cpu_subr.c revision 1.82 1 /* $NetBSD: cpu_subr.c,v 1.82 2014/03/24 19:29:59 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2001 Matt Thomas.
5 * Copyright (c) 2001 Tsubai Masanari.
6 * Copyright (c) 1998, 1999, 2001 Internet Research Institute, Inc.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by
20 * Internet Research Institute, Inc.
21 * 4. The name of the author may not be used to endorse or promote products
22 * derived from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
29 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: cpu_subr.c,v 1.82 2014/03/24 19:29:59 christos Exp $");
38
39 #include "opt_ppcparam.h"
40 #include "opt_ppccache.h"
41 #include "opt_multiprocessor.h"
42 #include "opt_altivec.h"
43 #include "sysmon_envsys.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/device.h>
48 #include <sys/types.h>
49 #include <sys/lwp.h>
50 #include <sys/xcall.h>
51
52 #include <uvm/uvm.h>
53
54 #include <powerpc/pcb.h>
55 #include <powerpc/psl.h>
56 #include <powerpc/spr.h>
57 #include <powerpc/oea/hid.h>
58 #include <powerpc/oea/hid_601.h>
59 #include <powerpc/oea/spr.h>
60 #include <powerpc/oea/cpufeat.h>
61
62 #include <dev/sysmon/sysmonvar.h>
63
64 static void cpu_enable_l2cr(register_t);
65 static void cpu_enable_l3cr(register_t);
66 static void cpu_config_l2cr(int);
67 static void cpu_config_l3cr(int);
68 static void cpu_probe_speed(struct cpu_info *);
69 static void cpu_idlespin(void);
70 static void cpu_set_dfs_xcall(void *, void *);
71 #if NSYSMON_ENVSYS > 0
72 static void cpu_tau_setup(struct cpu_info *);
73 static void cpu_tau_refresh(struct sysmon_envsys *, envsys_data_t *);
74 #endif
75
76 int cpu = -1;
77 int ncpus;
78
79 struct fmttab {
80 register_t fmt_mask;
81 register_t fmt_value;
82 const char *fmt_string;
83 };
84
85 /*
86 * This should be one per CPU but since we only support it on 750 variants it
87 * doesn't realy matter since none of them supports SMP
88 */
89 envsys_data_t sensor;
90
91 static const struct fmttab cpu_7450_l2cr_formats[] = {
92 { L2CR_L2E, 0, " disabled" },
93 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
94 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
95 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
96 { L2CR_L2E, ~0, " 256KB L2 cache" },
97 { L2CR_L2PE, 0, " no parity" },
98 { L2CR_L2PE, ~0, " parity enabled" },
99 { 0, 0, NULL }
100 };
101
102 static const struct fmttab cpu_7448_l2cr_formats[] = {
103 { L2CR_L2E, 0, " disabled" },
104 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
105 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
106 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
107 { L2CR_L2E, ~0, " 1MB L2 cache" },
108 { L2CR_L2PE, 0, " no parity" },
109 { L2CR_L2PE, ~0, " parity enabled" },
110 { 0, 0, NULL }
111 };
112
113 static const struct fmttab cpu_7457_l2cr_formats[] = {
114 { L2CR_L2E, 0, " disabled" },
115 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
116 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
117 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
118 { L2CR_L2E, ~0, " 512KB L2 cache" },
119 { L2CR_L2PE, 0, " no parity" },
120 { L2CR_L2PE, ~0, " parity enabled" },
121 { 0, 0, NULL }
122 };
123
124 static const struct fmttab cpu_7450_l3cr_formats[] = {
125 { L3CR_L3DO|L3CR_L3IO, L3CR_L3DO, " data-only" },
126 { L3CR_L3DO|L3CR_L3IO, L3CR_L3IO, " instruction-only" },
127 { L3CR_L3DO|L3CR_L3IO, L3CR_L3DO|L3CR_L3IO, " locked" },
128 { L3CR_L3SIZ, L3SIZ_2M, " 2MB" },
129 { L3CR_L3SIZ, L3SIZ_1M, " 1MB" },
130 { L3CR_L3PE|L3CR_L3APE, L3CR_L3PE|L3CR_L3APE, " parity" },
131 { L3CR_L3PE|L3CR_L3APE, L3CR_L3PE, " data-parity" },
132 { L3CR_L3PE|L3CR_L3APE, L3CR_L3APE, " address-parity" },
133 { L3CR_L3PE|L3CR_L3APE, 0, " no-parity" },
134 { L3CR_L3SIZ, ~0, " L3 cache" },
135 { L3CR_L3RT, L3RT_MSUG2_DDR, " (DDR SRAM)" },
136 { L3CR_L3RT, L3RT_PIPELINE_LATE, " (LW SRAM)" },
137 { L3CR_L3RT, L3RT_PB2_SRAM, " (PB2 SRAM)" },
138 { L3CR_L3CLK, ~0, " at" },
139 { L3CR_L3CLK, L3CLK_20, " 2:1" },
140 { L3CR_L3CLK, L3CLK_25, " 2.5:1" },
141 { L3CR_L3CLK, L3CLK_30, " 3:1" },
142 { L3CR_L3CLK, L3CLK_35, " 3.5:1" },
143 { L3CR_L3CLK, L3CLK_40, " 4:1" },
144 { L3CR_L3CLK, L3CLK_50, " 5:1" },
145 { L3CR_L3CLK, L3CLK_60, " 6:1" },
146 { L3CR_L3CLK, ~0, " ratio" },
147 { 0, 0, NULL },
148 };
149
150 static const struct fmttab cpu_ibm750_l2cr_formats[] = {
151 { L2CR_L2E, 0, " disabled" },
152 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
153 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
