cpu_subr.c revision 1.94 1 /* $NetBSD: cpu_subr.c,v 1.94 2018/05/25 23:00:34 macallan Exp $ */
2
3 /*-
4 * Copyright (c) 2001 Matt Thomas.
5 * Copyright (c) 2001 Tsubai Masanari.
6 * Copyright (c) 1998, 1999, 2001 Internet Research Institute, Inc.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by
20 * Internet Research Institute, Inc.
21 * 4. The name of the author may not be used to endorse or promote products
22 * derived from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
29 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: cpu_subr.c,v 1.94 2018/05/25 23:00:34 macallan Exp $");
38
39 #include "opt_ppcparam.h"
40 #include "opt_ppccache.h"
41 #include "opt_multiprocessor.h"
42 #include "opt_altivec.h"
43 #include "sysmon_envsys.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/device.h>
48 #include <sys/types.h>
49 #include <sys/lwp.h>
50 #include <sys/xcall.h>
51
52 #include <uvm/uvm.h>
53
54 #include <powerpc/pcb.h>
55 #include <powerpc/psl.h>
56 #include <powerpc/spr.h>
57 #include <powerpc/oea/hid.h>
58 #include <powerpc/oea/hid_601.h>
59 #include <powerpc/oea/spr.h>
60 #include <powerpc/oea/cpufeat.h>
61
62 #include <dev/sysmon/sysmonvar.h>
63
64 static void cpu_enable_l2cr(register_t);
65 static void cpu_enable_l3cr(register_t);
66 static void cpu_config_l2cr(int);
67 static void cpu_config_l3cr(int);
68 static void cpu_probe_speed(struct cpu_info *);
69 static void cpu_idlespin(void);
70 static void cpu_set_dfs_xcall(void *, void *);
71 #if NSYSMON_ENVSYS > 0
72 static void cpu_tau_setup(struct cpu_info *);
73 static void cpu_tau_refresh(struct sysmon_envsys *, envsys_data_t *);
74 #endif
75
76 int cpu = -1;
77 int ncpus;
78
79 struct fmttab {
80 register_t fmt_mask;
81 register_t fmt_value;
82 const char *fmt_string;
83 };
84
85 /*
86 * This should be one per CPU but since we only support it on 750 variants it
87 * doesn't really matter since none of them support SMP
88 */
89 envsys_data_t sensor;
90
91 static const struct fmttab cpu_7450_l2cr_formats[] = {
92 { L2CR_L2E, 0, " disabled" },
93 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
94 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
95 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
96 { L2CR_L2E, ~0, " 256KB L2 cache" },
97 { L2CR_L2PE, 0, " no parity" },
98 { L2CR_L2PE, ~0, " parity enabled" },
99 { 0, 0, NULL }
100 };
101
102 static const struct fmttab cpu_7448_l2cr_formats[] = {
103 { L2CR_L2E, 0, " disabled" },
104 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
105 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
106 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
107 { L2CR_L2E, ~0, " 1MB L2 cache" },
108 { L2CR_L2PE, 0, " no parity" },
109 { L2CR_L2PE, ~0, " parity enabled" },
110 { 0, 0, NULL }
111 };
112
113 static const struct fmttab cpu_7457_l2cr_formats[] = {
114 { L2CR_L2E, 0, " disabled" },
115 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
116 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
117 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
118 { L2CR_L2E, ~0, " 512KB L2 cache" },
119 { L2CR_L2PE, 0, " no parity" },
120 { L2CR_L2PE, ~0, " parity enabled" },
121 { 0, 0, NULL }
122 };
123
124 static const struct fmttab cpu_7450_l3cr_formats[] = {
125 { L3CR_L3DO|L3CR_L3IO, L3CR_L3DO, " data-only" },
126 { L3CR_L3DO|L3CR_L3IO, L3CR_L3IO, " instruction-only" },
127 { L3CR_L3DO|L3CR_L3IO, L3CR_L3DO|L3CR_L3IO, " locked" },
128 { L3CR_L3SIZ, L3SIZ_2M, " 2MB" },
129 { L3CR_L3SIZ, L3SIZ_1M, " 1MB" },
130 { L3CR_L3PE|L3CR_L3APE, L3CR_L3PE|L3CR_L3APE, " parity" },
131 { L3CR_L3PE|L3CR_L3APE, L3CR_L3PE, " data-parity" },
132 { L3CR_L3PE|L3CR_L3APE, L3CR_L3APE, " address-parity" },
133 { L3CR_L3PE|L3CR_L3APE, 0, " no-parity" },
134 { L3CR_L3SIZ, ~0, " L3 cache" },
135 { L3CR_L3RT, L3RT_MSUG2_DDR, " (DDR SRAM)" },
136 { L3CR_L3RT, L3RT_PIPELINE_LATE, " (LW SRAM)" },
137 { L3CR_L3RT, L3RT_PB2_SRAM, " (PB2 SRAM)" },
138 { L3CR_L3CLK, ~0, " at" },
139 { L3CR_L3CLK, L3CLK_20, " 2:1" },
140 { L3CR_L3CLK, L3CLK_25, " 2.5:1" },
141 { L3CR_L3CLK, L3CLK_30, " 3:1" },
142 { L3CR_L3CLK, L3CLK_35, " 3.5:1" },
143 { L3CR_L3CLK, L3CLK_40, " 4:1" },
144 { L3CR_L3CLK, L3CLK_50, " 5:1" },
145 { L3CR_L3CLK, L3CLK_60, " 6:1" },
146 { L3CR_L3CLK, ~0, " ratio" },
147 { 0, 0, NULL },
148 };
149
150 static const struct fmttab cpu_ibm750_l2cr_formats[] = {
151 { L2CR_L2E, 0, " disabled" },
152 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
153 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
154 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
155 { 0, ~0, " 512KB" },
156 { L2CR_L2WT, L2CR_L2WT, " WT" },
157 { L2CR_L2WT, 0, " WB" },
158 { L2CR_L2PE, L2CR_L2PE, " with ECC" },
159 { 0, ~0, " L2 cache" },
160 { 0, 0, NULL }
161 };
162
163 static const struct fmttab cpu_l2cr_formats[] = {
164 { L2CR_L2E, 0, " disabled" },
165 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
166 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
167 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
168 { L2CR_L2PE, L2CR_L2PE, " parity" },
169 { L2CR_L2PE, 0, " no-parity" },
170 { L2CR_L2SIZ, L2SIZ_2M, " 2MB" },
171 { L2CR_L2SIZ, L2SIZ_1M, " 1MB" },
172 { L2CR_L2SIZ, L2SIZ_512K, " 512KB" },
173 { L2CR_L2SIZ, L2SIZ_256K, " 256KB" },
174 { L2CR_L2WT, L2CR_L2WT, " WT" },
175 { L2CR_L2WT, 0, " WB" },
176 { L2CR_L2E, ~0, " L2 cache" },
177 { L2CR_L2RAM, L2RAM_FLOWTHRU_BURST, " (FB SRAM)" },
178 { L2CR_L2RAM, L2RAM_PIPELINE_LATE, " (LW SRAM)" },
179 { L2CR_L2RAM, L2RAM_PIPELINE_BURST, " (PB SRAM)" },
180 { L2CR_L2CLK, ~0, " at" },
181 { L2CR_L2CLK, L2CLK_10, " 1:1" },
182 { L2CR_L2CLK, L2CLK_15, " 1.5:1" },
183 { L2CR_L2CLK, L2CLK_20, " 2:1" },
184 { L2CR_L2CLK, L2CLK_25, " 2.5:1" },
185 { L2CR_L2CLK, L2CLK_30, " 3:1" },
186 { L2CR_L2CLK, L2CLK_35, " 3.5:1" },
