cpu_subr.c revision 1.99 1 /* $NetBSD: cpu_subr.c,v 1.99 2019/02/06 07:32:50 mrg Exp $ */
2
3 /*-
4 * Copyright (c) 2001 Matt Thomas.
5 * Copyright (c) 2001 Tsubai Masanari.
6 * Copyright (c) 1998, 1999, 2001 Internet Research Institute, Inc.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by
20 * Internet Research Institute, Inc.
21 * 4. The name of the author may not be used to endorse or promote products
22 * derived from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
29 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: cpu_subr.c,v 1.99 2019/02/06 07:32:50 mrg Exp $");
38
39 #include "opt_ppcparam.h"
40 #include "opt_ppccache.h"
41 #include "opt_multiprocessor.h"
42 #include "opt_altivec.h"
43 #include "sysmon_envsys.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/device.h>
48 #include <sys/types.h>
49 #include <sys/lwp.h>
50 #include <sys/xcall.h>
51
52 #include <uvm/uvm.h>
53
54 #include <powerpc/pcb.h>
55 #include <powerpc/psl.h>
56 #include <powerpc/spr.h>
57 #include <powerpc/oea/hid.h>
58 #include <powerpc/oea/hid_601.h>
59 #include <powerpc/oea/spr.h>
60 #include <powerpc/oea/cpufeat.h>
61
62 #include <dev/sysmon/sysmonvar.h>
63
64 static void cpu_enable_l2cr(register_t);
65 static void cpu_enable_l3cr(register_t);
66 static void cpu_config_l2cr(int);
67 static void cpu_config_l3cr(int);
68 static void cpu_probe_speed(struct cpu_info *);
69 static void cpu_idlespin(void);
70 static void cpu_set_dfs_xcall(void *, void *);
71 #if NSYSMON_ENVSYS > 0
72 static void cpu_tau_setup(struct cpu_info *);
73 static void cpu_tau_refresh(struct sysmon_envsys *, envsys_data_t *);
74 #endif
75
76 extern void init_scom_speedctl(void);
77
78 int cpu = -1;
79 int ncpus;
80
81 struct fmttab {
82 register_t fmt_mask;
83 register_t fmt_value;
84 const char *fmt_string;
85 };
86
87 /*
88 * This should be one per CPU but since we only support it on 750 variants it
89 * doesn't really matter since none of them support SMP
90 */
91 envsys_data_t sensor;
92
93 static const struct fmttab cpu_7450_l2cr_formats[] = {
94 { L2CR_L2E, 0, " disabled" },
95 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
96 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
97 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
98 { L2CR_L2E, ~0, " 256KB L2 cache" },
99 { L2CR_L2PE, 0, " no parity" },
100 { L2CR_L2PE, L2CR_L2PE, " parity enabled" },
101 { 0, 0, NULL }
102 };
103
104 static const struct fmttab cpu_7448_l2cr_formats[] = {
105 { L2CR_L2E, 0, " disabled" },
106 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
107 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
108 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
109 { L2CR_L2E, ~0, " 1MB L2 cache" },
110 { L2CR_L2PE, 0, " no parity" },
111 { L2CR_L2PE, L2CR_L2PE, " parity enabled" },
112 { 0, 0, NULL }
113 };
114
115 static const struct fmttab cpu_7457_l2cr_formats[] = {
116 { L2CR_L2E, 0, " disabled" },
117 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
118 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
119 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
120 { L2CR_L2E, ~0, " 512KB L2 cache" },
121 { L2CR_L2PE, 0, " no parity" },
122 { L2CR_L2PE, L2CR_L2PE, " parity enabled" },
123 { 0, 0, NULL }
124 };
125
126 static const struct fmttab cpu_7450_l3cr_formats[] = {
127 { L3CR_L3DO|L3CR_L3IO, L3CR_L3DO, " data-only" },
128 { L3CR_L3DO|L3CR_L3IO, L3CR_L3IO, " instruction-only" },
129 { L3CR_L3DO|L3CR_L3IO, L3CR_L3DO|L3CR_L3IO, " locked" },
130 { L3CR_L3SIZ, L3SIZ_2M, " 2MB" },
131 { L3CR_L3SIZ, L3SIZ_1M, " 1MB" },
132 { L3CR_L3PE|L3CR_L3APE, L3CR_L3PE|L3CR_L3APE, " parity" },
133 { L3CR_L3PE|L3CR_L3APE, L3CR_L3PE, " data-parity" },
134 { L3CR_L3PE|L3CR_L3APE, L3CR_L3APE, " address-parity" },
135 { L3CR_L3PE|L3CR_L3APE, 0, " no-parity" },
136 { L3CR_L3SIZ, ~0, " L3 cache" },
137 { L3CR_L3RT, L3RT_MSUG2_DDR, " (DDR SRAM)" },
138 { L3CR_L3RT, L3RT_PIPELINE_LATE, " (LW SRAM)" },
139 { L3CR_L3RT, L3RT_PB2_SRAM, " (PB2 SRAM)" },
140 { L3CR_L3CLK, ~0, " at" },
141 { L3CR_L3CLK, L3CLK_20, " 2:1" },
142 { L3CR_L3CLK, L3CLK_25, " 2.5:1" },
143 { L3CR_L3CLK, L3CLK_30, " 3:1" },
144 { L3CR_L3CLK, L3CLK_35, " 3.5:1" },
145 { L3CR_L3CLK, L3CLK_40, " 4:1" },
146 { L3CR_L3CLK, L3CLK_50, " 5:1" },
147 { L3CR_L3CLK, L3CLK_60, " 6:1" },
148 { L3CR_L3CLK, ~0, " ratio" },
149 { 0, 0, NULL },
150 };
151
152 static const struct fmttab cpu_ibm750_l2cr_formats[] = {
153 { L2CR_L2E, 0, " disabled" },
154 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
155 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
156 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
157 { 0, ~0, " 512KB" },
158 { L2CR_L2WT, L2CR_L2WT, " WT" },
159 { L2CR_L2WT, 0, " WB" },
160 { L2CR_L2PE, L2CR_L2PE, " with ECC" },
