask, hid1, old_hid1;
   1152 	int *divisor, s;
   1153 
   1154 	divisor = arg1;
   1155 	dfs_mask = *(u_int *)arg2;
   1156 
   1157 	s = splhigh();
   1158 	hid1 = old_hid1 = mfspr(SPR_HID1);
   1159 
   1160 	switch (*divisor) {
   1161 	case 1:
   1162 		hid1 &= ~dfs_mask;
   1163 		break;
   1164 	case 2:
   1165 		hid1 &= ~(dfs_mask & HID1_DFS4);
   1166 		hid1 |= dfs_mask & HID1_DFS2;
   1167 		break;
   1168 	case 4:
   1169 		hid1 &= ~(dfs_mask & HID1_DFS2);
   1170 		hid1 |= dfs_mask & HID1_DFS4;
   1171 		break;
   1172 	}
   1173 
   1174 	if (hid1 != old_hid1) {
   1175 		__asm volatile("sync");
   1176 		mtspr(SPR_HID1, hid1);
   1177 		__asm volatile("sync;isync");
   1178 	}
   1179 
   1180 	splx(s);
   1181 }
   1182 
   1183 #if NSYSMON_ENVSYS > 0
   1184 void
   1185 cpu_tau_setup(struct cpu_info *ci)
   1186 {
   1187 	struct sysmon_envsys *sme;
   1188 	int error, therm_delay;
   1189 
   1190 	mtspr(SPR_THRM1, SPR_THRM_VALID);
   1191 	mtspr(SPR_THRM2, 0);
   1192 
   1193 	/*
   1194 	 * we need to figure out how much 20+us in units of CPU clock cycles
   1195 	 * are
   1196 	 */
   1197 
   1198 	therm_delay = ci->ci_khz / 40;		/* 25us just to be safe */
   1199 
   1200         mtspr(SPR_THRM3, SPR_THRM_TIMER(therm_delay) | SPR_THRM_ENABLE);
   1201 
   1202 	sme = sysmon_envsys_create();
   1203 
   1204 	sensor.units = ENVSYS_STEMP;
   1205 	sensor.state = ENVSYS_SINVALID;
   1206 	(void)strlcpy(sensor.desc, "CPU Temp", sizeof(sensor.desc));
   1207 	if (sysmon_envsys_sensor_attach(sme, &sensor)) {
   1208 		sysmon_envsys_destroy(sme);
   1209 		return;
   1210 	}
   1211 
   1212 	sme->sme_name = device_xname(ci->ci_dev);
   1213 	sme->sme_cookie = ci;
   1214 	sme->sme_refresh = cpu_tau_refresh;
   1215 
   1216 	if ((error = sysmon_envsys_register(sme)) != 0) {
   1217 		aprint_error_dev(ci->ci_dev,
   1218 		    " unable to register with sysmon (%d)\n", error);
   1219 		sysmon_envsys_destroy(sme);
   1220 	}
   1221 }
   1222 
   1223 /* Find the temperature of the CPU. */
   1224 void
   1225 cpu_tau_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
   1226 {
   1227 	int i, threshold, count;
   1228 
   1229 	threshold = 64; /* Half of the 7-bit sensor range */
   1230 
   1231 	/* Successive-approximation code adapted from Motorola
   1232 	 * application note AN1800/D, "Programming the Thermal Assist
   1233 	 * Unit in the MPC750 Microprocessor".