187 { L2CR_L2CLK, L2CLK_40, " 4:1" },
188 { L2CR_L2CLK, ~0, " ratio" },
189 { 0, 0, NULL }
190 };
191
192 static void cpu_fmttab_print(const struct fmttab *, register_t);
193
194 struct cputab {
195 const char name[8];
196 uint16_t version;
197 uint16_t revfmt;
198 };
199 #define REVFMT_MAJMIN 1 /* %u.%u */
200 #define REVFMT_HEX 2 /* 0x%04x */
201 #define REVFMT_DEC 3 /* %u */
202 static const struct cputab models[] = {
203 { "601", MPC601, REVFMT_DEC },
204 { "602", MPC602, REVFMT_DEC },
205 { "603", MPC603, REVFMT_MAJMIN },
206 { "603e", MPC603e, REVFMT_MAJMIN },
207 { "603ev", MPC603ev, REVFMT_MAJMIN },
208 { "G2", MPCG2, REVFMT_MAJMIN },
209 { "604", MPC604, REVFMT_MAJMIN },
210 { "604e", MPC604e, REVFMT_MAJMIN },
211 { "604ev", MPC604ev, REVFMT_MAJMIN },
212 { "620", MPC620, REVFMT_HEX },
213 { "750", MPC750, REVFMT_MAJMIN },
214 { "750FX", IBM750FX, REVFMT_MAJMIN },
215 { "750GX", IBM750GX, REVFMT_MAJMIN },
216 { "7400", MPC7400, REVFMT_MAJMIN },
217 { "7410", MPC7410, REVFMT_MAJMIN },
218 { "7450", MPC7450, REVFMT_MAJMIN },
219 { "7455", MPC7455, REVFMT_MAJMIN },
220 { "7457", MPC7457, REVFMT_MAJMIN },
221 { "7447A", MPC7447A, REVFMT_MAJMIN },
222 { "7448", MPC7448, REVFMT_MAJMIN },
223 { "8240", MPC8240, REVFMT_MAJMIN },
224 { "8245", MPC8245, REVFMT_MAJMIN },
225 { "970", IBM970, REVFMT_MAJMIN },
226 { "970FX", IBM970FX, REVFMT_MAJMIN },
227 { "970MP", IBM970MP, REVFMT_MAJMIN },
228 { "POWER3II", IBMPOWER3II, REVFMT_MAJMIN },
229 { "", 0, REVFMT_HEX }
230 };
231
232 #ifdef MULTIPROCESSOR
233 struct cpu_info cpu_info[CPU_MAXNUM] = {
234 [0] = {
235 .ci_curlwp = &lwp0,
236 },
237 };
238 volatile struct cpu_hatch_data *cpu_hatch_data;
239 volatile int cpu_hatch_stack;
240 #define HATCH_STACK_SIZE 0x1000
241 extern int ticks_per_intr;
242 #include <powerpc/oea/bat.h>
243 #include <powerpc/pic/picvar.h>
244 #include <powerpc/pic/ipivar.h>
245 extern struct bat battable[];
246 #else
247 struct cpu_info cpu_info[1] = {
248 [0] = {
249 .ci_curlwp = &lwp0,
250 },
251 };
252 #endif /*MULTIPROCESSOR*/
253
254 int cpu_altivec;
255 register_t cpu_psluserset;
256 register_t cpu_pslusermod;
257 register_t cpu_pslusermask = 0xffff;
258
259 /* This is to be called from locore.S, and nowhere else. */
260
261 void
262 cpu_model_init(void)
263 {
264 u_int pvr, vers;
265
266 pvr = mfpvr();
267 vers = pvr >> 16;
268
269 oeacpufeat = 0;
270
271 if ((vers >= IBMRS64II && vers <= IBM970GX) || vers == MPC620 ||
272 vers == IBMCELL || vers == IBMPOWER6P5) {
273 oeacpufeat |= OEACPU_64;
274 oeacpufeat |= OEACPU_64_BRIDGE;
275 oeacpufeat |= OEACPU_NOBAT;
276
277 } else if (vers == MPC601) {
278 oeacpufeat |= OEACPU_601;
279
280 } else if (MPC745X_P(vers)) {
281 register_t hid1 = mfspr(SPR_HID1);
282
283 if (vers != MPC7450) {
284 register_t hid0 = mfspr(SPR_HID0);
285
286 /* Enable more SPRG registers */
287 oeacpufeat |= OEACPU_HIGHSPRG;
288
289 /* Enable more BAT registers */
290 oeacpufeat |= OEACPU_HIGHBAT;
291 hid0 |= HID0_HIGH_BAT_EN;
292
293 /* Enable larger BAT registers */
294 oeacpufeat |= OEACPU_XBSEN;
295 hid0 |= HID0_XBSEN;
296
297 mtspr(SPR_HID0, hid0);
298 __asm volatile("sync;isync");
299 }
300
301 /* Enable address broadcasting for MP systems */
302 hid1 |= HID1_SYNCBE | HID1_ABE;
303
304 mtspr(SPR_HID1, hid1);
305 __asm volatile("sync;isync");
306
307 } else if (vers == IBM750FX || vers == IBM750GX) {
308 oeacpufeat |= OEACPU_HIGHBAT;
309 }
310 }
311
312 void
313 cpu_fmttab_print(const struct fmttab *fmt, register_t data)
314 {
315 for (; fmt->fmt_mask != 0 || fmt->fmt_value != 0; fmt++) {
316 if ((~fmt->fmt_mask & fmt->fmt_value) != 0 ||
317 (data & fmt->fmt_mask) == fmt->fmt_value)
318 aprint_normal("%s", fmt->fmt_string);
319 }
320 }
321
322 void
323 cpu_idlespin(void)
324 {
325 register_t msr;
326
327 if (powersave <= 0)
328 return;
329
330 __asm volatile(
331 #if defined(_ARCH_PPC64) || defined (PPC_OEA64_BRIDGE)
332 "dssall;"
333 #endif
334 "sync;"
335 "mfmsr %0;"
336 "oris %0,%0,%1@h;" /* enter power saving mode */
337 "mtmsr %0;"
338 "isync;"
339 : "=r"(msr)
340 : "J"(PSL_POW));
341 }
342
343 void
344 cpu_probe_cache(void)
345 {
346 u_int assoc, pvr, vers;
347
348 pvr = mfpvr();
349 vers = pvr >> 16;
350
351
352 /* Presently common across almost all implementations. */
353 curcpu()->ci_ci.dcache_line_size = 32;
354 curcpu()->ci_ci.icache_line_size = 32;
355
356
357 switch (vers) {
358 #define K *1024
359 case IBM750FX:
360 case IBM750GX:
361 case MPC601:
362 case MPC750:
363 case MPC7400:
364 case MPC7447A:
365 case MPC7448:
366 case MPC7450:
367 case MPC7455:
368 case MPC7457:
369 curcpu()->ci_ci.dcache_size = 32 K;
370 curcpu()->ci_ci.icache_size = 32 K;
371 assoc = 8;
372 break;
373 case MPC603:
374 curcpu()->ci_ci.dcache_size = 8 K;
375 curcpu()->ci_ci.icache_size = 8 K;
376 assoc = 2;
377 break;
378 case MPC603e:
379 case MPC603ev:
380 case MPC604:
381 case MPC8240:
382 case MPC8245:
383 case MPCG2:
384 curcpu()->ci_ci.dcache_size = 16 K;
385 curcpu()->ci_ci.icache_size = 16 K;
386 assoc = 4;
387 break;
388 case MPC604e:
389 case MPC604ev:
390 curcpu()->ci_ci.dcache_size = 32 K;
391 curcpu()->ci_ci.icache_size = 32 K;
392 assoc = 4;
393 break;
394 case IBMPOWER3II:
395 curcpu()->ci_ci.dcache_size = 64 K;
396 curcpu()->ci_ci.icache_size = 32 K;
397 curcpu()->ci_ci.dcache_line_size = 128;
398 curcpu()->ci_ci.icache_line_size = 128;
399 assoc = 128; /* not a typo */
400 break;
401 case IBM970:
402 case IBM970FX:
403 case IBM970MP:
404 curcpu()->ci_ci.dcache_size = 32 K;
405 curcpu()->ci_ci.icache_size = 64 K;
406 curcpu()->ci_ci.dcache_line_size = 128;
407 curcpu()->ci_ci.icache_line_size = 128;
408 assoc = 2;
409 break;
410
411 default:
412 curcpu()->ci_ci.dcache_size = PAGE_SIZE;
413 curcpu()->ci_ci.icache_size = PAGE_SIZE;
414 assoc = 1;
415 #undef K
416 }
417
418 /*
419 * Possibly recolor.