161 { 0, ~0, " L2 cache" },
162 { 0, 0, NULL }
163 };
164
165 static const struct fmttab cpu_l2cr_formats[] = {
166 { L2CR_L2E, 0, " disabled" },
167 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
168 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
169 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
170 { L2CR_L2PE, L2CR_L2PE, " parity" },
171 { L2CR_L2PE, 0, " no-parity" },
172 { L2CR_L2SIZ, L2SIZ_2M, " 2MB" },
173 { L2CR_L2SIZ, L2SIZ_1M, " 1MB" },
174 { L2CR_L2SIZ, L2SIZ_512K, " 512KB" },
175 { L2CR_L2SIZ, L2SIZ_256K, " 256KB" },
176 { L2CR_L2WT, L2CR_L2WT, " WT" },
177 { L2CR_L2WT, 0, " WB" },
178 { L2CR_L2E, ~0, " L2 cache" },
179 { L2CR_L2RAM, L2RAM_FLOWTHRU_BURST, " (FB SRAM)" },
180 { L2CR_L2RAM, L2RAM_PIPELINE_LATE, " (LW SRAM)" },
181 { L2CR_L2RAM, L2RAM_PIPELINE_BURST, " (PB SRAM)" },
182 { L2CR_L2CLK, ~0, " at" },
183 { L2CR_L2CLK, L2CLK_10, " 1:1" },
184 { L2CR_L2CLK, L2CLK_15, " 1.5:1" },
185 { L2CR_L2CLK, L2CLK_20, " 2:1" },
186 { L2CR_L2CLK, L2CLK_25, " 2.5:1" },
187 { L2CR_L2CLK, L2CLK_30, " 3:1" },
188 { L2CR_L2CLK, L2CLK_35, " 3.5:1" },
189 { L2CR_L2CLK, L2CLK_40, " 4:1" },
190 { L2CR_L2CLK, ~0, " ratio" },
191 { 0, 0, NULL }
192 };
193
194 static void cpu_fmttab_print(const struct fmttab *, register_t);
195
196 struct cputab {
197 const char name[8];
198 uint16_t version;
199 uint16_t revfmt;
200 };
201 #define REVFMT_MAJMIN 1 /* %u.%u */
202 #define REVFMT_HEX 2 /* 0x%04x */
203 #define REVFMT_DEC 3 /* %u */
204 static const struct cputab models[] = {
205 { "601", MPC601, REVFMT_DEC },
206 { "602", MPC602, REVFMT_DEC },
207 { "603", MPC603, REVFMT_MAJMIN },
208 { "603e", MPC603e, REVFMT_MAJMIN },
209 { "603ev", MPC603ev, REVFMT_MAJMIN },
210 { "G2", MPCG2, REVFMT_MAJMIN },
211 { "604", MPC604, REVFMT_MAJMIN },
212 { "604e", MPC604e, REVFMT_MAJMIN },
213 { "604ev", MPC604ev, REVFMT_MAJMIN },
214 { "620", MPC620, REVFMT_HEX },
215 { "750", MPC750, REVFMT_MAJMIN },
216 { "750FX", IBM750FX, REVFMT_MAJMIN },
217 { "750GX", IBM750GX, REVFMT_MAJMIN },
218 { "7400", MPC7400, REVFMT_MAJMIN },
219 { "7410", MPC7410, REVFMT_MAJMIN },
220 { "7450", MPC7450, REVFMT_MAJMIN },
221 { "7455", MPC7455, REVFMT_MAJMIN },
222 { "7457", MPC7457, REVFMT_MAJMIN },
223 { "7447A", MPC7447A, REVFMT_MAJMIN },
224 { "7448", MPC7448, REVFMT_MAJMIN },
225 { "8240", MPC8240, REVFMT_MAJMIN },
226 { "8245", MPC8245, REVFMT_MAJMIN },
227 { "970", IBM970, REVFMT_MAJMIN },
228 { "970FX", IBM970FX, REVFMT_MAJMIN },
229 { "970MP", IBM970MP, REVFMT_MAJMIN },
230 { "POWER3II", IBMPOWER3II, REVFMT_MAJMIN },
231 { "", 0, REVFMT_HEX }
232 };
233
234 #ifdef MULTIPROCESSOR
235 struct cpu_info cpu_info[CPU_MAXNUM] = {
236 [0] = {
237 .ci_curlwp = &lwp0,
238 },
239 };
240 volatile struct cpu_hatch_data *cpu_hatch_data;
241 volatile int cpu_hatch_stack;
242 #define HATCH_STACK_SIZE 0x1000
243 extern int ticks_per_intr;
244 #include <powerpc/oea/bat.h>
245 #include <powerpc/pic/picvar.h>
246 #include <powerpc/pic/ipivar.h>
247 extern struct bat battable[];
248 #else
249 struct cpu_info cpu_info[1] = {
250 [0] = {
251 .ci_curlwp = &lwp0,
252 },
253 };
254 #endif /*MULTIPROCESSOR*/
255
256 int cpu_altivec;
257 register_t cpu_psluserset;
258 register_t cpu_pslusermod;
259 register_t cpu_pslusermask = 0xffff;
260
261 /* This is to be called from locore.S, and nowhere else. */
262
263 void
264 cpu_model_init(void)
265 {
266 u_int pvr, vers;
267
268 pvr = mfpvr();
269 vers = pvr >> 16;
270
271 oeacpufeat = 0;
272
273 if ((vers >= IBMRS64II && vers <= IBM970GX) || vers == MPC620 ||
274 vers == IBMCELL || vers == IBMPOWER6P5) {
275 oeacpufeat |= OEACPU_64;
276 oeacpufeat |= OEACPU_64_BRIDGE;
277 oeacpufeat |= OEACPU_NOBAT;
278
279 } else if (vers == MPC601) {
280 oeacpufeat |= OEACPU_601;
281
282 } else if (MPC745X_P(vers)) {
283 register_t hid1 = mfspr(SPR_HID1);
284
285 if (vers != MPC7450) {
286 register_t hid0 = mfspr(SPR_HID0);
287
288 /* Enable more SPRG registers */
289 oeacpufeat |= OEACPU_HIGHSPRG;
290
291 /* Enable more BAT registers */
292 oeacpufeat |= OEACPU_HIGHBAT;
293 hid0 |= HID0_HIGH_BAT_EN;
294
295 /* Enable larger BAT registers */
296 oeacpufeat |= OEACPU_XBSEN;
297 hid0 |= HID0_XBSEN;
298
299 mtspr(SPR_HID0, hid0);
300 __asm volatile("sync;isync");
301 }
302
303 /* Enable address broadcasting for MP systems */
304 hid1 |= HID1_SYNCBE | HID1_ABE;
305
306 mtspr(SPR_HID1, hid1);
307 __asm volatile("sync;isync");
308
309 } else if (vers == IBM750FX || vers == IBM750GX) {
310 oeacpufeat |= OEACPU_HIGHBAT;
311 }
312 }
313
314 void
315 cpu_fmttab_print(const struct fmttab *fmt, register_t data)
316 {
317 for (; fmt->fmt_mask != 0 || fmt->fmt_value != 0; fmt++) {
318 if ((~fmt->fmt_mask & fmt->fmt_value) != 0 ||
319 (data & fmt->fmt_mask) == fmt->fmt_value)
320 aprint_normal("%s", fmt->fmt_string);
