Home | History | Annotate | Line # | Download | only in include
      1  1.14   skrll /* $NetBSD: pte.h,v 1.14 2024/10/12 12:27:33 skrll Exp $ */
      2   1.3    maxv 
      3   1.3    maxv /*
      4   1.6   skrll  * Copyright (c) 2014, 2019, 2021 The NetBSD Foundation, Inc.
      5   1.1    matt  * All rights reserved.
      6   1.1    matt  *
      7   1.1    matt  * This code is derived from software contributed to The NetBSD Foundation
      8   1.6   skrll  * by Matt Thomas (of 3am Software Foundry), Maxime Villard, and
      9   1.6   skrll  * Nick Hudson.
     10   1.1    matt  *
     11   1.1    matt  * Redistribution and use in source and binary forms, with or without
     12   1.1    matt  * modification, are permitted provided that the following conditions
     13   1.1    matt  * are met:
     14   1.1    matt  * 1. Redistributions of source code must retain the above copyright
     15   1.1    matt  *    notice, this list of conditions and the following disclaimer.
     16   1.1    matt  * 2. Redistributions in binary form must reproduce the above copyright
     17   1.1    matt  *    notice, this list of conditions and the following disclaimer in the
     18   1.1    matt  *    documentation and/or other materials provided with the distribution.
     19   1.1    matt  *
     20   1.1    matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21   1.1    matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22   1.1    matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23   1.1    matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24   1.1    matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25   1.1    matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26   1.1    matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27   1.1    matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28   1.1    matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29   1.1    matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30   1.1    matt  * POSSIBILITY OF SUCH DAMAGE.
     31   1.1    matt  */
     32   1.1    matt 
     33   1.1    matt #ifndef _RISCV_PTE_H_
     34   1.9  simonb #define	_RISCV_PTE_H_
     35   1.1    matt 
     36   1.3    maxv #ifdef _LP64	/* Sv39 */
     37   1.9  simonb #define	PTE_PPN		__BITS(53, 10)
     38   1.3    maxv #define	PTE_PPN0	__BITS(18, 10)
     39   1.3    maxv #define	PTE_PPN1	__BITS(27, 19)
     40   1.3    maxv #define	PTE_PPN2	__BITS(53, 28)
     41   1.7   skrll typedef uint64_t pt_entry_t;
     42   1.7   skrll typedef uint64_t pd_entry_t;
     43   1.9  simonb #define	atomic_cas_pte	atomic_cas_64
     44   1.3    maxv #else		/* Sv32 */
     45   1.9  simonb #define	PTE_PPN		__BITS(31, 10)
     46   1.3    maxv #define	PTE_PPN0	__BITS(19, 10)
     47   1.3    maxv #define	PTE_PPN1	__BITS(31, 20)
     48   1.7   skrll typedef uint32_t pt_entry_t;
     49   1.7   skrll typedef uint32_t pd_entry_t;
     50   1.9  simonb #define	atomic_cas_pte	atomic_cas_32
     51   1.1    matt #endif
     52   1.1    matt 
     53   1.9  simonb #define	PTE_PPN_SHIFT	10
     54   1.3    maxv 