420 */
421 uvm_page_recolor(atop(curcpu()->ci_ci.dcache_size / assoc));
422 }
423
424 struct cpu_info *
425 cpu_attach_common(device_t self, int id)
426 {
427 struct cpu_info *ci;
428 u_int pvr, vers;
429
430 ci = &cpu_info[id];
431 #ifndef MULTIPROCESSOR
432 /*
433 * If this isn't the primary CPU, print an error message
434 * and just bail out.
435 */
436 if (id != 0) {
437 aprint_naive("\n");
438 aprint_normal(": ID %d\n", id);
439 aprint_normal_dev(self,
440 "processor off-line; "
441 "multiprocessor support not present in kernel\n");
442 return (NULL);
443 }
444 #endif
445
446 ci->ci_cpuid = id;
447 ci->ci_idepth = -1;
448 ci->ci_dev = self;
449 ci->ci_idlespin = cpu_idlespin;
450
451 pvr = mfpvr();
452 vers = (pvr >> 16) & 0xffff;
453
454 switch (id) {
455 case 0:
456 /* load my cpu_number to PIR */
457 switch (vers) {
458 case MPC601:
459 case MPC604:
460 case MPC604e:
461 case MPC604ev:
462 case MPC7400:
463 case MPC7410:
464 case MPC7447A:
465 case MPC7448:
466 case MPC7450:
467 case MPC7455:
468 case MPC7457:
469 mtspr(SPR_PIR, id);
470 }
471 cpu_setup(self, ci);
472 break;
473 default:
474 aprint_naive("\n");
475 if (id >= CPU_MAXNUM) {
476 aprint_normal(": more than %d cpus?\n", CPU_MAXNUM);
477 panic("cpuattach");
478 }
479 #ifndef MULTIPROCESSOR
480 aprint_normal(" not configured\n");
481 return NULL;
482 #else
483 mi_cpu_attach(ci);
484 break;
485 #endif
486 }
487 return (ci);
488 }
489
490 void
491 cpu_setup(device_t self, struct cpu_info *ci)
492 {
493 u_int pvr, vers;
494 const char * const xname = device_xname(self);
495 const char *bitmask;
496 char hidbuf[128];
497 char model[80];
498 #if defined(PPC_OEA64_BRIDGE) || defined(_ARCH_PPC64)
499 char hidbuf_u[128];
500 const char *bitmasku = NULL;
501 volatile uint64_t hid64_0, hid64_0_save;
502 #endif
503 #if !defined(_ARCH_PPC64)
504 register_t hid0 = 0, hid0_save = 0;
505 #endif
506
507 pvr = mfpvr();
508 vers = (pvr >> 16) & 0xffff;
509
510 cpu_identify(model, sizeof(model));
511 aprint_naive("\n");
512 aprint_normal(": %s, ID %d%s\n", model, cpu_number(),
513 cpu_number() == 0 ? " (primary)" : "");
514
515 /* set the cpu number */
516 ci->ci_cpuid = cpu_number();
517 #if defined(_ARCH_PPC64)
518 __asm volatile("mfspr %0,%1" : "=r"(hid64_0) : "K"(SPR_HID0));
519 hid64_0_save = hid64_0;
520 #else
521 #if defined(PPC_OEA64_BRIDGE)
522 if ((oeacpufeat & OEACPU_64_BRIDGE) != 0)
523 hid64_0_save = hid64_0 = mfspr(SPR_HID0);
524 else
525 #endif
526 hid0_save = hid0 = mfspr(SPR_HID0);
527 #endif
528
529
530 cpu_probe_cache();
531
532 /*
533 * Configure power-saving mode.