154 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
155 { 0, ~0, " 512KB" },
156 { L2CR_L2WT, L2CR_L2WT, " WT" },
157 { L2CR_L2WT, 0, " WB" },
158 { L2CR_L2PE, L2CR_L2PE, " with ECC" },
159 { 0, ~0, " L2 cache" },
160 { 0, 0, NULL }
161 };
162
163 static const struct fmttab cpu_l2cr_formats[] = {
164 { L2CR_L2E, 0, " disabled" },
165 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
166 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
167 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
168 { L2CR_L2PE, L2CR_L2PE, " parity" },
169 { L2CR_L2PE, 0, " no-parity" },
170 { L2CR_L2SIZ, L2SIZ_2M, " 2MB" },
171 { L2CR_L2SIZ, L2SIZ_1M, " 1MB" },
172 { L2CR_L2SIZ, L2SIZ_512K, " 512KB" },
173 { L2CR_L2SIZ, L2SIZ_256K, " 256KB" },
174 { L2CR_L2WT, L2CR_L2WT, " WT" },
175 { L2CR_L2WT, 0, " WB" },
176 { L2CR_L2E, ~0, " L2 cache" },
177 { L2CR_L2RAM, L2RAM_FLOWTHRU_BURST, " (FB SRAM)" },
178 { L2CR_L2RAM, L2RAM_PIPELINE_LATE, " (LW SRAM)" },
179 { L2CR_L2RAM, L2RAM_PIPELINE_BURST, " (PB SRAM)" },
180 { L2CR_L2CLK, ~0, " at" },
181 { L2CR_L2CLK, L2CLK_10, " 1:1" },
182 { L2CR_L2CLK, L2CLK_15, " 1.5:1" },
183 { L2CR_L2CLK, L2CLK_20, " 2:1" },
184 { L2CR_L2CLK, L2CLK_25, " 2.5:1" },
185 { L2CR_L2CLK, L2CLK_30, " 3:1" },
186 { L2CR_L2CLK, L2CLK_35, " 3.5:1" },
187 { L2CR_L2CLK, L2CLK_40, " 4:1" },
188 { L2CR_L2CLK, ~0, " ratio" },
189 { 0, 0, NULL }
190 };
191
192 static void cpu_fmttab_print(const struct fmttab *, register_t);
193
194 struct cputab {
195 const char name[8];
196 uint16_t version;
197 uint16_t revfmt;
198 };
199 #define REVFMT_MAJMIN 1 /* %u.%u */
200 #define REVFMT_HEX 2 /* 0x%04x */
201 #define REVFMT_DEC 3 /* %u */
202 static const struct cputab models[] = {
203 { "601", MPC601, REVFMT_DEC },
204 { "602", MPC602, REVFMT_DEC },
205 { "603", MPC603, REVFMT_MAJMIN },
206 { "603e", MPC603e, REVFMT_MAJMIN },
207 { "603ev", MPC603ev, REVFMT_MAJMIN },
208 { "G2", MPCG2, REVFMT_MAJMIN },
209 { "604", MPC604, REVFMT_MAJMIN },
210 { "604e", MPC604e, REVFMT_MAJMIN },
211 { "604ev", MPC604ev, REVFMT_MAJMIN },
212 { "620", MPC620, REVFMT_HEX },
213 { "750", MPC750, REVFMT_MAJMIN },
214 { "750FX", IBM750FX, REVFMT_MAJMIN },
215 { "750GX", IBM750GX, REVFMT_MAJMIN },
216 { "7400", MPC7400, REVFMT_MAJMIN },
217 { "7410", MPC7410, REVFMT_MAJMIN },
218 { "7450", MPC7450, REVFMT_MAJMIN },
219 { "7455", MPC7455, REVFMT_MAJMIN },
220 { "7457", MPC7457, REVFMT_MAJMIN },
221 { "7447A", MPC7447A, REVFMT_MAJMIN },
222 { "7448", MPC7448, REVFMT_MAJMIN },
223 { "8240", MPC8240, REVFMT_MAJMIN },
224 { "8245", MPC8245, REVFMT_MAJMIN },
225 { "970", IBM970, REVFMT_MAJMIN },
226 { "970FX", IBM970FX, REVFMT_MAJMIN },
227 { "970MP", IBM970MP, REVFMT_MAJMIN },
228 { "POWER3II", IBMPOWER3II, REVFMT_MAJMIN },
229 { "", 0, REVFMT_HEX }
230 };
231
232 #ifdef MULTIPROCESSOR
233 struct cpu_info cpu_info[CPU_MAXNUM] = {
234 [0] = {
235 .ci_curlwp = &lwp0,
236 },
237 };
238 volatile struct cpu_hatch_data *cpu_hatch_data;
239 volatile int cpu_hatch_stack;
240 #define HATCH_STACK_SIZE 0x1000
241 extern int ticks_per_intr;
242 #include <powerpc/oea/bat.h>
243 #include <powerpc/pic/picvar.h>
244 #include <powerpc/pic/ipivar.h>
245 extern struct bat battable[];
246 #else
247 struct cpu_info cpu_info[1] = {
248 [0] = {
249 .ci_curlwp = &lwp0,
250 },
251 };
252 #endif /*MULTIPROCESSOR*/
253
254 int cpu_altivec;
255 register_t cpu_psluserset;
256 register_t cpu_pslusermod;
257 register_t cpu_pslusermask = 0xffff;
258
259 /* This is to be called from locore.S, and nowhere else. */
260
261 void
262 cpu_model_init(void)
263 {
264 u_int pvr, vers;
265
266 pvr = mfpvr();
267 vers = pvr >> 16;
268
269 oeacpufeat = 0;
270
271 if ((vers >= IBMRS64II && vers <= IBM970GX) || vers == MPC620 ||
272 vers == IBMCELL || vers == IBMPOWER6P5) {
273 oeacpufeat |= OEACPU_64;
274 oeacpufeat |= OEACPU_64_BRIDGE;
275 oeacpufeat |= OEACPU_NOBAT;
276
277 } else if (vers == MPC601) {
278 oeacpufeat |= OEACPU_601;
279
280 } else if (MPC745X_P(vers)) {
281 register_t hid1 = mfspr(SPR_HID1);
282
283 if (vers != MPC7450) {
284 register_t hid0 = mfspr(SPR_HID0);
285
286 /* Enable more SPRG registers */
287 oeacpufeat |= OEACPU_HIGHSPRG;
288
289 /* Enable more BAT registers */
290 oeacpufeat |= OEACPU_HIGHBAT;
291 hid0 |= HID0_HIGH_BAT_EN;
292
293 /* Enable larger BAT registers */
294 oeacpufeat |= OEACPU_XBSEN;
295 hid0 |= HID0_XBSEN;
296
297 mtspr(SPR_HID0, hid0);
298 __asm volatile("sync;isync");
299 }
300
301 /* Enable address broadcasting for MP systems */
302 hid1 |= HID1_SYNCBE | HID1_ABE;
303