   1234 	 */
   1235 	for (i = 5; i >= 0 ; i--) {
   1236 		mtspr(SPR_THRM1,
   1237 		    SPR_THRM_THRESHOLD(threshold) | SPR_THRM_VALID);
   1238 		count = 0;
   1239 		while ((count < 100000) &&
   1240 		    ((mfspr(SPR_THRM1) & SPR_THRM_TIV) == 0)) {
   1241 			count++;
   1242 			delay(1);
   1243 		}
   1244 		if (mfspr(SPR_THRM1) & SPR_THRM_TIN) {
   1245 			/* The interrupt bit was set, meaning the
   1246 			 * temperature was above the threshold
   1247 			 */
   1248 			threshold += 1 << i;
   1249 		} else {
   1250 			/* Temperature was below the threshold */
   1251 			threshold -= 1 << i;
   1252 		}
   1253 	}
   1254 	threshold += 2;
   1255 
   1256 	/* Convert the temperature in degrees C to microkelvin */
   1257 	edata->value_cur = (threshold * 1000000) + 273150000;
   1258 	edata->state = ENVSYS_SVALID;
   1259 }
   1260 #endif /* NSYSMON_ENVSYS > 0 */
   1261 
   1262 #ifdef MULTIPROCESSOR
   1263 volatile u_int cpu_spinstart_ack, cpu_spinstart_cpunum;
   1264 
   1265 int
   1266 cpu_spinup(device_t self, struct cpu_info *ci)
   1267 {
   1268 	volatile struct cpu_hatch_data hatch_data, *h = &hatch_data;
   1269 	struct pglist mlist;
   1270 	int i, error;
   1271 	char *hp;
   1272 
   1273 	KASSERT(ci != curcpu());
   1274 
   1275 	/* Now allocate a hatch stack */
   1276 	error = uvm_pglistalloc(HATCH_STACK_SIZE, 0x10000, 0x10000000, 16, 0,
   1277 	    &mlist, 1, 1);
   1278 	if (error) {
   1279 		aprint_error(": unable to allocate hatch stack\n");
   1280 		return -1;
   1281 	}
   1282 
   1283 	hp = (void *)VM_PAGE_TO_PHYS(TAILQ_FIRST(&mlist));
   1284 	memset(hp, 0, HATCH_STACK_SIZE);
   1285 
   1286 	/* Initialize secondary cpu's initial lwp to its idlelwp. */
   1287 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
   1288 	ci->ci_curpcb = lwp_getpcb(ci->ci_curlwp);
   1289 	ci->ci_curpm = ci->ci_curpcb->pcb_pm;
   1290 
   1291 	cpu_hatch_data = h;
   1292 	h->hatch_running = 0;
   1293 	h->hatch_self = self;
   1294 	h->hatch_ci = ci;
   1295 	h->hatch_pir = ci->ci_cpuid;
   1296 
   1297 	cpu_hatch_stack = (uint32_t)hp + HATCH_STACK_SIZE - CALLFRAMELEN;
   1298 	ci->ci_lasttb = cpu_info[0].ci_lasttb;
   1299 
   1300 	/* copy special registers */
   1301 
   1302 	h->hatch_hid0 = mfspr(SPR_HID0);
   1303 
   1304 	__asm volatile ("mfsdr1 %0" : "=r"(h->hatch_sdr1));
   1305 	for (i = 0; i < 16; i++) {
   1306 		__asm ("mfsrin %0,%1" : "=r"(h->hatch_sr[i]) :
   1307 		       "r"(i << ADDR_SR_SHFT));
   1308 	}
   1309 	if (oeacpufeat & OEACPU_64)
   1310 		h->hatch_asr = mfspr(SPR_ASR);
   1311 	else
   1312 		h->hatch_asr = 0;
   1313 
   1314 	/* copy the bat regs */
   1315 	__asm volatile ("mfibatu %0,0" : "=r"(h->hatch_ibatu[0]));
   1316 	__asm volatile ("mfibatl %0,0" : "=r"(h->hatch_ibatl[0]));