     55  1.14   skrll #define	NPTEPG		(NBPG / sizeof(pt_entry_t))
     56   1.9  simonb #define	NSEGPG		NPTEPG
     57   1.9  simonb #define	NPDEPG		NPTEPG
     58   1.3    maxv 
     59  1.11   skrll 
     60  1.11   skrll /* HardWare PTE bits SV39 */
     61  1.11   skrll #define PTE_N		__BIT(63)	// Svnapot
     62  1.11   skrll #define PTE_PBMT	__BITS(62, 61)	// Svpbmt
     63  1.11   skrll #define PTE_reserved0	__BITS(60, 54)	//
     64  1.11   skrll 
     65   1.3    maxv /* Software PTE bits. */
     66  1.11   skrll #define	PTE_RSW		__BITS(9, 8)
     67   1.6   skrll #define	PTE_WIRED	__BIT(9)
     68   1.3    maxv 
     69   1.3    maxv /* Hardware PTE bits. */
     70   1.5   skrll // These are hardware defined bits
     71   1.5   skrll #define	PTE_D		__BIT(7)	// Dirty
     72   1.5   skrll #define	PTE_A		__BIT(6)	// Accessed
     73   1.5   skrll #define	PTE_G		__BIT(5)	// Global
     74   1.5   skrll #define	PTE_U		__BIT(4)	// User
     75   1.5   skrll #define	PTE_X		__BIT(3)	// eXecute
     76   1.5   skrll #define	PTE_W		__BIT(2)	// Write
     77   1.5   skrll #define	PTE_R		__BIT(1)	// Read
     78   1.5   skrll #define	PTE_V		__BIT(0)	// Valid
     79   1.3    maxv 
     80   1.9  simonb #define	PTE_HARDWIRED	(PTE_A | PTE_D)
     81  1.13   skrll #define	PTE_USER	(PTE_V | PTE_U)
     82  1.13   skrll #define	PTE_KERN	(PTE_V | PTE_G)
     83   1.9  simonb #define	PTE_RW		(PTE_R | PTE_W)
     84   1.9  simonb #define	PTE_RX		(PTE_R | PTE_X)
     85  1.13   skrll #define	PTE_RWX		(PTE_R | PTE_W | PTE_X)
     86  1.13   skrll 
     87  1.13   skrll #define	PTE_ISLEAF_P(pte) (((pte) & PTE_RWX) != 0)
     88   1.6   skrll 
     89  1.14   skrll #define	PA_TO_PTE(pa)	(((pa) >> PGSHIFT) << PTE_PPN_SHIFT)
     90  1.14   skrll #define	PTE_TO_PA(pte)	(((pte) >> PTE_PPN_SHIFT) << PGSHIFT)
     91   1.1    matt 
     92  1.14   skrll #if defined(_KERNEL)
     93   1.6   skrll 
     94   1.1    matt static inline bool
     95   1.1    matt pte_valid_p(pt_entry_t pte)
     96   1.1    matt {
     97   1.1    matt 	return (pte & PTE_V) != 0;
     98   1.1    matt }
     99   1.1    matt 
    100   1.1    matt static inline bool
    101   1.1    matt pte_wired_p(pt_entry_t pte)
    102   1.1    matt {
    103   1.1    matt 	return (pte & PTE_WIRED) != 0;
    104   1.1    matt }
    105   1.1    matt 
    106   1.1    matt static inline bool
    107   1.1    matt pte_modified_p(pt_entry_t pte)
    108   1.1    matt {
    109   1.3    maxv 	return (pte & PTE_D) != 0;
    110   1.1    matt }
    111   1.1    matt 
    112   1.1    matt static inline bool
    113   1.1    matt pte_cached_p(pt_entry_t pte)
    114   1.1    matt {
    115  1.13   skrll 	/* TODO: This seems wrong... */
    116   1.1    matt 	return true;
    117   1.1    matt }
    118   1.1    matt 
    119   1.1    matt static inline bool
    120   1.1    matt pte_deferred_exec_p(pt_entry_t pte)
    121   1.1    matt {
    122   1.3    maxv 	return false;
    123   1.1    matt }
    124   1.1    matt 
    125   1.1    matt static inline pt_entry_t
    126   1.1    matt pte_wire_entry(pt_entry_t pte)
    127   1.1    matt {