304 mtspr(SPR_HID1, hid1);
305 __asm volatile("sync;isync");
306
307 } else if (vers == IBM750FX || vers == IBM750GX) {
308 oeacpufeat |= OEACPU_HIGHBAT;
309 }
310 }
311
312 void
313 cpu_fmttab_print(const struct fmttab *fmt, register_t data)
314 {
315 for (; fmt->fmt_mask != 0 || fmt->fmt_value != 0; fmt++) {
316 if ((~fmt->fmt_mask & fmt->fmt_value) != 0 ||
317 (data & fmt->fmt_mask) == fmt->fmt_value)
318 aprint_normal("%s", fmt->fmt_string);
319 }
320 }
321
322 void
323 cpu_idlespin(void)
324 {
325 register_t msr;
326
327 if (powersave <= 0)
328 return;
329
330 __asm volatile(
331 "sync;"
332 "mfmsr %0;"
333 "oris %0,%0,%1@h;" /* enter power saving mode */
334 "mtmsr %0;"
335 "isync;"
336 : "=r"(msr)
337 : "J"(PSL_POW));
338 }
339
340 void
341 cpu_probe_cache(void)
342 {
343 u_int assoc, pvr, vers;
344
345 pvr = mfpvr();
346 vers = pvr >> 16;
347
348
349 /* Presently common across almost all implementations. */
350 curcpu()->ci_ci.dcache_line_size = 32;
351 curcpu()->ci_ci.icache_line_size = 32;
352
353
354 switch (vers) {
355 #define K *1024
356 case IBM750FX:
357 case IBM750GX:
358 case MPC601:
359 case MPC750:
360 case MPC7400:
361 case MPC7447A:
362 case MPC7448:
363 case MPC7450:
364 case MPC7455:
365 case MPC7457:
366 curcpu()->ci_ci.dcache_size = 32 K;
367 curcpu()->ci_ci.icache_size = 32 K;
368 assoc = 8;
369 break;
370 case MPC603:
371 curcpu()->ci_ci.dcache_size = 8 K;
372 curcpu()->ci_ci.icache_size = 8 K;
373 assoc = 2;
374 break;
375 case MPC603e:
376 case MPC603ev:
377 case MPC604:
378 case MPC8240:
379 case MPC8245:
380 case MPCG2:
381 curcpu()->ci_ci.dcache_size = 16 K;
382 curcpu()->ci_ci.icache_size = 16 K;
383 assoc = 4;
384 break;
385 case MPC604e:
386 case MPC604ev:
387 curcpu()->ci_ci.dcache_size = 32 K;
388 curcpu()->ci_ci.icache_size = 32 K;
389 assoc = 4;
390 break;
391 case IBMPOWER3II:
392 curcpu()->ci_ci.dcache_size = 64 K;
393 curcpu()->ci_ci.icache_size = 32 K;
394 curcpu()->ci_ci.dcache_line_size = 128;
395 curcpu()->ci_ci.icache_line_size = 128;
396 assoc = 128; /* not a typo */
397 break;
398 case IBM970:
399 case IBM970FX:
400 case IBM970MP:
401 curcpu()->ci_ci.dcache_size = 32 K;
402 curcpu()->ci_ci.icache_size = 64 K;
403 curcpu()->ci_ci.dcache_line_size = 128;
404 curcpu()->ci_ci.icache_line_size = 128;
405 assoc = 2;
406 break;
407
408 default:
409 curcpu()->ci_ci.dcache_size = PAGE_SIZE;
410 curcpu()->ci_ci.icache_size = PAGE_SIZE;
411 assoc = 1;
412 #undef K
413 }
414
415 /*
416 * Possibly recolor.
417 */
418 uvm_page_recolor(atop(curcpu()->ci_ci.dcache_size / assoc));
419 }
420
421 struct cpu_info *
422 cpu_attach_common(device_t self, int id)
423 {
424 struct cpu_info *ci;
425 u_int pvr, vers;
426
427 ci = &cpu_info[id];
428 #ifndef MULTIPROCESSOR
429 /*
430 * If this isn't the primary CPU, print an error message
431 * and just bail out.
432 */
433 if (id != 0) {
434 aprint_naive("\n");
435 aprint_normal(": ID %d\n", id);
436 aprint_normal_dev(self,
437 "processor off-line; "
438 "multiprocessor support not present in kernel\n");
439 return (NULL);
440 }
441 #endif
442
443 ci->ci_cpuid = id;
444 ci->ci_idepth = -1;
445 ci->ci_dev = self;
446 ci->ci_idlespin = cpu_idlespin;
447
448 pvr = mfpvr();
449 vers = (pvr >> 16) & 0xffff;
450
451 switch (id) {
452 case 0:
453 /* load my cpu_number to PIR */
454 switch (vers) {
455 case MPC601:
456 case MPC604:
457 case MPC604e:
458 case MPC604ev:
459 case MPC7400:
460 case MPC7410:
461 case MPC7447A:
462 case MPC7448:
463 case MPC7450:
464 case MPC7455:
465 case MPC7457:
466 mtspr(SPR_PIR, id);
467 }
468 cpu_setup(self, ci);
469 break;
470 default:
471 aprint_naive("\n");
472 if (id >= CPU_MAXNUM) {
473 aprint_normal(": more than %d cpus?\n", CPU_MAXNUM);
474 panic("cpuattach");
475 }
476 #ifndef MULTIPROCESSOR
477 aprint_normal(" not configured\n");
478 return NULL;
479 #else
480 mi_cpu_attach(ci);
481 break;
482 #endif
483 }
484 return (ci);
485 }
486
487 void
488 cpu_setup(device_t self, struct cpu_info *ci)
489 {
490 u_int hid0, hid0_save, pvr, vers;
491 const char * const xname = device_xname(self);
492 const char *bitmask;
493 char hidbuf[128];
494 char model[80];
495
496 pvr = mfpvr();
497 vers = (pvr >> 16) & 0xffff;
498
499 cpu_identify(model, sizeof(model));
500 aprint_naive("\n");
501 aprint_normal(": %s, ID %d%s\n", model, cpu_number(),
502 cpu_number() == 0 ? " (primary)" : "");
503
504 /* set the cpu number */
505 ci->ci_cpuid = cpu_number();
506 hid0_save = hid0 = mfspr(SPR_HID0);
507
508 cpu_probe_cache();
509
510 /*
511 * Configure power-saving mode.