534 */
535 switch (vers) {
536 #if !defined(_ARCH_PPC64)
537 case MPC604:
538 case MPC604e:
539 case MPC604ev:
540 /*
541 * Do not have HID0 support settings, but can support
542 * MSR[POW] off
543 */
544 powersave = 1;
545 break;
546
547 case MPC603:
548 case MPC603e:
549 case MPC603ev:
550 case MPC7400:
551 case MPC7410:
552 case MPC8240:
553 case MPC8245:
554 case MPCG2:
555 /* Select DOZE mode. */
556 hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
557 hid0 |= HID0_DOZE | HID0_DPM;
558 powersave = 1;
559 break;
560
561 case MPC750:
562 case IBM750FX:
563 case IBM750GX:
564 /* Select NAP mode. */
565 hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
566 hid0 |= HID0_NAP | HID0_DPM;
567 powersave = 1;
568 break;
569
570 case MPC7447A:
571 case MPC7448:
572 case MPC7457:
573 case MPC7455:
574 case MPC7450:
575 /* Enable the 7450 branch caches */
576 hid0 |= HID0_SGE | HID0_BTIC;
577 hid0 |= HID0_LRSTK | HID0_FOLD | HID0_BHT;
578 /* Disable BTIC on 7450 Rev 2.0 or earlier */
579 if (vers == MPC7450 && (pvr & 0xFFFF) <= 0x0200)
580 hid0 &= ~HID0_BTIC;
581 /* Select NAP mode. */
582 hid0 &= ~HID0_SLEEP;
583 hid0 |= HID0_NAP | HID0_DPM;
584 powersave = 1;
585 break;
586 #endif
587
588 case IBM970:
589 case IBM970FX:
590 case IBM970MP:
591 #if defined(_ARCH_PPC64) || defined (PPC_OEA64_BRIDGE)
592 #if !defined(_ARCH_PPC64)
593 KASSERT((oeacpufeat & OEACPU_64_BRIDGE) != 0);
594 #endif
595 hid64_0 &= ~(HID0_64_DOZE | HID0_64_NAP | HID0_64_DEEPNAP);
596 hid64_0 |= HID0_64_NAP | HID0_64_DPM | HID0_64_EX_TBEN |
597 HID0_64_TB_CTRL | HID0_64_EN_MCHK;
598 powersave = 1;
599 break;
600 #endif
601 case IBMPOWER3II:
602 default:
603 /* No power-saving mode is available. */ ;
604 }
605
606 #ifdef NAPMODE
607 switch (vers) {
608 case IBM750FX:
609 case IBM750GX:
610 case MPC750:
611 case MPC7400:
612 /* Select NAP mode. */
613 hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
614 hid0 |= HID0_NAP;
615 break;
616 }
617 #endif
618
619 switch (vers) {
620 case IBM750FX:
621 case IBM750GX:
622 case MPC750:
623 hid0 &= ~HID0_DBP; /* XXX correct? */
624 hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
625 break;
626
627 case MPC7400:
628 case MPC7410:
629 hid0 &= ~HID0_SPD;
630 hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
631 hid0 |= HID0_EIEC;
632 break;
633 }
634
635 /*
636 * according to the 603e manual this is necessary for an external L2
637 * cache to work properly
638 */
639 switch (vers) {
640 case MPC603e:
641 hid0 |= HID0_ABE;
642 }
643
644 #if defined(_ARCH_PPC64) || defined(PPC_OEA64_BRIDGE)
645 #if defined(PPC_OEA64_BRIDGE)
646 if ((oeacpufeat & OEACPU_64_BRIDGE) != 0) {
647 #endif
648 if (hid64_0 != hid64_0_save) {
649 mtspr64(SPR_HID0, hid64_0);
650 }
651 #if defined(PPC_OEA64_BRIDGE)
652 } else {
653 #endif
654 #endif
655
656 #if !defined(_ARCH_PPC64)
657 if (hid0 != hid0_save) {
658 mtspr(SPR_HID0, hid0);
659 __asm volatile("sync;isync");
660 }
661 #endif
662 #if defined(PPC_OEA64_BRIDGE)
663 }
664 #endif
665
666 switch (vers) {
667 case MPC601:
668 bitmask = HID0_601_BITMASK;
669 break;
670 case MPC7447A:
671 case MPC7448:
672 case MPC7450:
673 case MPC7455:
674 case MPC7457:
675 bitmask = HID0_7450_BITMASK;
676 break;
677 case IBM970:
678 case IBM970FX:
679 case IBM970MP:
680 bitmask = HID0_970_BITMASK;
681 #if defined(PPC_OEA64_BRIDGE) || defined(_ARCH_PPC64)
682 bitmasku = HID0_970_BITMASK_U;
683 #endif
684 break;
685 default:
686 bitmask = HID0_BITMASK;
687 break;
688 }
689
690 #if defined(PPC_OEA64_BRIDGE) || defined(_ARCH_PPC64)
691 if (bitmasku != NULL) {
692 snprintb(hidbuf, sizeof hidbuf, bitmask, hid64_0 & 0xffffffff);
693 snprintb(hidbuf_u, sizeof hidbuf_u, bitmasku, hid64_0 >> 32);
694 aprint_normal_dev(self, "HID0 %s %s, powersave: %d\n",
695 hidbuf_u, hidbuf, powersave);
696 } else
697 #endif
698 {
699 snprintb(hidbuf, sizeof hidbuf, bitmask, hid0);
700 aprint_normal_dev(self, "HID0 %s, powersave: %d\n",
701 hidbuf, powersave);
702 }
703
704 ci->ci_khz = 0;
705
706 /*
707 * Display speed and cache configuration.
708 */
709 switch (vers) {
710 case MPC604:
711 case MPC604e:
712 case MPC604ev:
713 case MPC750:
714 case IBM750FX:
715 case IBM750GX:
716 case MPC7400:
717 case MPC7410:
718 case MPC7447A:
719 case MPC7448:
720 case MPC7450:
721 case MPC7455:
722 case MPC7457:
723 aprint_normal_dev(self, "");
724 cpu_probe_speed(ci);
725 aprint_normal("%u.%02u MHz",
726 ci->ci_khz / 1000, (ci->ci_khz / 10) % 100);
727 switch (vers) {
728 case MPC7450: /* 7441 does not have L3! */
729 case MPC7455: /* 7445 does not have L3! */
730 case MPC7457: /* 7447 does not have L3! */
731 cpu_config_l3cr(vers);
732 break;
733 case IBM750FX:
734 case IBM750GX:
735 case MPC750:
736 case MPC7400:
737 case MPC7410:
738 case MPC7447A:
739 case MPC7448:
740 cpu_config_l2cr(pvr);
741 break;
742 default:
743 break;
744 }
745 aprint_normal("\n");
746 break;
747 }
748
749 #if NSYSMON_ENVSYS > 0
750 /*
751 * Attach MPC750 temperature sensor to the envsys subsystem.
752 * XXX the 74xx series also has this sensor, but it is not
753 * XXX supported by Motorola and may return values that are off by
754 * XXX 35-55 degrees C.
755 */
756 if (vers == MPC750 || vers == IBM750FX || vers == IBM750GX)
757 cpu_tau_setup(ci);
758 #endif
759
760 evcnt_attach_dynamic(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
761 NULL, xname, "clock");
762 evcnt_attach_dynamic(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
763 NULL, xname, "traps");
764 evcnt_attach_dynamic(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
765 &ci->ci_ev_traps, xname, "kernel DSI traps");
766 evcnt_attach_dynamic(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
767 &ci->ci_ev_traps, xname, "user DSI traps");
768 evcnt_attach_dynamic(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
769 &ci->ci_ev_udsi, xname, "user DSI failures");
770 evcnt_attach_dynamic(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP,
771 &ci->ci_ev_traps, xname, "kernel ISI traps");
772 evcnt_attach_dynamic(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
773 &ci->ci_ev_traps, xname, "user ISI traps");
774 evcnt_attach_dynamic(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
775 &ci->ci_ev_isi, xname, "user ISI failures");
776 evcnt_attach_dynamic(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
777 &ci->ci_ev_traps, xname, "system call traps");
778 evcnt_attach_dynamic(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
779 &ci->ci_ev_traps, xname, "PGM traps");
780 evcnt_attach_dynamic(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
781 &ci->ci_ev_traps, xname, "FPU unavailable traps");
782 evcnt_attach_dynamic(&ci->ci_ev_fpusw, EVCNT_TYPE_TRAP,
783 &ci->ci_ev_fpu, xname, "FPU context switches");
784 evcnt_attach_dynamic(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
785 &ci->ci_ev_traps, xname, "user alignment traps");
786 evcnt_attach_dynamic(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
787 &ci->ci_ev_ali, xname, "user alignment traps");
788 evcnt_attach_dynamic(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
789 &ci->ci_ev_umchk, xname, "user MCHK failures");
790 evcnt_attach_dynamic(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
791 &ci->ci_ev_traps, xname, "AltiVec unavailable");
792 #ifdef ALTIVEC
793 if (cpu_altivec) {
794 evcnt_attach_dynamic(&ci->ci_ev_vecsw, EVCNT_TYPE_TRAP,
795 &ci->ci_ev_vec, xname, "AltiVec context switches");
796 }
797 #endif
798 evcnt_attach_dynamic(&ci->ci_ev_ipi, EVCNT_TYPE_INTR,
799 NULL, xname, "IPIs");
800 }
801
802 /*
803 * According to a document labeled "PVR Register Settings":
804 ** For integrated microprocessors the PVR register inside the device
805 ** will identify the version of the microprocessor core. You must also
806 ** read the Device ID, PCI register 02, to identify the part and the
807 ** Revision ID, PCI register 08, to identify the revision of the
808 ** integrated microprocessor.