   1317 	__asm volatile ("mfibatu %0,1" : "=r"(h->hatch_ibatu[1]));
   1318 	__asm volatile ("mfibatl %0,1" : "=r"(h->hatch_ibatl[1]));
   1319 	__asm volatile ("mfibatu %0,2" : "=r"(h->hatch_ibatu[2]));
   1320 	__asm volatile ("mfibatl %0,2" : "=r"(h->hatch_ibatl[2]));
   1321 	__asm volatile ("mfibatu %0,3" : "=r"(h->hatch_ibatu[3]));
   1322 	__asm volatile ("mfibatl %0,3" : "=r"(h->hatch_ibatl[3]));
   1323 	__asm volatile ("mfdbatu %0,0" : "=r"(h->hatch_dbatu[0]));
   1324 	__asm volatile ("mfdbatl %0,0" : "=r"(h->hatch_dbatl[0]));
   1325 	__asm volatile ("mfdbatu %0,1" : "=r"(h->hatch_dbatu[1]));
   1326 	__asm volatile ("mfdbatl %0,1" : "=r"(h->hatch_dbatl[1]));
   1327 	__asm volatile ("mfdbatu %0,2" : "=r"(h->hatch_dbatu[2]));
   1328 	__asm volatile ("mfdbatl %0,2" : "=r"(h->hatch_dbatl[2]));
   1329 	__asm volatile ("mfdbatu %0,3" : "=r"(h->hatch_dbatu[3]));
   1330 	__asm volatile ("mfdbatl %0,3" : "=r"(h->hatch_dbatl[3]));
   1331 	__asm volatile ("sync; isync");
   1332 
   1333 	if (md_setup_trampoline(h, ci) == -1)
   1334 		return -1;
   1335 	md_presync_timebase(h);
   1336 	md_start_timebase(h);
   1337 
   1338 	/* wait for secondary printf */
   1339 
   1340 	delay(200000);
   1341 
   1342 #ifdef CACHE_PROTO_MEI
   1343 	__asm volatile ("dcbi 0,%0"::"r"(&h->hatch_running):"memory");
   1344 	__asm volatile ("sync; isync");
   1345 	__asm volatile ("dcbst 0,%0"::"r"(&h->hatch_running):"memory");
   1346 	__asm volatile ("sync; isync");
   1347 #endif
   1348 	if (h->hatch_running < 1) {
   1349 #ifdef CACHE_PROTO_MEI
   1350 		__asm volatile ("dcbi 0,%0"::"r"(&cpu_spinstart_ack):"memory");
   1351 		__asm volatile ("sync; isync");
   1352 		__asm volatile ("dcbst 0,%0"::"r"(&cpu_spinstart_ack):"memory");
   1353 		__asm volatile ("sync; isync");
   1354 #endif
   1355 		aprint_error("%d:CPU %d didn't start %d\n", cpu_spinstart_ack,
   1356 		    ci->ci_cpuid, cpu_spinstart_ack);
   1357 		Debugger();
   1358 		return -1;
   1359 	}
   1360 
   1361 	/* Register IPI Interrupt */
   1362 	if (ipiops.ppc_establish_ipi)
   1363 		ipiops.ppc_establish_ipi(IST_LEVEL, IPL_HIGH, NULL);
   1364 
   1365 	return 0;
   1366 }
   1367 
   1368 static volatile int start_secondary_cpu;
   1369 
   1370 register_t
   1371 cpu_hatch(void)
   1372 {
   1373 	volatile struct cpu_hatch_data *h = cpu_hatch_data;
   1374 	struct cpu_info * const ci = h->hatch_ci;
   1375 	struct pcb *pcb;
   1376 	u_int msr;
   1377 	int i;
   1378 
   1379 	/* Initialize timebase. */
   1380 	__asm ("mttbl %0; mttbu %0; mttbl %0" :: "r"(0));
   1381 
   1382 	/*
   1383 	 * Set PIR (Processor Identification Register).  i.e. whoami
   1384 	 * Note that PIR is read-only on some CPU versions, so we write to it
   1385 	 * only if it has a different value than we need.