512 */
513 switch (vers) {
514 case MPC604:
515 case MPC604e:
516 case MPC604ev:
517 /*
518 * Do not have HID0 support settings, but can support
519 * MSR[POW] off
520 */
521 powersave = 1;
522 break;
523
524 case MPC603:
525 case MPC603e:
526 case MPC603ev:
527 case MPC7400:
528 case MPC7410:
529 case MPC8240:
530 case MPC8245:
531 case MPCG2:
532 /* Select DOZE mode. */
533 hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
534 hid0 |= HID0_DOZE | HID0_DPM;
535 powersave = 1;
536 break;
537
538 case MPC750:
539 case IBM750FX:
540 case IBM750GX:
541 /* Select NAP mode. */
542 hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
543 hid0 |= HID0_NAP | HID0_DPM;
544 powersave = 1;
545 break;
546
547 case MPC7447A:
548 case MPC7448:
549 case MPC7457:
550 case MPC7455:
551 case MPC7450:
552 /* Enable the 7450 branch caches */
553 hid0 |= HID0_SGE | HID0_BTIC;
554 hid0 |= HID0_LRSTK | HID0_FOLD | HID0_BHT;
555 /* Disable BTIC on 7450 Rev 2.0 or earlier */
556 if (vers == MPC7450 && (pvr & 0xFFFF) <= 0x0200)
557 hid0 &= ~HID0_BTIC;
558 /* Select NAP mode. */
559 hid0 &= ~HID0_SLEEP;
560 hid0 |= HID0_NAP | HID0_DPM;
561 powersave = 1;
562 break;
563
564 case IBM970:
565 case IBM970FX:
566 case IBM970MP:
567 case IBMPOWER3II:
568 default:
569 /* No power-saving mode is available. */ ;
570 }
571
572 #ifdef NAPMODE
573 switch (vers) {
574 case IBM750FX:
575 case IBM750GX:
576 case MPC750:
577 case MPC7400:
578 /* Select NAP mode. */
579 hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
580 hid0 |= HID0_NAP;
581 break;
582 }
583 #endif
584
585 switch (vers) {
586 case IBM750FX:
587 case IBM750GX:
588 case MPC750:
589 hid0 &= ~HID0_DBP; /* XXX correct? */
590 hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
591 break;
592
593 case MPC7400:
594 case MPC7410:
595 hid0 &= ~HID0_SPD;
596 hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
597 hid0 |= HID0_EIEC;
598 break;
599 }
600
601 #ifdef MULTIPROCESSOR
602 switch (vers) {
603 case MPC603e:
604 hid0 |= HID0_ABE;
605 }
606 #endif
607
608 if (hid0 != hid0_save) {
609 mtspr(SPR_HID0, hid0);
610 __asm volatile("sync;isync");
611 }
612
613
614 switch (vers) {
615 case MPC601:
616 bitmask = HID0_601_BITMASK;
617 break;
618 case MPC7450:
619 case MPC7455:
620 case MPC7457:
621 bitmask = HID0_7450_BITMASK;
622 break;
623 case IBM970:
624 case IBM970FX:
625 case IBM970MP:
626 bitmask = 0;
627 break;
628 default:
629 bitmask = HID0_BITMASK;
630 break;
631 }
632 snprintb(hidbuf, sizeof hidbuf, bitmask, hid0);
633 aprint_normal_dev(self, "HID0 %s, powersave: %d\n", hidbuf, powersave);
634
635 ci->ci_khz = 0;
636
637 /*
638 * Display speed and cache configuration.
639 */
640 switch (vers) {
641 case MPC604:
642 case MPC604e:
643 case MPC604ev:
644 case MPC750:
645 case IBM750FX:
646 case IBM750GX:
647 case MPC7400:
648 case MPC7410:
649 case MPC7447A:
650 case MPC7448:
651 case MPC7450:
652 case MPC7455:
653 case MPC7457:
654 aprint_normal_dev(self, "");
655 cpu_probe_speed(ci);
656 aprint_normal("%u.%02u MHz",
657 ci->ci_khz / 1000, (ci->ci_khz / 10) % 100);
658 switch (vers) {
659 case MPC7450: /* 7441 does not have L3! */
660 case MPC7455: /* 7445 does not have L3! */
661 case MPC7457: /* 7447 does not have L3! */
662 cpu_config_l3cr(vers);
663 break;
664 case IBM750FX:
665 case IBM750GX:
666 case MPC750:
667 case MPC7400:
668 case MPC7410:
669 case MPC7447A:
670 case MPC7448:
671 cpu_config_l2cr(pvr);
672 break;
673 default:
674 break;
675 }
676 aprint_normal("\n");
677 break;
678 }
679
680 #if NSYSMON_ENVSYS > 0
681 /*
682 * Attach MPC750 temperature sensor to the envsys subsystem.
683 * XXX the 74xx series also has this sensor, but it is not
684 * XXX supported by Motorola and may return values that are off by
685 * XXX 35-55 degrees C.
686 */
687 if (vers == MPC750 || vers == IBM750FX || vers == IBM750GX)
688 cpu_tau_setup(ci);
689 #endif
690
691 evcnt_attach_dynamic(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
692 NULL, xname, "clock");
693 evcnt_attach_dynamic(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
694 NULL, xname, "traps");
695 evcnt_attach_dynamic(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
696 &ci->ci_ev_traps, xname, "kernel DSI traps");
697 evcnt_attach_dynamic(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
698 &ci->ci_ev_traps, xname, "user DSI traps");
699 evcnt_attach_dynamic(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
700 &ci->ci_ev_udsi, xname, "user DSI failures");
701 evcnt_attach_dynamic(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP,
702 &ci->ci_ev_traps, xname, "kernel ISI traps");
703 evcnt_attach_dynamic(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
704 &ci->ci_ev_traps, xname, "user ISI traps");
705 evcnt_attach_dynamic(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
706 &ci->ci_ev_isi, xname, "user ISI failures");
707 evcnt_attach_dynamic(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
708 &ci->ci_ev_traps, xname, "system call traps");
709 evcnt_attach_dynamic(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
710 &ci->ci_ev_traps, xname, "PGM traps");
711 evcnt_attach_dynamic(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
712 &ci->ci_ev_traps, xname, "FPU unavailable traps");
713 evcnt_attach_dynamic(&ci->ci_ev_fpusw, EVCNT_TYPE_TRAP,
714 &ci->ci_ev_fpu, xname, "FPU context switches");
715 evcnt_attach_dynamic(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
716 &ci->ci_ev_traps, xname, "user alignment traps");
717 evcnt_attach_dynamic(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
718 &ci->ci_ev_ali, xname, "user alignment traps");
719 evcnt_attach_dynamic(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
720 &ci->ci_ev_umchk, xname, "user MCHK failures");
721 evcnt_attach_dynamic(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
722 &ci->ci_ev_traps, xname, "AltiVec unavailable");
723 #ifdef ALTIVEC
724 if (cpu_altivec) {
725 evcnt_attach_dynamic(&ci->ci_ev_vecsw, EVCNT_TYPE_TRAP,
726 &ci->ci_ev_vec, xname, "AltiVec context switches");
727 }
728 #endif
729 evcnt_attach_dynamic(&ci->ci_ev_ipi, EVCNT_TYPE_INTR,
730 NULL, xname, "IPIs");
731 }
732
733 /*
734 * According to a document labeled "PVR Register Settings":
735 ** For integrated microprocessors the PVR register inside the device
736 ** will identify the version of the microprocessor core. You must also
737 ** read the Device ID, PCI register 02, to identify the part and the
738 ** Revision ID, PCI register 08, to identify the revision of the
739 ** integrated microprocessor.