321 }
322 }
323
324 void
325 cpu_idlespin(void)
326 {
327 register_t msr;
328
329 if (powersave <= 0)
330 return;
331
332 #if defined(_ARCH_PPC64) || defined (PPC_OEA64_BRIDGE)
333 if (cpu_altivec)
334 __asm volatile("dssall");
335 #endif
336
337 __asm volatile(
338 "sync;"
339 "mfmsr %0;"
340 "oris %0,%0,%1@h;" /* enter power saving mode */
341 "mtmsr %0;"
342 "isync;"
343 : "=r"(msr)
344 : "J"(PSL_POW));
345 }
346
347 void
348 cpu_probe_cache(void)
349 {
350 u_int assoc, pvr, vers;
351
352 pvr = mfpvr();
353 vers = pvr >> 16;
354
355
356 /* Presently common across almost all implementations. */
357 curcpu()->ci_ci.dcache_line_size = 32;
358 curcpu()->ci_ci.icache_line_size = 32;
359
360
361 switch (vers) {
362 #define K *1024
363 case IBM750FX:
364 case IBM750GX:
365 case MPC601:
366 case MPC750:
367 case MPC7400:
368 case MPC7447A:
369 case MPC7448:
370 case MPC7450:
371 case MPC7455:
372 case MPC7457:
373 curcpu()->ci_ci.dcache_size = 32 K;
374 curcpu()->ci_ci.icache_size = 32 K;
375 assoc = 8;
376 break;
377 case MPC603:
378 curcpu()->ci_ci.dcache_size = 8 K;
379 curcpu()->ci_ci.icache_size = 8 K;
380 assoc = 2;
381 break;
382 case MPC603e:
383 case MPC603ev:
384 case MPC604:
385 case MPC8240:
386 case MPC8245:
387 case MPCG2:
388 curcpu()->ci_ci.dcache_size = 16 K;
389 curcpu()->ci_ci.icache_size = 16 K;
390 assoc = 4;
391 break;
392 case MPC604e:
393 case MPC604ev:
394 curcpu()->ci_ci.dcache_size = 32 K;
395 curcpu()->ci_ci.icache_size = 32 K;
396 assoc = 4;
397 break;
398 case IBMPOWER3II:
399 curcpu()->ci_ci.dcache_size = 64 K;
400 curcpu()->ci_ci.icache_size = 32 K;
401 curcpu()->ci_ci.dcache_line_size = 128;
402 curcpu()->ci_ci.icache_line_size = 128;
403 assoc = 128; /* not a typo */
404 break;
405 case IBM970:
406 case IBM970FX:
407 case IBM970MP:
408 curcpu()->ci_ci.dcache_size = 32 K;
409 curcpu()->ci_ci.icache_size = 64 K;
410 curcpu()->ci_ci.dcache_line_size = 128;
411 curcpu()->ci_ci.icache_line_size = 128;
412 assoc = 2;
413 break;
414
415 default:
416 curcpu()->ci_ci.dcache_size = PAGE_SIZE;
417 curcpu()->ci_ci.icache_size = PAGE_SIZE;
418 assoc = 1;
419 #undef K
420 }
421
422 /*
423 * Possibly recolor.
424 */
425 uvm_page_recolor(atop(curcpu()->ci_ci.dcache_size / assoc));
426 }
427
428 struct cpu_info *
429 cpu_attach_common(device_t self, int id)
430 {
431 struct cpu_info *ci;
432 u_int pvr, vers;
433
434 ci = &cpu_info[id];
435 #ifndef MULTIPROCESSOR
436 /*
437 * If this isn't the primary CPU, print an error message
438 * and just bail out.
439 */
440 if (id != 0) {
441 aprint_naive("\n");
442 aprint_normal(": ID %d\n", id);
443 aprint_normal_dev(self,
444 "processor off-line; "
445 "multiprocessor support not present in kernel\n");
446 return (NULL);
447 }
448 #endif
449
450 ci->ci_cpuid = id;
451 ci->ci_idepth = -1;
452 ci->ci_dev = self;
453 ci->ci_idlespin = cpu_idlespin;
454
455 pvr = mfpvr();
456 vers = (pvr >> 16) & 0xffff;
457
458 switch (id) {
459 case 0:
460 /* load my cpu_number to PIR */
461 switch (vers) {
462 case MPC601:
463 case MPC604:
464 case MPC604e:
465 case MPC604ev:
466 case MPC7400:
467 case MPC7410:
468 case MPC7447A:
469 case MPC7448:
470 case MPC7450:
471 case MPC7455:
472 case MPC7457:
473 mtspr(SPR_PIR, id);
474 }
475 cpu_setup(self, ci);
476 break;
477 default:
478 aprint_naive("\n");
479 if (id >= CPU_MAXNUM) {
480 aprint_normal(": more than %d cpus?\n", CPU_MAXNUM);
481 panic("cpuattach");
482 }
483 #ifndef MULTIPROCESSOR
484 aprint_normal(" not configured\n");
485 return NULL;
486 #else
487 mi_cpu_attach(ci);
488 break;
489 #endif
490 }
491 return (ci);
492 }
493
494 void
495 cpu_setup(device_t self, struct cpu_info *ci)
496 {
497 u_int pvr, vers;
498 const char * const xname = device_xname(self);
499 const char *bitmask;
500 char hidbuf[128];
501 char model[80];
502 #if defined(PPC_OEA64_BRIDGE) || defined(_ARCH_PPC64)
503 char hidbuf_u[128];
504 const char *bitmasku = NULL;
505 volatile uint64_t hid64_0, hid64_0_save;
506 #endif
507 #if !defined(_ARCH_PPC64)
508 register_t hid0 = 0, hid0_save = 0;
509 #endif
510
511 pvr = mfpvr();
512 vers = (pvr >> 16) & 0xffff;
513
514 cpu_identify(model, sizeof(model));
515 aprint_naive("\n");
516 aprint_normal(": %s, ID %d%s\n", model, cpu_number(),
517 cpu_number() == 0 ? " (primary)" : "");
518
519 /* set the cpu number */
520 ci->ci_cpuid = cpu_number();
521 #if defined(_ARCH_PPC64)
522 __asm volatile("mfspr %0,%1" : "=r"(hid64_0) : "K"(SPR_HID0));
523 hid64_0_save = hid64_0;
524 #else
525 #if defined(PPC_OEA64_BRIDGE)
526 if ((oeacpufeat & OEACPU_64_BRIDGE) != 0)
527 hid64_0_save = hid64_0 = mfspr(SPR_HID0);
528 else
529 #endif
530 hid0_save = hid0 = mfspr(SPR_HID0);
531 #endif
532
533
534 cpu_probe_cache();
535
536 /*
537 * Configure power-saving mode.