809 * This apparently applies to 8240/8245/8241, PVR 00810101 and 80811014
810 */
811
812 void
813 cpu_identify(char *str, size_t len)
814 {
815 u_int pvr, major, minor;
816 uint16_t vers, rev, revfmt;
817 const struct cputab *cp;
818 size_t n;
819
820 pvr = mfpvr();
821 vers = pvr >> 16;
822 rev = pvr;
823
824 switch (vers) {
825 case MPC7410:
826 minor = (pvr >> 0) & 0xff;
827 major = minor <= 4 ? 1 : 2;
828 break;
829 case MPCG2: /*XXX see note above */
830 major = (pvr >> 4) & 0xf;
831 minor = (pvr >> 0) & 0xf;
832 break;
833 default:
834 major = (pvr >> 8) & 0xf;
835 minor = (pvr >> 0) & 0xf;
836 }
837
838 for (cp = models; cp->name[0] != '\0'; cp++) {
839 if (cp->version == vers)
840 break;
841 }
842
843 if (cpu == -1)
844 cpu = vers;
845
846 revfmt = cp->revfmt;
847 if (rev == MPC750 && pvr == 15) {
848 revfmt = REVFMT_HEX;
849 }
850
851 if (cp->name[0] != '\0') {
852 n = snprintf(str, len, "%s (Revision ", cp->name);
853 } else {
854 n = snprintf(str, len, "Version %#x (Revision ", vers);
855 }
856 if (len > n) {
857 switch (revfmt) {
858 case REVFMT_MAJMIN:
859 snprintf(str + n, len - n, "%u.%u)", major, minor);
860 break;
861 case REVFMT_HEX:
862 snprintf(str + n, len - n, "0x%04x)", rev);
863 break;
864 case REVFMT_DEC:
865 snprintf(str + n, len - n, "%u)", rev);
866 break;
867 }
868 }
869 }
870
871 #ifdef L2CR_CONFIG
872 u_int l2cr_config = L2CR_CONFIG;
873 #else
874 u_int l2cr_config = 0;
875 #endif
876
877 #ifdef L3CR_CONFIG
878 u_int l3cr_config = L3CR_CONFIG;
879 #else
880 u_int l3cr_config = 0;
881 #endif
882
883 void
884 cpu_enable_l2cr(register_t l2cr)
885 {
886 register_t msr, x;
887 uint16_t vers;
888
889 vers = mfpvr() >> 16;
890
891 /* Disable interrupts and set the cache config bits. */
892 msr = mfmsr();
893 mtmsr(msr & ~PSL_EE);
894 #ifdef ALTIVEC
895 if (cpu_altivec)
896 __asm volatile("dssall");
897 #endif
898 __asm volatile("sync");
899 mtspr(SPR_L2CR, l2cr & ~L2CR_L2E);
900 __asm volatile("sync");
901
902 /* Wait for L2 clock to be stable (640 L2 clocks). */
903 delay(100);
904
905 /* Invalidate all L2 contents. */
906 if (MPC745X_P(vers)) {
907 mtspr(SPR_L2CR, l2cr | L2CR_L2I);
908 do {
909 x = mfspr(SPR_L2CR);
910 } while (x & L2CR_L2I);
911 } else {
912 mtspr(SPR_L2CR, l2cr | L2CR_L2I);
913 do {
914 x = mfspr(SPR_L2CR);
915 } while (x & L2CR_L2IP);
916 }
917 /* Enable L2 cache. */
918 l2cr |= L2CR_L2E;
919 mtspr(SPR_L2CR, l2cr);
920 mtmsr(msr);
921 }
922
923 void
924 cpu_enable_l3cr(register_t l3cr)
925 {
926 register_t x;
927
928 /* By The Book (numbered steps from section 3.7.1.3 of MPC7450UM) */
929
930 /*
931 * 1: Set all L3CR bits for final config except L3E, L3I, L3PE, and
932 * L3CLKEN. (also mask off reserved bits in case they were included
933 * in L3CR_CONFIG)
934 */
935 l3cr &= ~(L3CR_L3E|L3CR_L3I|L3CR_L3PE|L3CR_L3CLKEN|L3CR_RESERVED);
936 mtspr(SPR_L3CR, l3cr);
937
938 /* 2: Set L3CR[5] (otherwise reserved bit) to 1 */
939 l3cr |= 0x04000000;
940 mtspr(SPR_L3CR, l3cr);
941
942 /* 3: Set L3CLKEN to 1*/
943 l3cr |= L3CR_L3CLKEN;
944 mtspr(SPR_L3CR, l3cr);
945
946 /* 4/5: Perform a global cache invalidate (ref section 3.7.3.6) */
947 __asm volatile("dssall;sync");
948 /* L3 cache is already disabled, no need to clear L3E */
949 mtspr(SPR_L3CR, l3cr|L3CR_L3I);
950 do {
951 x = mfspr(SPR_L3CR);
952 } while (x & L3CR_L3I);
953
954 /* 6: Clear L3CLKEN to 0 */
955 l3cr &= ~L3CR_L3CLKEN;
956 mtspr(SPR_L3CR, l3cr);
957
958 /* 7: Perform a 'sync' and wait at least 100 CPU cycles */
959 __asm volatile("sync");
960 delay(100);
961
962 /* 8: Set L3E and L3CLKEN */
963 l3cr |= (L3CR_L3E|L3CR_L3CLKEN);
964 mtspr(SPR_L3CR, l3cr);
965
966 /* 9: Perform a 'sync' and wait at least 100 CPU cycles */
967 __asm volatile("sync");
968 delay(100);
969 }
970
971 void
972 cpu_config_l2cr(int pvr)
973 {
974 register_t l2cr;
975 u_int vers = (pvr >> 16) & 0xffff;
976
977 l2cr = mfspr(SPR_L2CR);
978
979 /*
980 * For MP systems, the firmware may only configure the L2 cache
981 * on the first CPU. In this case, assume that the other CPUs
982 * should use the same value for L2CR.