740 * This apparently applies to 8240/8245/8241, PVR 00810101 and 80811014
741 */
742
743 void
744 cpu_identify(char *str, size_t len)
745 {
746 u_int pvr, major, minor;
747 uint16_t vers, rev, revfmt;
748 const struct cputab *cp;
749 size_t n;
750
751 pvr = mfpvr();
752 vers = pvr >> 16;
753 rev = pvr;
754
755 switch (vers) {
756 case MPC7410:
757 minor = (pvr >> 0) & 0xff;
758 major = minor <= 4 ? 1 : 2;
759 break;
760 case MPCG2: /*XXX see note above */
761 major = (pvr >> 4) & 0xf;
762 minor = (pvr >> 0) & 0xf;
763 break;
764 default:
765 major = (pvr >> 8) & 0xf;
766 minor = (pvr >> 0) & 0xf;
767 }
768
769 for (cp = models; cp->name[0] != '\0'; cp++) {
770 if (cp->version == vers)
771 break;
772 }
773
774 if (cpu == -1)
775 cpu = vers;
776
777 revfmt = cp->revfmt;
778 if (rev == MPC750 && pvr == 15) {
779 revfmt = REVFMT_HEX;
780 }
781
782 if (cp->name[0] != '\0') {
783 n = snprintf(str, len, "%s (Revision ", cp->name);
784 } else {
785 n = snprintf(str, len, "Version %#x (Revision ", vers);
786 }
787 if (len > n) {
788 switch (revfmt) {
789 case REVFMT_MAJMIN:
790 snprintf(str + n, len - n, "%u.%u)", major, minor);
791 break;
792 case REVFMT_HEX:
793 snprintf(str + n, len - n, "0x%04x)", rev);
794 break;
795 case REVFMT_DEC:
796 snprintf(str + n, len - n, "%u)", rev);
797 break;
798 }
799 }
800 }
801
802 #ifdef L2CR_CONFIG
803 u_int l2cr_config = L2CR_CONFIG;
804 #else
805 u_int l2cr_config = 0;
806 #endif
807
808 #ifdef L3CR_CONFIG
809 u_int l3cr_config = L3CR_CONFIG;
810 #else
811 u_int l3cr_config = 0;
812 #endif
813
814 void
815 cpu_enable_l2cr(register_t l2cr)
816 {
817 register_t msr, x;
818 uint16_t vers;
819
820 vers = mfpvr() >> 16;
821
822 /* Disable interrupts and set the cache config bits. */
823 msr = mfmsr();
824 mtmsr(msr & ~PSL_EE);
825 #ifdef ALTIVEC
826 if (cpu_altivec)
827 __asm volatile("dssall");
828 #endif
829 __asm volatile("sync");
830 mtspr(SPR_L2CR, l2cr & ~L2CR_L2E);
831 __asm volatile("sync");
832
833 /* Wait for L2 clock to be stable (640 L2 clocks). */
834 delay(100);
835
836 /* Invalidate all L2 contents. */
837 if (MPC745X_P(vers)) {
838 mtspr(SPR_L2CR, l2cr | L2CR_L2I);
839 do {
840 x = mfspr(SPR_L2CR);
841 } while (x & L2CR_L2I);
842 } else {
843 mtspr(SPR_L2CR, l2cr | L2CR_L2I);
844 do {
845 x = mfspr(SPR_L2CR);
846 } while (x & L2CR_L2IP);
847 }
848 /* Enable L2 cache. */
849 l2cr |= L2CR_L2E;
850 mtspr(SPR_L2CR, l2cr);
851 mtmsr(msr);
852 }
853
854 void
855 cpu_enable_l3cr(register_t l3cr)
856 {
857 register_t x;
858
859 /* By The Book (numbered steps from section 3.7.1.3 of MPC7450UM) */
860
861 /*
862 * 1: Set all L3CR bits for final config except L3E, L3I, L3PE, and
863 * L3CLKEN. (also mask off reserved bits in case they were included
864 * in L3CR_CONFIG)
865 */
866 l3cr &= ~(L3CR_L3E|L3CR_L3I|L3CR_L3PE|L3CR_L3CLKEN|L3CR_RESERVED);
867 mtspr(SPR_L3CR, l3cr);
868
869 /* 2: Set L3CR[5] (otherwise reserved bit) to 1 */
870 l3cr |= 0x04000000;
871 mtspr(SPR_L3CR, l3cr);
872
873 /* 3: Set L3CLKEN to 1*/
874 l3cr |= L3CR_L3CLKEN;
875 mtspr(SPR_L3CR, l3cr);
876
877 /* 4/5: Perform a global cache invalidate (ref section 3.7.3.6) */
878 __asm volatile("dssall;sync");
879 /* L3 cache is already disabled, no need to clear L3E */
880 mtspr(SPR_L3CR, l3cr|L3CR_L3I);
881 do {
882 x = mfspr(SPR_L3CR);
883 } while (x & L3CR_L3I);
884
885 /* 6: Clear L3CLKEN to 0 */
886 l3cr &= ~L3CR_L3CLKEN;
887 mtspr(SPR_L3CR, l3cr);
888
889 /* 7: Perform a 'sync' and wait at least 100 CPU cycles */
890 __asm volatile("sync");
891 delay(100);
892
893 /* 8: Set L3E and L3CLKEN */
894 l3cr |= (L3CR_L3E|L3CR_L3CLKEN);
895 mtspr(SPR_L3CR, l3cr);
896
897 /* 9: Perform a 'sync' and wait at least 100 CPU cycles */
898 __asm volatile("sync");
899 delay(100);
900 }
901
902 void
903 cpu_config_l2cr(int pvr)
904 {
905 register_t l2cr;
906 u_int vers = (pvr >> 16) & 0xffff;
907
908 l2cr = mfspr(SPR_L2CR);
909
910 /*
911 * For MP systems, the firmware may only configure the L2 cache
912 * on the first CPU. In this case, assume that the other CPUs
913 * should use the same value for L2CR.
914 */
915 if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
916 l2cr_config = l2cr;
917 }
918
919 /*
920 * Configure L2 cache if not enabled.