538 */
539 switch (vers) {
540 #if !defined(_ARCH_PPC64)
541 case MPC604:
542 case MPC604e:
543 case MPC604ev:
544 /*
545 * Do not have HID0 support settings, but can support
546 * MSR[POW] off
547 */
548 powersave = 1;
549 break;
550
551 case MPC603:
552 case MPC603e:
553 case MPC603ev:
554 case MPC7400:
555 case MPC7410:
556 case MPC8240:
557 case MPC8245:
558 case MPCG2:
559 /* Select DOZE mode. */
560 hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
561 hid0 |= HID0_DOZE | HID0_DPM;
562 powersave = 1;
563 break;
564
565 case MPC750:
566 case IBM750FX:
567 case IBM750GX:
568 /* Select NAP mode. */
569 hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
570 hid0 |= HID0_NAP | HID0_DPM;
571 powersave = 1;
572 break;
573
574 case MPC7447A:
575 case MPC7448:
576 case MPC7457:
577 case MPC7455:
578 case MPC7450:
579 /* Enable the 7450 branch caches */
580 hid0 |= HID0_SGE | HID0_BTIC;
581 hid0 |= HID0_LRSTK | HID0_FOLD | HID0_BHT;
582 /* Disable BTIC on 7450 Rev 2.0 or earlier */
583 if (vers == MPC7450 && (pvr & 0xFFFF) <= 0x0200)
584 hid0 &= ~HID0_BTIC;
585 /* Select NAP mode. */
586 hid0 &= ~HID0_SLEEP;
587 hid0 |= HID0_NAP | HID0_DPM;
588 powersave = 1;
589 break;
590 #endif
591
592 case IBM970:
593 case IBM970FX:
594 case IBM970MP:
595 #if defined(_ARCH_PPC64) || defined (PPC_OEA64_BRIDGE)
596 #if !defined(_ARCH_PPC64)
597 KASSERT((oeacpufeat & OEACPU_64_BRIDGE) != 0);
598 #endif
599 hid64_0 &= ~(HID0_64_DOZE | HID0_64_NAP | HID0_64_DEEPNAP);
600 hid64_0 |= HID0_64_NAP | HID0_64_DPM | HID0_64_EX_TBEN |
601 HID0_64_TB_CTRL | HID0_64_EN_MCHK;
602 powersave = 1;
603 break;
604 #endif
605 case IBMPOWER3II:
606 default:
607 /* No power-saving mode is available. */ ;
608 }
609
610 #ifdef NAPMODE
611 switch (vers) {
612 case IBM750FX:
613 case IBM750GX:
614 case MPC750:
615 case MPC7400:
616 /* Select NAP mode. */
617 hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
618 hid0 |= HID0_NAP;
619 break;
620 }
621 #endif
622
623 switch (vers) {
624 case IBM750FX:
625 case IBM750GX:
626 case MPC750:
627 hid0 &= ~HID0_DBP; /* XXX correct? */
628 hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
629 break;
630
631 case MPC7400:
632 case MPC7410:
633 hid0 &= ~HID0_SPD;
634 hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
635 hid0 |= HID0_EIEC;
636 break;
637 }
638
639 /*
640 * according to the 603e manual this is necessary for an external L2
641 * cache to work properly
642 */
643 switch (vers) {
644 case MPC603e:
645 hid0 |= HID0_ABE;
646 }
647
648 #if defined(_ARCH_PPC64) || defined(PPC_OEA64_BRIDGE)
649 #if defined(PPC_OEA64_BRIDGE)
650 if ((oeacpufeat & OEACPU_64_BRIDGE) != 0) {
651 #endif
652 if (hid64_0 != hid64_0_save) {
653 mtspr64(SPR_HID0, hid64_0);
654 }
655 #if defined(PPC_OEA64_BRIDGE)
656 } else {
657 #endif
658 #endif
659
660 #if !defined(_ARCH_PPC64)
661 if (hid0 != hid0_save) {
662 mtspr(SPR_HID0, hid0);
663 __asm volatile("sync;isync");
664 }
665 #endif
666 #if defined(PPC_OEA64_BRIDGE)
667 }
668 #endif
669
670 switch (vers) {
671 case MPC601:
672 bitmask = HID0_601_BITMASK;
673 break;
674 case MPC7447A:
675 case MPC7448:
676 case MPC7450:
677 case MPC7455:
678 case MPC7457:
679 bitmask = HID0_7450_BITMASK;
680 break;
681 case IBM970:
682 case IBM970FX:
683 case IBM970MP:
684 bitmask = HID0_970_BITMASK;
685 #if defined(PPC_OEA64_BRIDGE) || defined(_ARCH_PPC64)
686 bitmasku = HID0_970_BITMASK_U;
687 #endif
688 break;
689 default:
690 bitmask = HID0_BITMASK;
691 break;
692 }
693
694 #if defined(PPC_OEA64_BRIDGE) || defined(_ARCH_PPC64)
695 if (bitmasku != NULL) {
696 snprintb(hidbuf, sizeof hidbuf, bitmask, hid64_0 & 0xffffffff);
697 snprintb(hidbuf_u, sizeof hidbuf_u, bitmasku, hid64_0 >> 32);
698 aprint_normal_dev(self, "HID0 %s %s, powersave: %d\n",
699 hidbuf_u, hidbuf, powersave);
700 } else
701 #endif
702 {
703 snprintb(hidbuf, sizeof hidbuf, bitmask, hid0);
704 aprint_normal_dev(self, "HID0 %s, powersave: %d\n",
705 hidbuf, powersave);
706 }
707
708 ci->ci_khz = 0;
709
710 /*
711 * Display speed and cache configuration.
712 */
713 switch (vers) {
714 case MPC604:
715 case MPC604e:
716 case MPC604ev:
717 case MPC750:
718 case IBM750FX:
719 case IBM750GX:
720 case MPC7400:
721 case MPC7410:
722 case MPC7447A:
723 case MPC7448:
724 case MPC7450:
725 case MPC7455:
726 case MPC7457:
727 aprint_normal_dev(self, "");
728 cpu_probe_speed(ci);
729 aprint_normal("%u.%02u MHz",
730 ci->ci_khz / 1000, (ci->ci_khz / 10) % 100);
731 switch (vers) {
732 case MPC7450: /* 7441 does not have L3! */
733 case MPC7455: /* 7445 does not have L3! */
734 case MPC7457: /* 7447 does not have L3! */
735 cpu_config_l3cr(vers);
736 break;
737 case IBM750FX:
738 case IBM750GX:
739 case MPC750:
740 case MPC7400:
741 case MPC7410:
742 case MPC7447A:
743 case MPC7448:
744 cpu_config_l2cr(pvr);
745 break;
746 default:
747 break;
748 }
749 aprint_normal("\n");
750 break;
751 }
752
753 #if NSYSMON_ENVSYS > 0
754 /*
755 * Attach MPC750 temperature sensor to the envsys subsystem.
756 * XXX the 74xx series also has this sensor, but it is not
757 * XXX supported by Motorola and may return values that are off by
758 * XXX 35-55 degrees C.
759 */
760 if (vers == MPC750 || vers == IBM750FX || vers == IBM750GX)
761 cpu_tau_setup(ci);
762 #endif
763
764 #if defined(PPC_OEA64) || defined(PPC_OEA64_BRIDGE)
765 if (vers == IBM970MP)
766 init_scom_speedctl();
767 #endif
768
769 evcnt_attach_dynamic(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
770 NULL, xname, "clock");
771 evcnt_attach_dynamic(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
772 NULL, xname, "traps");
773 evcnt_attach_dynamic(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
774 &ci->ci_ev_traps, xname, "kernel DSI traps");
775 evcnt_attach_dynamic(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
776 &ci->ci_ev_traps, xname, "user DSI traps");
777 evcnt_attach_dynamic(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
778 &ci->ci_ev_udsi, xname, "user DSI failures");
779 evcnt_attach_dynamic(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP,
780 &ci->ci_ev_traps, xname, "kernel ISI traps");
781 evcnt_attach_dynamic(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
782 &ci->ci_ev_traps, xname, "user ISI traps");
783 evcnt_attach_dynamic(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
784 &ci->ci_ev_isi, xname, "user ISI failures");
785 evcnt_attach_dynamic(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
786 &ci->ci_ev_traps, xname, "system call traps");
787 evcnt_attach_dynamic(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
788 &ci->ci_ev_traps, xname, "PGM traps");
789 evcnt_attach_dynamic(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
790 &ci->ci_ev_traps, xname, "FPU unavailable traps");
791 evcnt_attach_dynamic(&ci->ci_ev_fpusw, EVCNT_TYPE_TRAP,
792 &ci->ci_ev_fpu, xname, "FPU context switches");
793 evcnt_attach_dynamic(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
794 &ci->ci_ev_traps, xname, "user alignment traps");
795 evcnt_attach_dynamic(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
796 &ci->ci_ev_ali, xname, "user alignment traps");
797 evcnt_attach_dynamic(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
798 &ci->ci_ev_umchk, xname, "user MCHK failures");
799 evcnt_attach_dynamic(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
800 &ci->ci_ev_traps, xname, "AltiVec unavailable");
801 #ifdef ALTIVEC
802 if (cpu_altivec) {
803 evcnt_attach_dynamic(&ci->ci_ev_vecsw, EVCNT_TYPE_TRAP,
804 &ci->ci_ev_vec, xname, "AltiVec context switches");
805 }
806 #endif
807 evcnt_attach_dynamic(&ci->ci_ev_ipi, EVCNT_TYPE_INTR,
808 NULL, xname, "IPIs");
809 }
810
811 /*
812 * According to a document labeled "PVR Register Settings":
813 ** For integrated microprocessors the PVR register inside the device
814 ** will identify the version of the microprocessor core. You must also
815 ** read the Device ID, PCI register 02, to identify the part and the
816 ** Revision ID, PCI register 08, to identify the revision of the
817 ** integrated microprocessor.