983 */
984 if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
985 l2cr_config = l2cr;
986 }
987
988 /*
989 * Configure L2 cache if not enabled.
990 */
991 if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
992 cpu_enable_l2cr(l2cr_config);
993 l2cr = mfspr(SPR_L2CR);
994 }
995
996 if ((l2cr & L2CR_L2E) == 0) {
997 aprint_normal(" L2 cache present but not enabled ");
998 return;
999 }
1000 aprint_normal(",");
1001
1002 switch (vers) {
1003 case IBM750FX:
1004 case IBM750GX:
1005 cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
1006 break;
1007 case MPC750:
1008 if ((pvr & 0xffffff00) == 0x00082200 /* IBM750CX */ ||
1009 (pvr & 0xffffef00) == 0x00082300 /* IBM750CXe */)
1010 cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
1011 else
1012 cpu_fmttab_print(cpu_l2cr_formats, l2cr);
1013 break;
1014 case MPC7447A:
1015 case MPC7457:
1016 cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
1017 return;
1018 case MPC7448:
1019 cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
1020 return;
1021 case MPC7450:
1022 case MPC7455:
1023 cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
1024 break;
1025 default:
1026 cpu_fmttab_print(cpu_l2cr_formats, l2cr);
1027 break;
1028 }
1029 }
1030
1031 void
1032 cpu_config_l3cr(int vers)
1033 {
1034 register_t l2cr;
1035 register_t l3cr;
1036
1037 l2cr = mfspr(SPR_L2CR);
1038
1039 /*
1040 * For MP systems, the firmware may only configure the L2 cache
1041 * on the first CPU. In this case, assume that the other CPUs
1042 * should use the same value for L2CR.
1043 */
1044 if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
1045 l2cr_config = l2cr;
1046 }
1047
1048 /*
1049 * Configure L2 cache if not enabled.
1050 */
1051 if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
1052 cpu_enable_l2cr(l2cr_config);
1053 l2cr = mfspr(SPR_L2CR);
1054 }
1055
1056 aprint_normal(",");
1057 switch (vers) {
1058 case MPC7447A:
1059 case MPC7457:
1060 cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
1061 return;
1062 case MPC7448:
1063 cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
1064 return;
1065 default:
1066 cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
1067 break;
1068 }
1069
1070 l3cr = mfspr(SPR_L3CR);
1071
1072 /*
1073 * For MP systems, the firmware may only configure the L3 cache
1074 * on the first CPU. In this case, assume that the other CPUs
1075 * should use the same value for L3CR.
1076 */
1077 if ((l3cr & L3CR_L3E) != 0 && l3cr_config == 0) {
1078 l3cr_config = l3cr;
1079 }
1080
1081 /*
1082 * Configure L3 cache if not enabled.
1083 */
1084 if ((l3cr & L3CR_L3E) == 0 && l3cr_config != 0) {
1085 cpu_enable_l3cr(l3cr_config);
1086 l3cr = mfspr(SPR_L3CR);
1087 }
1088
1089 if (l3cr & L3CR_L3E) {
1090 aprint_normal(",");
1091 cpu_fmttab_print(cpu_7450_l3cr_formats, l3cr);
1092 }
1093 }
1094
1095 void
1096 cpu_probe_speed(struct cpu_info *ci)
1097 {
1098 uint64_t cps;
1099
1100 mtspr(SPR_MMCR0, MMCR0_FC);
1101 mtspr(SPR_PMC1, 0);
1102 mtspr(SPR_MMCR0, MMCR0_PMC1SEL(PMCN_CYCLES));
1103 delay(100000);
1104 cps = (mfspr(SPR_PMC1) * 10) + 4999;
1105
1106 mtspr(SPR_MMCR0, MMCR0_FC);
1107
1108 ci->ci_khz = (cps * cpu_get_dfs()) / 1000;
1109 }
1110
1111 /*
1112 * Read the Dynamic Frequency Switching state and return a divisor for
1113 * the maximum frequency.
1114 */
1115 int
1116 cpu_get_dfs(void)
1117 {
1118 u_int pvr, vers;
1119
1120 pvr = mfpvr();
1121 vers = pvr >> 16;
1122
1123 switch (vers) {
1124 case MPC7448:
1125 if (mfspr(SPR_HID1) & HID1_DFS4)
1126 return 4;
1127 case MPC7447A:
1128 if (mfspr(SPR_HID1) & HID1_DFS2)
1129 return 2;
1130 }
1131 return 1;
1132 }
1133
1134 /*
1135 * Set the Dynamic Frequency Switching divisor the same for all cpus.
1136 */
1137 void
1138 cpu_set_dfs(int div)
1139 {
1140 uint64_t where;
1141 u_int dfs_mask, pvr, vers;
1142
1143 pvr = mfpvr();
1144 vers = pvr >> 16;
1145 dfs_mask = 0;
1146
1147 switch (vers) {
1148 case MPC7448:
1149 dfs_mask |= HID1_DFS4;
1150 case MPC7447A:
1151 dfs_mask |= HID1_DFS2;
1152 break;
1153 default:
1154 printf("cpu_set_dfs: DFS not supported\n");
1155 return;
1156
1157 }
1158
1159 where = xc_broadcast(0, (xcfunc_t)cpu_set_dfs_xcall, &div, &dfs_mask);
1160 xc_wait(where);
1161 }
1162
1163 static void
1164 cpu_set_dfs_xcall(void *arg1, void *arg2)
1165 {
1166 u_int dfs_mask, hid1, old_hid1;
1167 int *divisor, s;
1168
1169 divisor = arg1;
1170 dfs_mask = *(u_int *)arg2;
1171
1172 s = splhigh();
1173 hid1 = old_hid1 = mfspr(SPR_HID1);
1174
1175 switch (*divisor) {
1176 case 1:
1177 hid1 &= ~dfs_mask;
1178 break;
1179 case 2:
1180 hid1 &= ~(dfs_mask & HID1_DFS4);
1181 hid1 |= dfs_mask & HID1_DFS2;
1182 break;
1183 case 4:
1184 hid1 &= ~(dfs_mask & HID1_DFS2);
1185 hid1 |= dfs_mask & HID1_DFS4;
1186 break;
1187 }
1188
1189 if (hid1 != old_hid1) {
1190 __asm volatile("sync");
1191 mtspr(SPR_HID1, hid1);
1192 __asm volatile("sync;isync");
1193 }
1194
1195 splx(s);
1196 }
1197
1198 #if NSYSMON_ENVSYS > 0
1199 void
1200 cpu_tau_setup(struct cpu_info *ci)
1201 {
1202 struct sysmon_envsys *sme;
1203 int error, therm_delay;
1204
1205 mtspr(SPR_THRM1, SPR_THRM_VALID);
1206 mtspr(SPR_THRM2, 0);
1207
1208 /*
1209 * we need to figure out how much 20+us in units of CPU clock cycles
1210 * are
1211 */
1212
1213 therm_delay = ci->ci_khz / 40; /* 25us just to be safe */
1214
1215 mtspr(SPR_THRM3, SPR_THRM_TIMER(therm_delay) | SPR_THRM_ENABLE);
1216
1217 sme = sysmon_envsys_create();
1218
1219 sensor.units = ENVSYS_STEMP;
1220 sensor.state = ENVSYS_SINVALID;
1221 (void)strlcpy(sensor.desc, "CPU Temp", sizeof(sensor.desc));
1222 if (sysmon_envsys_sensor_attach(sme, &sensor)) {
1223 sysmon_envsys_destroy(sme);
1224 return;
1225 }
1226
1227 sme->sme_name = device_xname(ci->ci_dev);
1228 sme->sme_cookie = ci;
1229 sme->sme_refresh = cpu_tau_refresh;
1230
1231 if ((error = sysmon_envsys_register(sme)) != 0) {
1232 aprint_error_dev(ci->ci_dev,
1233 " unable to register with sysmon (%d)\n", error);
1234 sysmon_envsys_destroy(sme);
1235 }
1236 }
1237
1238 /* Find the temperature of the CPU. */
1239 void
1240 cpu_tau_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
1241 {
1242 int i, threshold, count;
1243
1244 threshold = 64; /* Half of the 7-bit sensor range */
1245
1246 /* Successive-approximation code adapted from Motorola
1247 * application note AN1800/D, "Programming the Thermal Assist
1248 * Unit in the MPC750 Microprocessor".