921 */
922 if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
923 cpu_enable_l2cr(l2cr_config);
924 l2cr = mfspr(SPR_L2CR);
925 }
926
927 if ((l2cr & L2CR_L2E) == 0) {
928 aprint_normal(" L2 cache present but not enabled ");
929 return;
930 }
931 aprint_normal(",");
932
933 switch (vers) {
934 case IBM750FX:
935 case IBM750GX:
936 cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
937 break;
938 case MPC750:
939 if ((pvr & 0xffffff00) == 0x00082200 /* IBM750CX */ ||
940 (pvr & 0xffffef00) == 0x00082300 /* IBM750CXe */)
941 cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
942 else
943 cpu_fmttab_print(cpu_l2cr_formats, l2cr);
944 break;
945 case MPC7447A:
946 case MPC7457:
947 cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
948 return;
949 case MPC7448:
950 cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
951 return;
952 case MPC7450:
953 case MPC7455:
954 cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
955 break;
956 default:
957 cpu_fmttab_print(cpu_l2cr_formats, l2cr);
958 break;
959 }
960 }
961
962 void
963 cpu_config_l3cr(int vers)
964 {
965 register_t l2cr;
966 register_t l3cr;
967
968 l2cr = mfspr(SPR_L2CR);
969
970 /*
971 * For MP systems, the firmware may only configure the L2 cache
972 * on the first CPU. In this case, assume that the other CPUs
973 * should use the same value for L2CR.
974 */
975 if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
976 l2cr_config = l2cr;
977 }
978
979 /*
980 * Configure L2 cache if not enabled.
981 */
982 if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
983 cpu_enable_l2cr(l2cr_config);
984 l2cr = mfspr(SPR_L2CR);
985 }
986
987 aprint_normal(",");
988 switch (vers) {
989 case MPC7447A:
990 case MPC7457:
991 cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
992 return;
993 case MPC7448:
994 cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
995 return;
996 default:
997 cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
998 break;
999 }
1000
1001 l3cr = mfspr(SPR_L3CR);
1002
1003 /*
1004 * For MP systems, the firmware may only configure the L3 cache
1005 * on the first CPU. In this case, assume that the other CPUs
1006 * should use the same value for L3CR.
1007 */
1008 if ((l3cr & L3CR_L3E) != 0 && l3cr_config == 0) {
1009 l3cr_config = l3cr;
1010 }
1011
1012 /*
1013 * Configure L3 cache if not enabled.
1014 */
1015 if ((l3cr & L3CR_L3E) == 0 && l3cr_config != 0) {
1016 cpu_enable_l3cr(l3cr_config);
1017 l3cr = mfspr(SPR_L3CR);
1018 }
1019
1020 if (l3cr & L3CR_L3E) {
1021 aprint_normal(",");
1022 cpu_fmttab_print(cpu_7450_l3cr_formats, l3cr);
1023 }
1024 }
1025
1026 void
1027 cpu_probe_speed(struct cpu_info *ci)
1028 {
1029 uint64_t cps;
1030
1031 mtspr(SPR_MMCR0, MMCR0_FC);
1032 mtspr(SPR_PMC1, 0);
1033 mtspr(SPR_MMCR0, MMCR0_PMC1SEL(PMCN_CYCLES));
1034 delay(100000);
1035 cps = (mfspr(SPR_PMC1) * 10) + 4999;
1036
1037 mtspr(SPR_MMCR0, MMCR0_FC);
1038
1039 ci->ci_khz = (cps * cpu_get_dfs()) / 1000;
1040 }
1041
1042 /*
1043 * Read the Dynamic Frequency Switching state and return a divisor for
1044 * the maximum frequency.
1045 */
1046 int
1047 cpu_get_dfs(void)
1048 {
1049 u_int pvr, vers;
1050
1051 pvr = mfpvr();
1052 vers = pvr >> 16;
1053
1054 switch (vers) {
1055 case MPC7448:
1056 if (mfspr(SPR_HID1) & HID1_DFS4)
1057 return 4;
1058 case MPC7447A:
1059 if (mfspr(SPR_HID1) & HID1_DFS2)
1060 return 2;
1061 }
1062 return 1;
1063 }
1064
1065 /*
1066 * Set the Dynamic Frequency Switching divisor the same for all cpus.
1067 */
1068 void
1069 cpu_set_dfs(int div)
1070 {
1071 uint64_t where;
1072 u_int dfs_mask, pvr, vers;
1073
1074 pvr = mfpvr();
1075 vers = pvr >> 16;
1076 dfs_mask = 0;
1077
1078 switch (vers) {
1079 case MPC7448:
1080 dfs_mask |= HID1_DFS4;
1081 case MPC7447A:
1082 dfs_mask |= HID1_DFS2;
1083 break;
1084 default:
1085 printf("cpu_set_dfs: DFS not supported\n");
1086 return;
1087
1088 }
1089
1090 where = xc_broadcast(0, (xcfunc_t)cpu_set_dfs_xcall, &div, &dfs_mask);
1091 xc_wait(where);
1092 }
1093
1094 static void
1095 cpu_set_dfs_xcall(void *arg1, void *arg2)
1096 {
1097 u_int dfs_mask, hid1, old_hid1;
1098 int *divisor, s;
1099
1100 divisor = arg1;
1101 dfs_mask = *(u_int *)arg2;
1102
1103 s = splhigh();
1104 hid1 = old_hid1 = mfspr(SPR_HID1);
1105
1106 switch (*divisor) {
1107 case 1:
1108 hid1 &= ~dfs_mask;
1109 break;
1110 case 2:
1111 hid1 &= ~(dfs_mask & HID1_DFS4);
1112 hid1 |= dfs_mask & HID1_DFS2;
1113 break;
1114 case 4:
1115 hid1 &= ~(dfs_mask & HID1_DFS2);
1116 hid1 |= dfs_mask & HID1_DFS4;
1117 break;
1118 }
1119
1120 if (hid1 != old_hid1) {
1121 __asm volatile("sync");
1122 mtspr(SPR_HID1, hid1);
1123 __asm volatile("sync;isync");
1124 }
1125
1126 splx(s);
1127 }
1128
1129 #if NSYSMON_ENVSYS > 0
1130 void
1131 cpu_tau_setup(struct cpu_info *ci)
1132 {
1133 struct sysmon_envsys *sme;
1134 int error, therm_delay;
1135
1136 mtspr(SPR_THRM1, SPR_THRM_VALID);
1137 mtspr(SPR_THRM2, 0);
1138
1139 /*
1140 * we need to figure out how much 20+us in units of CPU clock cycles
1141 * are
1142 */
1143
1144 therm_delay = ci->ci_khz / 40; /* 25us just to be safe */
1145
1146 mtspr(SPR_THRM3, SPR_THRM_TIMER(therm_delay) | SPR_THRM_ENABLE);
1147
1148 sme = sysmon_envsys_create();
1149
1150 sensor.units = ENVSYS_STEMP;
1151 sensor.state = ENVSYS_SINVALID;
1152 (void)strlcpy(sensor.desc, "CPU Temp", sizeof(sensor.desc));
1153 if (sysmon_envsys_sensor_attach(sme, &sensor)) {
1154 sysmon_envsys_destroy(sme);
1155 return;
1156 }
1157
1158 sme->sme_name = device_xname(ci->ci_dev);
1159 sme->sme_cookie = ci;
1160 sme->sme_refresh = cpu_tau_refresh;
1161
1162 if ((error = sysmon_envsys_register(sme)) != 0) {
1163 aprint_error_dev(ci->ci_dev,
1164 " unable to register with sysmon (%d)\n", error);
1165 sysmon_envsys_destroy(sme);
1166 }
1167 }
1168
1169
1170 /* Find the temperature of the CPU. */
1171 void
1172 cpu_tau_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
1173 {
1174 int i, threshold, count;
1175
1176 threshold = 64; /* Half of the 7-bit sensor range */
1177
1178 /* Successive-approximation code adapted from Motorola
1179 * application note AN1800/D, "Programming the Thermal Assist
1180 * Unit in the MPC750 Microprocessor".