818 * This apparently applies to 8240/8245/8241, PVR 00810101 and 80811014
819 */
820
821 void
822 cpu_identify(char *str, size_t len)
823 {
824 u_int pvr, major, minor;
825 uint16_t vers, rev, revfmt;
826 const struct cputab *cp;
827 size_t n;
828
829 pvr = mfpvr();
830 vers = pvr >> 16;
831 rev = pvr;
832
833 switch (vers) {
834 case MPC7410:
835 minor = (pvr >> 0) & 0xff;
836 major = minor <= 4 ? 1 : 2;
837 break;
838 case MPCG2: /*XXX see note above */
839 major = (pvr >> 4) & 0xf;
840 minor = (pvr >> 0) & 0xf;
841 break;
842 default:
843 major = (pvr >> 8) & 0xf;
844 minor = (pvr >> 0) & 0xf;
845 }
846
847 for (cp = models; cp->name[0] != '\0'; cp++) {
848 if (cp->version == vers)
849 break;
850 }
851
852 if (cpu == -1)
853 cpu = vers;
854
855 revfmt = cp->revfmt;
856 if (rev == MPC750 && pvr == 15) {
857 revfmt = REVFMT_HEX;
858 }
859
860 if (cp->name[0] != '\0') {
861 n = snprintf(str, len, "%s (Revision ", cp->name);
862 } else {
863 n = snprintf(str, len, "Version %#x (Revision ", vers);
864 }
865 if (len > n) {
866 switch (revfmt) {
867 case REVFMT_MAJMIN:
868 snprintf(str + n, len - n, "%u.%u)", major, minor);
869 break;
870 case REVFMT_HEX:
871 snprintf(str + n, len - n, "0x%04x)", rev);
872 break;
873 case REVFMT_DEC:
874 snprintf(str + n, len - n, "%u)", rev);
875 break;
876 }
877 }
878 }
879
880 #ifdef L2CR_CONFIG
881 u_int l2cr_config = L2CR_CONFIG;
882 #else
883 u_int l2cr_config = 0;
884 #endif
885
886 #ifdef L3CR_CONFIG
887 u_int l3cr_config = L3CR_CONFIG;
888 #else
889 u_int l3cr_config = 0;
890 #endif
891
892 void
893 cpu_enable_l2cr(register_t l2cr)
894 {
895 register_t msr, x;
896 uint16_t vers;
897
898 vers = mfpvr() >> 16;
899
900 /* Disable interrupts and set the cache config bits. */
901 msr = mfmsr();
902 mtmsr(msr & ~PSL_EE);
903 #ifdef ALTIVEC
904 if (cpu_altivec)
905 __asm volatile("dssall");
906 #endif
907 __asm volatile("sync");
908 mtspr(SPR_L2CR, l2cr & ~L2CR_L2E);
909 __asm volatile("sync");
910
911 /* Wait for L2 clock to be stable (640 L2 clocks). */
912 delay(100);
913
914 /* Invalidate all L2 contents. */
915 if (MPC745X_P(vers)) {
916 mtspr(SPR_L2CR, l2cr | L2CR_L2I);
917 do {
918 x = mfspr(SPR_L2CR);
919 } while (x & L2CR_L2I);
920 } else {
921 mtspr(SPR_L2CR, l2cr | L2CR_L2I);
922 do {
923 x = mfspr(SPR_L2CR);
924 } while (x & L2CR_L2IP);
925 }
926 /* Enable L2 cache. */
927 l2cr |= L2CR_L2E;
928 mtspr(SPR_L2CR, l2cr);
929 mtmsr(msr);
930 }
931
932 void
933 cpu_enable_l3cr(register_t l3cr)
934 {
935 register_t x;
936
937 /* By The Book (numbered steps from section 3.7.1.3 of MPC7450UM) */
938
939 /*
940 * 1: Set all L3CR bits for final config except L3E, L3I, L3PE, and
941 * L3CLKEN. (also mask off reserved bits in case they were included
942 * in L3CR_CONFIG)
943 */
944 l3cr &= ~(L3CR_L3E|L3CR_L3I|L3CR_L3PE|L3CR_L3CLKEN|L3CR_RESERVED);
945 mtspr(SPR_L3CR, l3cr);
946
947 /* 2: Set L3CR[5] (otherwise reserved bit) to 1 */
948 l3cr |= 0x04000000;
949 mtspr(SPR_L3CR, l3cr);
950
951 /* 3: Set L3CLKEN to 1*/
952 l3cr |= L3CR_L3CLKEN;
953 mtspr(SPR_L3CR, l3cr);
954
955 /* 4/5: Perform a global cache invalidate (ref section 3.7.3.6) */
956 __asm volatile("dssall;sync");
957 /* L3 cache is already disabled, no need to clear L3E */
958 mtspr(SPR_L3CR, l3cr|L3CR_L3I);
959 do {
960 x = mfspr(SPR_L3CR);
961 } while (x & L3CR_L3I);
962
963 /* 6: Clear L3CLKEN to 0 */
964 l3cr &= ~L3CR_L3CLKEN;
965 mtspr(SPR_L3CR, l3cr);
966
967 /* 7: Perform a 'sync' and wait at least 100 CPU cycles */
968 __asm volatile("sync");
969 delay(100);
970
971 /* 8: Set L3E and L3CLKEN */
972 l3cr |= (L3CR_L3E|L3CR_L3CLKEN);
973 mtspr(SPR_L3CR, l3cr);
974
975 /* 9: Perform a 'sync' and wait at least 100 CPU cycles */
976 __asm volatile("sync");
977 delay(100);
978 }
979
980 void
981 cpu_config_l2cr(int pvr)
982 {
983 register_t l2cr;
984 u_int vers = (pvr >> 16) & 0xffff;
985
986 l2cr = mfspr(SPR_L2CR);
987
988 /*
989 * For MP systems, the firmware may only configure the L2 cache
990 * on the first CPU. In this case, assume that the other CPUs
991 * should use the same value for L2CR.