1249 */
1250 for (i = 5; i >= 0 ; i--) {
1251 mtspr(SPR_THRM1,
1252 SPR_THRM_THRESHOLD(threshold) | SPR_THRM_VALID);
1253 count = 0;
1254 while ((count < 100000) &&
1255 ((mfspr(SPR_THRM1) & SPR_THRM_TIV) == 0)) {
1256 count++;
1257 delay(1);
1258 }
1259 if (mfspr(SPR_THRM1) & SPR_THRM_TIN) {
1260 /* The interrupt bit was set, meaning the
1261 * temperature was above the threshold
1262 */
1263 threshold += 1 << i;
1264 } else {
1265 /* Temperature was below the threshold */
1266 threshold -= 1 << i;
1267 }
1268 }
1269 threshold += 2;
1270
1271 /* Convert the temperature in degrees C to microkelvin */
1272 edata->value_cur = (threshold * 1000000) + 273150000;
1273 edata->state = ENVSYS_SVALID;
1274 }
1275 #endif /* NSYSMON_ENVSYS > 0 */
1276
1277 #ifdef MULTIPROCESSOR
1278 volatile u_int cpu_spinstart_ack, cpu_spinstart_cpunum;
1279
1280 int
1281 cpu_spinup(device_t self, struct cpu_info *ci)
1282 {
1283 volatile struct cpu_hatch_data hatch_data, *h = &hatch_data;
1284 struct pglist mlist;
1285 int i, error;
1286 char *hp;
1287
1288 KASSERT(ci != curcpu());
1289
1290 /* Now allocate a hatch stack */
1291 error = uvm_pglistalloc(HATCH_STACK_SIZE, 0x10000, 0x10000000, 16, 0,
1292 &mlist, 1, 1);
1293 if (error) {
1294 aprint_error(": unable to allocate hatch stack\n");
1295 return -1;
1296 }
1297
1298 hp = (void *)VM_PAGE_TO_PHYS(TAILQ_FIRST(&mlist));
1299 memset(hp, 0, HATCH_STACK_SIZE);
1300
1301 /* Initialize secondary cpu's initial lwp to its idlelwp. */
1302 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
1303 ci->ci_curpcb = lwp_getpcb(ci->ci_curlwp);
1304 ci->ci_curpm = ci->ci_curpcb->pcb_pm;
1305
1306 cpu_hatch_data = h;
1307 h->hatch_running = 0;
1308 h->hatch_self = self;
1309 h->hatch_ci = ci;
1310 h->hatch_pir = ci->ci_cpuid;
1311
1312 cpu_hatch_stack = (uint32_t)hp + HATCH_STACK_SIZE - CALLFRAMELEN;
1313 ci->ci_lasttb = cpu_info[0].ci_lasttb;
1314
1315 /* copy special registers */
1316
1317 h->hatch_hid0 = mfspr(SPR_HID0);
1318 #if defined(PPC_OEA64_BRIDGE) || defined (_ARCH_PPC64)
1319 h->hatch_hid1 = mfspr(SPR_HID1);
1320 h->hatch_hid4 = mfspr(SPR_HID4);
1321 h->hatch_hid5 = mfspr(SPR_HID5);
1322 printf("HIDs: %016llx %016llx\n", h->hatch_hid4, h->hatch_hid5);
1323 #endif
1324
1325 __asm volatile ("mfsdr1 %0" : "=r"(h->hatch_sdr1));
1326 for (i = 0; i < 16; i++) {
1327 __asm ("mfsrin %0,%1" : "=r"(h->hatch_sr[i]) :
1328 "r"(i << ADDR_SR_SHFT));
1329 }
1330 if (oeacpufeat & OEACPU_64)
1331 h->hatch_asr = mfspr(SPR_ASR);
1332 else
1333 h->hatch_asr = 0;
1334
1335 if ((oeacpufeat & OEACPU_NOBAT) == 0) {
1336 /* copy the bat regs */
1337 __asm volatile ("mfibatu %0,0" : "=r"(h->hatch_ibatu[0]));
1338 __asm volatile ("mfibatl %0,0" : "=r"(h->hatch_ibatl[0]));
1339 __asm volatile ("mfibatu %0,1" : "=r"(h->hatch_ibatu[1]));
1340 __asm volatile ("mfibatl %0,1" : "=r"(h->hatch_ibatl[1]));
1341 __asm volatile ("mfibatu %0,2" : "=r"(h->hatch_ibatu[2]));
1342 __asm volatile ("mfibatl %0,2" : "=r"(h->hatch_ibatl[2]));
1343 __asm volatile ("mfibatu %0,3" : "=r"(h->hatch_ibatu[3]));
1344 __asm volatile ("mfibatl %0,3" : "=r"(h->hatch_ibatl[3]));
1345 __asm volatile ("mfdbatu %0,0" : "=r"(h->hatch_dbatu[0]));
1346 __asm volatile ("mfdbatl %0,0" : "=r"(h->hatch_dbatl[0]));
1347 __asm volatile ("mfdbatu %0,1" : "=r"(h->hatch_dbatu[1]));
1348 __asm volatile ("mfdbatl %0,1" : "=r"(h->hatch_dbatl[1]));
1349 __asm volatile ("mfdbatu %0,2" : "=r"(h->hatch_dbatu[2]));
1350 __asm volatile ("mfdbatl %0,2" : "=r"(h->hatch_dbatl[2]));
1351 __asm volatile ("mfdbatu %0,3" : "=r"(h->hatch_dbatu[3]));
1352 __asm volatile ("mfdbatl %0,3" : "=r"(h->hatch_dbatl[3]));
1353 __asm volatile ("sync; isync");
1354 }
1355
1356 if (md_setup_trampoline(h, ci) == -1)
1357 return -1;
1358 md_presync_timebase(h);
1359 md_start_timebase(h);
1360
1361 /* wait for secondary printf */
1362
1363 delay(200000);
1364
1365 #ifdef CACHE_PROTO_MEI
1366 __asm volatile ("dcbi 0,%0"::"r"(&h->hatch_running):"memory");
1367 __asm volatile ("sync; isync");
1368 __asm volatile ("dcbst 0,%0"::"r"(&h->hatch_running):"memory");
1369 __asm volatile ("sync; isync");
1370 #endif
1371 if (h->hatch_running < 1) {
1372 #ifdef CACHE_PROTO_MEI
1373 __asm volatile ("dcbi 0,%0"::"r"(&cpu_spinstart_ack):"memory");
1374 __asm volatile ("sync; isync");
1375 __asm volatile ("dcbst 0,%0"::"r"(&cpu_spinstart_ack):"memory");
1376 __asm volatile ("sync; isync");
1377 #endif
1378 aprint_error("%d:CPU %d didn't start %d\n", cpu_spinstart_ack,
1379 ci->ci_cpuid, cpu_spinstart_ack);
1380 Debugger();
1381 return -1;
1382 }
1383
1384 /* Register IPI Interrupt */
1385 if (ipiops.ppc_establish_ipi)
1386 ipiops.ppc_establish_ipi(IST_LEVEL, IPL_HIGH, NULL);
1387
1388 return 0;
1389 }
1390
1391 static volatile int start_secondary_cpu;
1392
1393 register_t
1394 cpu_hatch(void)
1395 {
1396 volatile struct cpu_hatch_data *h = cpu_hatch_data;
1397 struct cpu_info * const ci = h->hatch_ci;
1398 struct pcb *pcb;
1399 u_int msr;
1400 int i;
1401
1402 /* Initialize timebase. */
1403 __asm ("mttbl %0; mttbu %0; mttbl %0" :: "r"(0));
1404
1405 /*
1406 * Set PIR (Processor Identification Register). i.e. whoami
1407 * Note that PIR is read-only on some CPU versions, so we write to it
1408 * only if it has a different value than we need.