1181 */
1182 for (i = 5; i >= 0 ; i--) {
1183 mtspr(SPR_THRM1,
1184 SPR_THRM_THRESHOLD(threshold) | SPR_THRM_VALID);
1185 count = 0;
1186 while ((count < 100000) &&
1187 ((mfspr(SPR_THRM1) & SPR_THRM_TIV) == 0)) {
1188 count++;
1189 delay(1);
1190 }
1191 if (mfspr(SPR_THRM1) & SPR_THRM_TIN) {
1192 /* The interrupt bit was set, meaning the
1193 * temperature was above the threshold
1194 */
1195 threshold += 1 << i;
1196 } else {
1197 /* Temperature was below the threshold */
1198 threshold -= 1 << i;
1199 }
1200 }
1201 threshold += 2;
1202
1203 /* Convert the temperature in degrees C to microkelvin */
1204 edata->value_cur = (threshold * 1000000) + 273150000;
1205 edata->state = ENVSYS_SVALID;
1206 }
1207 #endif /* NSYSMON_ENVSYS > 0 */
1208
1209 #ifdef MULTIPROCESSOR
1210 volatile u_int cpu_spinstart_ack, cpu_spinstart_cpunum;
1211
1212 int
1213 cpu_spinup(device_t self, struct cpu_info *ci)
1214 {
1215 volatile struct cpu_hatch_data hatch_data, *h = &hatch_data;
1216 struct pglist mlist;
1217 int i, error;
1218 char *hp;
1219
1220 KASSERT(ci != curcpu());
1221
1222 /* Now allocate a hatch stack */
1223 error = uvm_pglistalloc(HATCH_STACK_SIZE, 0x10000, 0x10000000, 16, 0,
1224 &mlist, 1, 1);
1225 if (error) {
1226 aprint_error(": unable to allocate hatch stack\n");
1227 return -1;
1228 }
1229
1230 hp = (void *)VM_PAGE_TO_PHYS(TAILQ_FIRST(&mlist));
1231 memset(hp, 0, HATCH_STACK_SIZE);
1232
1233 /* Initialize secondary cpu's initial lwp to its idlelwp. */
1234 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
1235 ci->ci_curpcb = lwp_getpcb(ci->ci_curlwp);
1236 ci->ci_curpm = ci->ci_curpcb->pcb_pm;
1237
1238 cpu_hatch_data = h;
1239 h->hatch_running = 0;
1240 h->hatch_self = self;
1241 h->hatch_ci = ci;
1242 h->hatch_pir = ci->ci_cpuid;
1243
1244 cpu_hatch_stack = (uint32_t)hp + HATCH_STACK_SIZE - CALLFRAMELEN;
1245 ci->ci_lasttb = cpu_info[0].ci_lasttb;
1246
1247 /* copy special registers */
1248
1249 h->hatch_hid0 = mfspr(SPR_HID0);
1250
1251 __asm volatile ("mfsdr1 %0" : "=r"(h->hatch_sdr1));
1252 for (i = 0; i < 16; i++) {
1253 __asm ("mfsrin %0,%1" : "=r"(h->hatch_sr[i]) :
1254 "r"(i << ADDR_SR_SHFT));
1255 }
1256 if (oeacpufeat & OEACPU_64)
1257 h->hatch_asr = mfspr(SPR_ASR);
1258 else
1259 h->hatch_asr = 0;
1260
1261 /* copy the bat regs */
1262 __asm volatile ("mfibatu %0,0" : "=r"(h->hatch_ibatu[0]));
1263 __asm volatile ("mfibatl %0,0" : "=r"(h->hatch_ibatl[0]));
1264 __asm volatile ("mfibatu %0,1" : "=r"(h->hatch_ibatu[1]));
1265 __asm volatile ("mfibatl %0,1" : "=r"(h->hatch_ibatl[1]));
1266 __asm volatile ("mfibatu %0,2" : "=r"(h->hatch_ibatu[2]));
1267 __asm volatile ("mfibatl %0,2" : "=r"(h->hatch_ibatl[2]));
1268 __asm volatile ("mfibatu %0,3" : "=r"(h->hatch_ibatu[3]));
1269 __asm volatile ("mfibatl %0,3" : "=r"(h->hatch_ibatl[3]));
1270 __asm volatile ("mfdbatu %0,0" : "=r"(h->hatch_dbatu[0]));
1271 __asm volatile ("mfdbatl %0,0" : "=r"(h->hatch_dbatl[0]));
1272 __asm volatile ("mfdbatu %0,1" : "=r"(h->hatch_dbatu[1]));
1273 __asm volatile ("mfdbatl %0,1" : "=r"(h->hatch_dbatl[1]));
1274 __asm volatile ("mfdbatu %0,2" : "=r"(h->hatch_dbatu[2]));
1275 __asm volatile ("mfdbatl %0,2" : "=r"(h->hatch_dbatl[2]));
1276 __asm volatile ("mfdbatu %0,3" : "=r"(h->hatch_dbatu[3]));
1277 __asm volatile ("mfdbatl %0,3" : "=r"(h->hatch_dbatl[3]));
1278 __asm volatile ("sync; isync");
1279
1280 if (md_setup_trampoline(h, ci) == -1)
1281 return -1;
1282 md_presync_timebase(h);
1283 md_start_timebase(h);
1284
1285 /* wait for secondary printf */
1286
1287 delay(200000);
1288
1289 #ifdef CACHE_PROTO_MEI
1290 __asm volatile ("dcbi 0,%0"::"r"(&h->hatch_running):"memory");
1291 __asm volatile ("sync; isync");
1292 __asm volatile ("dcbst 0,%0"::"r"(&h->hatch_running):"memory");
1293 __asm volatile ("sync; isync");
1294 #endif
1295 if (h->hatch_running < 1) {
1296 #ifdef CACHE_PROTO_MEI