992 */
993 if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
994 l2cr_config = l2cr;
995 }
996
997 /*
998 * Configure L2 cache if not enabled.
999 */
1000 if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
1001 cpu_enable_l2cr(l2cr_config);
1002 l2cr = mfspr(SPR_L2CR);
1003 }
1004
1005 if ((l2cr & L2CR_L2E) == 0) {
1006 aprint_normal(" L2 cache present but not enabled ");
1007 return;
1008 }
1009 aprint_normal(",");
1010
1011 switch (vers) {
1012 case IBM750FX:
1013 case IBM750GX:
1014 cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
1015 break;
1016 case MPC750:
1017 if ((pvr & 0xffffff00) == 0x00082200 /* IBM750CX */ ||
1018 (pvr & 0xffffef00) == 0x00082300 /* IBM750CXe */)
1019 cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
1020 else
1021 cpu_fmttab_print(cpu_l2cr_formats, l2cr);
1022 break;
1023 case MPC7447A:
1024 case MPC7457:
1025 cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
1026 return;
1027 case MPC7448:
1028 cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
1029 return;
1030 case MPC7450:
1031 case MPC7455:
1032 cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
1033 break;
1034 default:
1035 cpu_fmttab_print(cpu_l2cr_formats, l2cr);
1036 break;
1037 }
1038 }
1039
1040 void
1041 cpu_config_l3cr(int vers)
1042 {
1043 register_t l2cr;
1044 register_t l3cr;
1045
1046 l2cr = mfspr(SPR_L2CR);
1047
1048 /*
1049 * For MP systems, the firmware may only configure the L2 cache
1050 * on the first CPU. In this case, assume that the other CPUs
1051 * should use the same value for L2CR.
1052 */
1053 if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
1054 l2cr_config = l2cr;
1055 }
1056
1057 /*
1058 * Configure L2 cache if not enabled.
1059 */
1060 if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
1061 cpu_enable_l2cr(l2cr_config);
1062 l2cr = mfspr(SPR_L2CR);
1063 }
1064
1065 aprint_normal(",");
1066 switch (vers) {
1067 case MPC7447A:
1068 case MPC7457:
1069 cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
1070 return;
1071 case MPC7448:
1072 cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
1073 return;
1074 default:
1075 cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
1076 break;
1077 }
1078
1079 l3cr = mfspr(SPR_L3CR);
1080
1081 /*
1082 * For MP systems, the firmware may only configure the L3 cache
1083 * on the first CPU. In this case, assume that the other CPUs
1084 * should use the same value for L3CR.
1085 */
1086 if ((l3cr & L3CR_L3E) != 0 && l3cr_config == 0) {
1087 l3cr_config = l3cr;
1088 }
1089
1090 /*
1091 * Configure L3 cache if not enabled.
1092 */
1093 if ((l3cr & L3CR_L3E) == 0 && l3cr_config != 0) {
1094 cpu_enable_l3cr(l3cr_config);
1095 l3cr = mfspr(SPR_L3CR);
1096 }
1097
1098 if (l3cr & L3CR_L3E) {
1099 aprint_normal(",");
1100 cpu_fmttab_print(cpu_7450_l3cr_formats, l3cr);
1101 }
1102 }
1103
1104 void
1105 cpu_probe_speed(struct cpu_info *ci)
1106 {
1107 uint64_t cps;
1108
1109 mtspr(SPR_MMCR0, MMCR0_FC);
1110 mtspr(SPR_PMC1, 0);
1111 mtspr(SPR_MMCR0, MMCR0_PMC1SEL(PMCN_CYCLES));
1112 delay(100000);
1113 cps = (mfspr(SPR_PMC1) * 10) + 4999;
1114
1115 mtspr(SPR_MMCR0, MMCR0_FC);
1116
1117 ci->ci_khz = (cps * cpu_get_dfs()) / 1000;
1118 }
1119
1120 /*
1121 * Read the Dynamic Frequency Switching state and return a divisor for
1122 * the maximum frequency.
1123 */
1124 int
1125 cpu_get_dfs(void)
1126 {
1127 u_int pvr, vers;
1128
1129 pvr = mfpvr();
1130 vers = pvr >> 16;
1131
1132 switch (vers) {
1133 case MPC7448:
1134 if (mfspr(SPR_HID1) & HID1_DFS4)
1135 return 4;
1136 /* FALLTHROUGH */
1137 case MPC7447A:
1138 if (mfspr(SPR_HID1) & HID1_DFS2)
1139 return 2;
1140 }
1141 return 1;
1142 }
1143
1144 /*
1145 * Set the Dynamic Frequency Switching divisor the same for all cpus.
1146 */
1147 void
1148 cpu_set_dfs(int div)
1149 {
1150 u_int dfs_mask, pvr, vers;
1151
1152 pvr = mfpvr();
1153 vers = pvr >> 16;
1154 dfs_mask = 0;
1155
1156 switch (vers) {
1157 case MPC7448:
1158 dfs_mask |= HID1_DFS4;
1159 /* FALLTHROUGH */
1160 case MPC7447A:
1161 dfs_mask |= HID1_DFS2;
1162 break;
1163 default:
1164 printf("cpu_set_dfs: DFS not supported\n");
1165 return;
1166
1167 }
1168 #ifdef MULTIPROCESSOR
1169 uint64_t where;
1170 where = xc_broadcast(0, (xcfunc_t)cpu_set_dfs_xcall, &div, &dfs_mask);
1171 xc_wait(where);
1172 #else
1173 cpu_set_dfs_xcall(&div, &dfs_mask);
1174 #endif
1175 }
1176
1177 static void
1178 cpu_set_dfs_xcall(void *arg1, void *arg2)
1179 {
1180 u_int dfs_mask, hid1, old_hid1;
1181 int *divisor, s;
1182
1183 divisor = arg1;
1184 dfs_mask = *(u_int *)arg2;
1185
1186 s = splhigh();
1187 hid1 = old_hid1 = mfspr(SPR_HID1);
1188
1189 switch (*divisor) {
1190 case 1:
1191 hid1 &= ~dfs_mask;
1192 break;
1193 case 2:
1194 hid1 &= ~(dfs_mask & HID1_DFS4);
1195 hid1 |= dfs_mask & HID1_DFS2;
1196 break;
1197 case 4:
1198 hid1 &= ~(dfs_mask & HID1_DFS2);
1199 hid1 |= dfs_mask & HID1_DFS4;
1200 break;
1201 }
1202
1203 if (hid1 != old_hid1) {
1204 __asm volatile("sync");
1205 mtspr(SPR_HID1, hid1);
1206 __asm volatile("sync;isync");
1207 }
1208
1209 splx(s);
1210 }
1211
1212 #if NSYSMON_ENVSYS > 0
1213 void
1214 cpu_tau_setup(struct cpu_info *ci)
1215 {
1216 struct sysmon_envsys *sme;
1217 int error, therm_delay;
1218
1219 mtspr(SPR_THRM1, SPR_THRM_VALID);
1220 mtspr(SPR_THRM2, 0);
1221
1222 /*
1223 * we need to figure out how much 20+us in units of CPU clock cycles
1224 * are
1225 */
1226
1227 therm_delay = ci->ci_khz / 40; /* 25us just to be safe */
1228
1229 mtspr(SPR_THRM3, SPR_THRM_TIMER(therm_delay) | SPR_THRM_ENABLE);
1230
1231 sme = sysmon_envsys_create();
1232
1233 sensor.units = ENVSYS_STEMP;
1234 sensor.state = ENVSYS_SINVALID;
1235 (void)strlcpy(sensor.desc, "CPU Temp", sizeof(sensor.desc));
1236 if (sysmon_envsys_sensor_attach(sme, &sensor)) {
1237 sysmon_envsys_destroy(sme);
1238 return;
1239 }
1240
1241 sme->sme_name = device_xname(ci->ci_dev);
1242 sme->sme_cookie = ci;
1243 sme->sme_refresh = cpu_tau_refresh;
1244
1245 if ((error = sysmon_envsys_register(sme)) != 0) {
1246 aprint_error_dev(ci->ci_dev,
1247 " unable to register with sysmon (%d)\n", error);
1248 sysmon_envsys_destroy(sme);
1249 }
1250 }
1251
1252 /* Find the temperature of the CPU. */
1253 void
1254 cpu_tau_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
1255 {
1256 int i, threshold, count;
1257
1258 threshold = 64; /* Half of the 7-bit sensor range */
1259
1260 /* Successive-approximation code adapted from Motorola
1261 * application note AN1800/D, "Programming the Thermal Assist
1262 * Unit in the MPC750 Microprocessor".