1409 */
1410
1411 msr = mfspr(SPR_PIR);
1412 if (msr != h->hatch_pir)
1413 mtspr(SPR_PIR, h->hatch_pir);
1414
1415 __asm volatile ("mtsprg0 %0" :: "r"(ci));
1416 curlwp = ci->ci_curlwp;
1417 cpu_spinstart_ack = 0;
1418
1419 if ((oeacpufeat & OEACPU_NOBAT) == 0) {
1420 /* Initialize MMU. */
1421 __asm ("mtibatu 0,%0" :: "r"(h->hatch_ibatu[0]));
1422 __asm ("mtibatl 0,%0" :: "r"(h->hatch_ibatl[0]));
1423 __asm ("mtibatu 1,%0" :: "r"(h->hatch_ibatu[1]));
1424 __asm ("mtibatl 1,%0" :: "r"(h->hatch_ibatl[1]));
1425 __asm ("mtibatu 2,%0" :: "r"(h->hatch_ibatu[2]));
1426 __asm ("mtibatl 2,%0" :: "r"(h->hatch_ibatl[2]));
1427 __asm ("mtibatu 3,%0" :: "r"(h->hatch_ibatu[3]));
1428 __asm ("mtibatl 3,%0" :: "r"(h->hatch_ibatl[3]));
1429 __asm ("mtdbatu 0,%0" :: "r"(h->hatch_dbatu[0]));
1430 __asm ("mtdbatl 0,%0" :: "r"(h->hatch_dbatl[0]));
1431 __asm ("mtdbatu 1,%0" :: "r"(h->hatch_dbatu[1]));
1432 __asm ("mtdbatl 1,%0" :: "r"(h->hatch_dbatl[1]));
1433 __asm ("mtdbatu 2,%0" :: "r"(h->hatch_dbatu[2]));
1434 __asm ("mtdbatl 2,%0" :: "r"(h->hatch_dbatl[2]));
1435 __asm ("mtdbatu 3,%0" :: "r"(h->hatch_dbatu[3]));
1436 __asm ("mtdbatl 3,%0" :: "r"(h->hatch_dbatl[3]));
1437 }
1438
1439 #ifdef PPC_OEA64_BRIDGE
1440 if ((oeacpufeat & OEACPU_64_BRIDGE) != 0) {
1441
1442 mtspr64(SPR_HID0, h->hatch_hid0);
1443 mtspr64(SPR_HID1, h->hatch_hid1);
1444 mtspr64(SPR_HID4, h->hatch_hid4);
1445 mtspr64(SPR_HID5, h->hatch_hid5);
1446 mtspr64(SPR_HIOR, 0);
1447 } else
1448 #endif
1449 mtspr(SPR_HID0, h->hatch_hid0);
1450
1451 if ((oeacpufeat & OEACPU_NOBAT) == 0) {
1452 __asm ("mtibatl 0,%0; mtibatu 0,%1; mtdbatl 0,%0; mtdbatu 0,%1;"
1453 :: "r"(battable[0].batl), "r"(battable[0].batu));
1454 }
1455
1456 __asm volatile ("sync");
1457 for (i = 0; i < 16; i++)
1458 __asm ("mtsrin %0,%1" :: "r"(h->hatch_sr[i]), "r"(i << ADDR_SR_SHFT));
1459 __asm volatile ("sync; isync");
1460
1461 if (oeacpufeat & OEACPU_64)
1462 mtspr(SPR_ASR, h->hatch_asr);
1463
1464 cpu_spinstart_ack = 1;
1465 __asm ("ptesync");
1466 __asm ("mtsdr1 %0" :: "r"(h->hatch_sdr1));
1467 __asm volatile ("sync; isync");
1468
1469 cpu_spinstart_ack = 5;
1470 for (i = 0; i < 16; i++)
1471 __asm ("mfsrin %0,%1" : "=r"(h->hatch_sr[i]) :
1472 "r"(i << ADDR_SR_SHFT));
1473
1474 /* Enable I/D address translations. */
1475 msr = mfmsr();
1476 msr |= PSL_IR|PSL_DR|PSL_ME|PSL_RI;
1477 mtmsr(msr);
1478 __asm volatile ("sync; isync");
1479 cpu_spinstart_ack = 2;
1480
1481 md_sync_timebase(h);
1482
1483 cpu_setup(h->hatch_self, ci);
1484
1485 h->hatch_running = 1;
1486 __asm volatile ("sync; isync");
1487
1488 while (start_secondary_cpu == 0)
1489 ;
1490
1491 __asm volatile ("sync; isync");
1492
1493 aprint_normal("cpu%d started\n", curcpu()->ci_index);
1494 __asm volatile ("mtdec %0" :: "r"(ticks_per_intr));
1495
1496 md_setup_interrupts();
1497
1498 ci->ci_ipending = 0;
1499 ci->ci_cpl = 0;
1500
1501 mtmsr(mfmsr() | PSL_EE);
1502 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
1503 return pcb->pcb_sp;
1504 }
1505
1506 void
1507 cpu_boot_secondary_processors(void)
1508 {
1509 start_secondary_cpu = 1;
1510 __asm volatile ("sync");
1511 }
1512
1513 #endif /*MULTIPROCESSOR*/
1514