1297 __asm volatile ("dcbi 0,%0"::"r"(&cpu_spinstart_ack):"memory");
1298 __asm volatile ("sync; isync");
1299 __asm volatile ("dcbst 0,%0"::"r"(&cpu_spinstart_ack):"memory");
1300 __asm volatile ("sync; isync");
1301 #endif
1302 aprint_error("%d:CPU %d didn't start %d\n", cpu_spinstart_ack,
1303 ci->ci_cpuid, cpu_spinstart_ack);
1304 Debugger();
1305 return -1;
1306 }
1307
1308 /* Register IPI Interrupt */
1309 if (ipiops.ppc_establish_ipi)
1310 ipiops.ppc_establish_ipi(IST_LEVEL, IPL_HIGH, NULL);
1311
1312 return 0;
1313 }
1314
1315 static volatile int start_secondary_cpu;
1316
1317 register_t
1318 cpu_hatch(void)
1319 {
1320 volatile struct cpu_hatch_data *h = cpu_hatch_data;
1321 struct cpu_info * const ci = h->hatch_ci;
1322 struct pcb *pcb;
1323 u_int msr;
1324 int i;
1325
1326 /* Initialize timebase. */
1327 __asm ("mttbl %0; mttbu %0; mttbl %0" :: "r"(0));
1328
1329 /*
1330 * Set PIR (Processor Identification Register). i.e. whoami
1331 * Note that PIR is read-only on some CPU versions, so we write to it
1332 * only if it has a different value than we need.
1333 */
1334
1335 msr = mfspr(SPR_PIR);
1336 if (msr != h->hatch_pir)
1337 mtspr(SPR_PIR, h->hatch_pir);
1338
1339 __asm volatile ("mtsprg0 %0" :: "r"(ci));
1340 curlwp = ci->ci_curlwp;
1341 cpu_spinstart_ack = 0;
1342
1343 /* Initialize MMU. */
1344 __asm ("mtibatu 0,%0" :: "r"(h->hatch_ibatu[0]));
1345 __asm ("mtibatl 0,%0" :: "r"(h->hatch_ibatl[0]));
1346 __asm ("mtibatu 1,%0" :: "r"(h->hatch_ibatu[1]));
1347 __asm ("mtibatl 1,%0" :: "r"(h->hatch_ibatl[1]));
1348 __asm ("mtibatu 2,%0" :: "r"(h->hatch_ibatu[2]));
1349 __asm ("mtibatl 2,%0" :: "r"(h->hatch_ibatl[2]));
1350 __asm ("mtibatu 3,%0" :: "r"(h->hatch_ibatu[3]));
1351 __asm ("mtibatl 3,%0" :: "r"(h->hatch_ibatl[3]));
1352 __asm ("mtdbatu 0,%0" :: "r"(h->hatch_dbatu[0]));
1353 __asm ("mtdbatl 0,%0" :: "r"(h->hatch_dbatl[0]));
1354 __asm ("mtdbatu 1,%0" :: "r"(h->hatch_dbatu[1]));
1355 __asm ("mtdbatl 1,%0" :: "r"(h->hatch_dbatl[1]));
1356 __asm ("mtdbatu 2,%0" :: "r"(h->hatch_dbatu[2]));
1357 __asm ("mtdbatl 2,%0" :: "r"(h->hatch_dbatl[2]));
1358 __asm ("mtdbatu 3,%0" :: "r"(h->hatch_dbatu[3]));
1359 __asm ("mtdbatl 3,%0" :: "r"(h->hatch_dbatl[3]));
1360
1361 mtspr(SPR_HID0, h->hatch_hid0);
1362
1363 __asm ("mtibatl 0,%0; mtibatu 0,%1; mtdbatl 0,%0; mtdbatu 0,%1;"
1364 :: "r"(battable[0].batl), "r"(battable[0].batu));
1365
1366 __asm volatile ("sync");
1367 for (i = 0; i < 16; i++)
1368 __asm ("mtsrin %0,%1" :: "r"(h->hatch_sr[i]), "r"(i << ADDR_SR_SHFT));
1369 __asm volatile ("sync; isync");
1370
1371 if (oeacpufeat & OEACPU_64)
1372 mtspr(SPR_ASR, h->hatch_asr);
1373
1374 cpu_spinstart_ack = 1;
1375 __asm ("ptesync");
1376 __asm ("mtsdr1 %0" :: "r"(h->hatch_sdr1));
1377 __asm volatile ("sync; isync");
1378
1379 cpu_spinstart_ack = 5;
1380 for (i = 0; i < 16; i++)
1381 __asm ("mfsrin %0,%1" : "=r"(h->hatch_sr[i]) :
1382 "r"(i << ADDR_SR_SHFT));
1383
1384 /* Enable I/D address translations. */
1385 msr = mfmsr();
1386 msr |= PSL_IR|PSL_DR|PSL_ME|PSL_RI;
1387 mtmsr(msr);
1388 __asm volatile ("sync; isync");
1389 cpu_spinstart_ack = 2;
1390
1391 md_sync_timebase(h);
1392
1393 cpu_setup(h->hatch_self, ci);
1394
1395 h->hatch_running = 1;
1396 __asm volatile ("sync; isync");
1397
1398 while (start_secondary_cpu == 0)
1399 ;
1400
1401 __asm volatile ("sync; isync");
1402
1403 aprint_normal("cpu%d started\n", curcpu()->ci_index);
1404 __asm volatile ("mtdec %0" :: "r"(ticks_per_intr));
1405
1406 md_setup_interrupts();
1407
1408 ci->ci_ipending = 0;
1409 ci->ci_cpl = 0;
1410
1411 mtmsr(mfmsr() | PSL_EE);
1412 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
1413 return pcb->pcb_sp;
1414 }
1415
1416 void
1417 cpu_boot_secondary_processors(void)
1418 {
1419 start_secondary_cpu = 1;
1420 __asm volatile ("sync");
1421 }
1422
1423 #endif /*MULTIPROCESSOR*/
1424