1263 */
1264 for (i = 5; i >= 0 ; i--) {
1265 mtspr(SPR_THRM1,
1266 SPR_THRM_THRESHOLD(threshold) | SPR_THRM_VALID);
1267 count = 0;
1268 while ((count < 100000) &&
1269 ((mfspr(SPR_THRM1) & SPR_THRM_TIV) == 0)) {
1270 count++;
1271 delay(1);
1272 }
1273 if (mfspr(SPR_THRM1) & SPR_THRM_TIN) {
1274 /* The interrupt bit was set, meaning the
1275 * temperature was above the threshold
1276 */
1277 threshold += 1 << i;
1278 } else {
1279 /* Temperature was below the threshold */
1280 threshold -= 1 << i;
1281 }
1282 }
1283 threshold += 2;
1284
1285 /* Convert the temperature in degrees C to microkelvin */
1286 edata->value_cur = (threshold * 1000000) + 273150000;
1287 edata->state = ENVSYS_SVALID;
1288 }
1289 #endif /* NSYSMON_ENVSYS > 0 */
1290
1291 #ifdef MULTIPROCESSOR
1292 volatile u_int cpu_spinstart_ack, cpu_spinstart_cpunum;
1293
1294 int
1295 cpu_spinup(device_t self, struct cpu_info *ci)
1296 {
1297 volatile struct cpu_hatch_data hatch_data, *h = &hatch_data;
1298 struct pglist mlist;
1299 int i, error;
1300 char *hp;
1301
1302 KASSERT(ci != curcpu());
1303
1304 /* Now allocate a hatch stack */
1305 error = uvm_pglistalloc(HATCH_STACK_SIZE, 0x10000, 0x10000000, 16, 0,
1306 &mlist, 1, 1);
1307 if (error) {
1308 aprint_error(": unable to allocate hatch stack\n");
1309 return -1;
1310 }
1311
1312 hp = (void *)VM_PAGE_TO_PHYS(TAILQ_FIRST(&mlist));
1313 memset(hp, 0, HATCH_STACK_SIZE);
1314
1315 /* Initialize secondary cpu's initial lwp to its idlelwp. */
1316 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
1317 ci->ci_curpcb = lwp_getpcb(ci->ci_curlwp);
1318 ci->ci_curpm = ci->ci_curpcb->pcb_pm;
1319
1320 cpu_hatch_data = h;
1321 h->hatch_running = 0;
1322 h->hatch_self = self;
1323 h->hatch_ci = ci;
1324 h->hatch_pir = ci->ci_cpuid;
1325
1326 cpu_hatch_stack = (uint32_t)hp + HATCH_STACK_SIZE - CALLFRAMELEN;
1327 ci->ci_lasttb = cpu_info[0].ci_lasttb;
1328
1329 /* copy special registers */
1330
1331 h->hatch_hid0 = mfspr(SPR_HID0);
1332 #if defined(PPC_OEA64_BRIDGE) || defined (_ARCH_PPC64)
1333 h->hatch_hid1 = mfspr(SPR_HID1);
1334 h->hatch_hid4 = mfspr(SPR_HID4);
1335 h->hatch_hid5 = mfspr(SPR_HID5);
1336 #endif
1337
1338 __asm volatile ("mfsdr1 %0" : "=r"(h->hatch_sdr1));
1339 for (i = 0; i < 16; i++) {
1340 __asm ("mfsrin %0,%1" : "=r"(h->hatch_sr[i]) :
1341 "r"(i << ADDR_SR_SHFT));
1342 }
1343 if (oeacpufeat & OEACPU_64)
1344 h->hatch_asr = mfspr(SPR_ASR);
1345 else
1346 h->hatch_asr = 0;
1347
1348 if ((oeacpufeat & OEACPU_NOBAT) == 0) {
1349 /* copy the bat regs */
1350 __asm volatile ("mfibatu %0,0" : "=r"(h->hatch_ibatu[0]));
1351 __asm volatile ("mfibatl %0,0" : "=r"(h->hatch_ibatl[0]));
1352 __asm volatile ("mfibatu %0,1" : "=r"(h->hatch_ibatu[1]));
1353 __asm volatile ("mfibatl %0,1" : "=r"(h->hatch_ibatl[1]));
1354 __asm volatile ("mfibatu %0,2" : "=r"(h->hatch_ibatu[2]));
1355 __asm volatile ("mfibatl %0,2" : "=r"(h->hatch_ibatl[2]));
1356 __asm volatile ("mfibatu %0,3" : "=r"(h->hatch_ibatu[3]));
1357 __asm volatile ("mfibatl %0,3" : "=r"(h->hatch_ibatl[3]));
1358 __asm volatile ("mfdbatu %0,0" : "=r"(h->hatch_dbatu[0]));
1359 __asm volatile ("mfdbatl %0,0" : "=r"(h->hatch_dbatl[0]));
1360 __asm volatile ("mfdbatu %0,1" : "=r"(h->hatch_dbatu[1]));
1361 __asm volatile ("mfdbatl %0,1" : "=r"(h->hatch_dbatl[1]));
1362 __asm volatile ("mfdbatu %0,2" : "=r"(h->hatch_dbatu[2]));
1363 __asm volatile ("mfdbatl %0,2" : "=r"(h->hatch_dbatl[2]));
1364 __asm volatile ("mfdbatu %0,3" : "=r"(h->hatch_dbatu[3]));
1365 __asm volatile ("mfdbatl %0,3" : "=r"(h->hatch_dbatl[3]));
1366 __asm volatile ("sync; isync");
1367 }
1368
1369 if (md_setup_trampoline(h, ci) == -1)
1370 return -1;
1371 md_presync_timebase(h);
1372 md_start_timebase(h);
1373
1374 /* wait for secondary printf */
1375
1376 delay(200000);
1377
1378 #ifdef CACHE_PROTO_MEI
1379 __asm volatile ("dcbi 0,%0"::"r"(&h->hatch_running):"memory");
1380 __asm volatile ("sync; isync");
1381 __asm volatile ("dcbst 0,%0"::"r"(&h->hatch_running):"memory");
1382 __asm volatile ("sync; isync");
1383 #endif
1384 if (h->hatch_running < 1) {
1385 #ifdef CACHE_PROTO_MEI
1386 __asm volatile ("dcbi 0,%0"::"r"(&cpu_spinstart_ack):"memory");
1387 __asm volatile ("sync; isync");
1388 __asm volatile ("dcbst 0,%0"::"r"(&cpu_spinstart_ack):"memory");
1389 __asm volatile ("sync; isync");
1390 #endif
1391 aprint_error("%d:CPU %d didn't start %d\n", cpu_spinstart_ack,
1392 ci->ci_cpuid, cpu_spinstart_ack);
1393 Debugger();
1394 return -1;
1395 }
1396
1397 /* Register IPI Interrupt */
1398 if (ipiops.ppc_establish_ipi)
1399 ipiops.ppc_establish_ipi(IST_LEVEL, IPL_HIGH, NULL);
1400
1401 return 0;
1402 }
1403
1404 static volatile int start_secondary_cpu;
1405
1406 register_t
1407 cpu_hatch(void)
1408 {
1409 volatile struct cpu_hatch_data *h = cpu_hatch_data;
1410 struct cpu_info * const ci = h->hatch_ci;
1411 struct pcb *pcb;
1412 u_int msr;
1413 int i;
1414
1415 /* Initialize timebase. */
1416 __asm ("mttbl %0; mttbu %0; mttbl %0" :: "r"(0));
1417
1418 /*
1419 * Set PIR (Processor Identification Register). i.e. whoami
1420 * Note that PIR is read-only on some CPU versions, so we write to it
1421 * only if it has a different value than we need.