   1386 	 */
   1387 
   1388 	msr = mfspr(SPR_PIR);
   1389 	if (msr != h->hatch_pir)
   1390 		mtspr(SPR_PIR, h->hatch_pir);
   1391 
   1392 	__asm volatile ("mtsprg0 %0" :: "r"(ci));
   1393 	curlwp = ci->ci_curlwp;
   1394 	cpu_spinstart_ack = 0;
   1395 
   1396 	/* Initialize MMU. */
   1397 	__asm ("mtibatu 0,%0" :: "r"(h->hatch_ibatu[0]));
   1398 	__asm ("mtibatl 0,%0" :: "r"(h->hatch_ibatl[0]));
   1399 	__asm ("mtibatu 1,%0" :: "r"(h->hatch_ibatu[1]));
   1400 	__asm ("mtibatl 1,%0" :: "r"(h->hatch_ibatl[1]));
   1401 	__asm ("mtibatu 2,%0" :: "r"(h->hatch_ibatu[2]));
   1402 	__asm ("mtibatl 2,%0" :: "r"(h->hatch_ibatl[2]));
   1403 	__asm ("mtibatu 3,%0" :: "r"(h->hatch_ibatu[3]));
   1404 	__asm ("mtibatl 3,%0" :: "r"(h->hatch_ibatl[3]));
   1405 	__asm ("mtdbatu 0,%0" :: "r"(h->hatch_dbatu[0]));
   1406 	__asm ("mtdbatl 0,%0" :: "r"(h->hatch_dbatl[0]));
   1407 	__asm ("mtdbatu 1,%0" :: "r"(h->hatch_dbatu[1]));
   1408 	__asm ("mtdbatl 1,%0" :: "r"(h->hatch_dbatl[1]));
   1409 	__asm ("mtdbatu 2,%0" :: "r"(h->hatch_dbatu[2]));
   1410 	__asm ("mtdbatl 2,%0" :: "r"(h->hatch_dbatl[2]));
   1411 	__asm ("mtdbatu 3,%0" :: "r"(h->hatch_dbatu[3]));
   1412 	__asm ("mtdbatl 3,%0" :: "r"(h->hatch_dbatl[3]));
   1413 
   1414 	mtspr(SPR_HID0, h->hatch_hid0);
   1415 
   1416 	__asm ("mtibatl 0,%0; mtibatu 0,%1; mtdbatl 0,%0; mtdbatu 0,%1;"
   1417 	    :: "r"(battable[0].batl), "r"(battable[0].batu));
   1418 
   1419 	__asm volatile ("sync");
   1420 	for (i = 0; i < 16; i++)
   1421 		__asm ("mtsrin %0,%1" :: "r"(h->hatch_sr[i]), "r"(i << ADDR_SR_SHFT));
   1422 	__asm volatile ("sync; isync");
   1423 
   1424 	if (oeacpufeat & OEACPU_64)
   1425 		mtspr(SPR_ASR, h->hatch_asr);
   1426 
   1427 	cpu_spinstart_ack = 1;
   1428 	__asm ("ptesync");
   1429 	__asm ("mtsdr1 %0" :: "r"(h->hatch_sdr1));
   1430 	__asm volatile ("sync; isync");
   1431 
   1432 	cpu_spinstart_ack = 5;
   1433 	for (i = 0; i < 16; i++)
   1434 		__asm ("mfsrin %0,%1" : "=r"(h->hatch_sr[i]) :
   1435 		       "r"(i << ADDR_SR_SHFT));
   1436 
   1437 	/* Enable I/D address translations. */
   1438 	msr = mfmsr();
   1439 	msr |= PSL_IR|PSL_DR|PSL_ME|PSL_RI;
   1440 	mtmsr(msr);
   1441 	__asm volatile ("sync; isync");
   1442 	cpu_spinstart_ack = 2;
   1443 
   1444 	md_sync_timebase(h);
   1445 
   1446 	cpu_setup(h->hatch_self, ci);
   1447 
   1448 	h->hatch_running = 1;
   1449 	__asm volatile ("sync; isync");
   1450 
   1451 	while (start_secondary_cpu == 0)
   1452 		;
   1453 
   1454 	__asm volatile ("sync; isync");
   1455 
   1456 	aprint_normal("cpu%d started\n", curcpu()->ci_index);
   1457 	__asm volatile ("mtdec %0" :: "r"(ticks_per_intr));
   1458 
   1459 	md_setup_interrupts();
   1460 
   1461 	ci->ci_ipending = 0;
   1462 	ci->ci_cpl = 0;
   1463 
   1464 	mtmsr(mfmsr() | PSL_EE);
   1465 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
   1466 	return pcb->pcb_sp;
   1467 }
   1468 
   1469 void
   1470 cpu_boot_secondary_processors(void)
   1471 {
   1472 	start_secondary_cpu = 1;
   1473 	__asm volatile ("sync");
   1474 }
   1475 
   1476 #endif /*MULTIPROCESSOR*/
   1477