1422 */
1423
1424 msr = mfspr(SPR_PIR);
1425 if (msr != h->hatch_pir)
1426 mtspr(SPR_PIR, h->hatch_pir);
1427
1428 __asm volatile ("mtsprg0 %0" :: "r"(ci));
1429 curlwp = ci->ci_curlwp;
1430 cpu_spinstart_ack = 0;
1431
1432 if ((oeacpufeat & OEACPU_NOBAT) == 0) {
1433 /* Initialize MMU. */
1434 __asm ("mtibatu 0,%0" :: "r"(h->hatch_ibatu[0]));
1435 __asm ("mtibatl 0,%0" :: "r"(h->hatch_ibatl[0]));
1436 __asm ("mtibatu 1,%0" :: "r"(h->hatch_ibatu[1]));
1437 __asm ("mtibatl 1,%0" :: "r"(h->hatch_ibatl[1]));
1438 __asm ("mtibatu 2,%0" :: "r"(h->hatch_ibatu[2]));
1439 __asm ("mtibatl 2,%0" :: "r"(h->hatch_ibatl[2]));
1440 __asm ("mtibatu 3,%0" :: "r"(h->hatch_ibatu[3]));
1441 __asm ("mtibatl 3,%0" :: "r"(h->hatch_ibatl[3]));
1442 __asm ("mtdbatu 0,%0" :: "r"(h->hatch_dbatu[0]));
1443 __asm ("mtdbatl 0,%0" :: "r"(h->hatch_dbatl[0]));
1444 __asm ("mtdbatu 1,%0" :: "r"(h->hatch_dbatu[1]));
1445 __asm ("mtdbatl 1,%0" :: "r"(h->hatch_dbatl[1]));
1446 __asm ("mtdbatu 2,%0" :: "r"(h->hatch_dbatu[2]));
1447 __asm ("mtdbatl 2,%0" :: "r"(h->hatch_dbatl[2]));
1448 __asm ("mtdbatu 3,%0" :: "r"(h->hatch_dbatu[3]));
1449 __asm ("mtdbatl 3,%0" :: "r"(h->hatch_dbatl[3]));
1450 }
1451
1452 #ifdef PPC_OEA64_BRIDGE
1453 if ((oeacpufeat & OEACPU_64_BRIDGE) != 0) {
1454
1455 mtspr64(SPR_HID0, h->hatch_hid0);
1456 mtspr64(SPR_HID1, h->hatch_hid1);
1457 mtspr64(SPR_HID4, h->hatch_hid4);
1458 mtspr64(SPR_HID5, h->hatch_hid5);
1459 mtspr64(SPR_HIOR, 0);
1460 } else
1461 #endif
1462 mtspr(SPR_HID0, h->hatch_hid0);
1463
1464 if ((oeacpufeat & OEACPU_NOBAT) == 0) {
1465 __asm ("mtibatl 0,%0; mtibatu 0,%1; mtdbatl 0,%0; mtdbatu 0,%1;"
1466 :: "r"(battable[0].batl), "r"(battable[0].batu));
1467 }
1468
1469 __asm volatile ("sync");
1470 for (i = 0; i < 16; i++)
1471 __asm ("mtsrin %0,%1" :: "r"(h->hatch_sr[i]), "r"(i << ADDR_SR_SHFT));
1472 __asm volatile ("sync; isync");
1473
1474 if (oeacpufeat & OEACPU_64)
1475 mtspr(SPR_ASR, h->hatch_asr);
1476
1477 cpu_spinstart_ack = 1;
1478 __asm ("ptesync");
1479 __asm ("mtsdr1 %0" :: "r"(h->hatch_sdr1));
1480 __asm volatile ("sync; isync");
1481
1482 cpu_spinstart_ack = 5;
1483 for (i = 0; i < 16; i++)
1484 __asm ("mfsrin %0,%1" : "=r"(h->hatch_sr[i]) :
1485 "r"(i << ADDR_SR_SHFT));
1486
1487 /* Enable I/D address translations. */
1488 msr = mfmsr();
1489 msr |= PSL_IR|PSL_DR|PSL_ME|PSL_RI;
1490 mtmsr(msr);
1491 __asm volatile ("sync; isync");
1492 cpu_spinstart_ack = 2;
1493
1494 md_sync_timebase(h);
1495
1496 cpu_setup(h->hatch_self, ci);
1497
1498 h->hatch_running = 1;
1499 __asm volatile ("sync; isync");
1500
1501 while (start_secondary_cpu == 0)
1502 ;
1503
1504 __asm volatile ("sync; isync");
1505
1506 aprint_normal("cpu%d started\n", curcpu()->ci_index);
1507 __asm volatile ("mtdec %0" :: "r"(ticks_per_intr));
1508
1509 md_setup_interrupts();
1510
1511 ci->ci_ipending = 0;
1512 ci->ci_cpl = 0;
1513
1514 mtmsr(mfmsr() | PSL_EE);
1515 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
1516 return pcb->pcb_sp;
1517 }
1518
1519 void
1520 cpu_boot_secondary_processors(void)
1521 {
1522 start_secondary_cpu = 1;
1523 __asm volatile ("sync");
1524 }
1525
1526 #endif /*MULTIPROCESSOR*/
1527