    128  1.13   skrll 	return pte | PTE_HARDWIRED | PTE_WIRED;
    129   1.1    matt }
    130   1.4   skrll 
    131   1.4   skrll static inline pt_entry_t
    132   1.1    matt pte_unwire_entry(pt_entry_t pte)
    133   1.1    matt {
    134  1.13   skrll 	return pte & ~(PTE_HARDWIRED | PTE_WIRED);
    135   1.1    matt }
    136   1.1    matt 
    137   1.1    matt static inline paddr_t
    138   1.1    matt pte_to_paddr(pt_entry_t pte)
    139   1.1    matt {
    140   1.6   skrll 	return PTE_TO_PA(pte);
    141   1.1    matt }
    142   1.1    matt 
    143   1.1    matt static inline pt_entry_t
    144   1.1    matt pte_nv_entry(bool kernel_p)
    145   1.1    matt {
    146  1.11   skrll 	return 0;
    147   1.1    matt }
    148   1.1    matt 
    149   1.1    matt static inline pt_entry_t
    150   1.1    matt pte_prot_nowrite(pt_entry_t pte)
    151   1.1    matt {
    152   1.3    maxv 	return pte & ~PTE_W;
    153   1.1    matt }
    154   1.1    matt 
    155   1.1    matt static inline pt_entry_t
    156   1.1    matt pte_prot_downgrade(pt_entry_t pte, vm_prot_t newprot)
    157   1.1    matt {
    158   1.3    maxv 	if ((newprot & VM_PROT_READ) == 0)
    159   1.3    maxv 		pte &= ~PTE_R;
    160   1.3    maxv 	if ((newprot & VM_PROT_WRITE) == 0)
    161   1.3    maxv 		pte &= ~PTE_W;
    162   1.1    matt 	if ((newprot & VM_PROT_EXECUTE) == 0)
    163   1.3    maxv 		pte &= ~PTE_X;
    164   1.1    matt 	return pte;
    165   1.1    matt }
    166   1.1    matt 
    167   1.1    matt static inline pt_entry_t
    168   1.1    matt pte_prot_bits(struct vm_page_md *mdpg, vm_prot_t prot, bool kernel_p)
    169   1.1    matt {
    170   1.1    matt 	KASSERT(prot & VM_PROT_READ);
    171  1.13   skrll 	pt_entry_t pte = PTE_R;
    172   1.3    maxv 
    173   1.1    matt 	if (prot & VM_PROT_EXECUTE) {
    174   1.3    maxv 		pte |= PTE_X;
    175   1.1    matt 	}
    176   1.1    matt 	if (prot & VM_PROT_WRITE) {
    177   1.3    maxv 		pte |= PTE_W;
    178   1.1    matt 	}
    179   1.3    maxv 
    180   1.3    maxv 	return pte;
    181   1.1    matt }
    182   1.1    matt 
    183   1.1    matt static inline pt_entry_t
    184   1.1    matt pte_flag_bits(struct vm_page_md *mdpg, int flags, bool kernel_p)
    185   1.1    matt {
    186   1.1    matt 	return 0;
    187   1.1    matt }
    188   1.1    matt 
    189   1.1    matt static inline pt_entry_t
    190   1.1    matt pte_make_enter(paddr_t pa, struct vm_page_md *mdpg, vm_prot_t prot,
    191   1.3    maxv     int flags, bool kernel_p)
    192   1.1    matt {
    193   1.3    maxv 	pt_entry_t pte = (pt_entry_t)PA_TO_PTE(pa);
    194   1.1    matt 
    195  1.13   skrll 	pte |= kernel_p ? PTE_KERN : PTE_USER;
    196   1.1    matt 	pte |= pte_flag_bits(mdpg, flags, kernel_p);
    197   1.1    matt 	pte |= pte_prot_bits(mdpg, prot, kernel_p);
    198   1.1    matt 
    199  1.13   skrll 	if (mdpg != NULL) {
    200  1.13   skrll 
    201  1.13   skrll 		if ((prot & VM_PROT_WRITE) != 0 &&
    202  1.13   skrll 		    ((flags & VM_PROT_WRITE) != 0 || VM_PAGEMD_MODIFIED_P(mdpg))) {
    203  1.13   skrll 			/*
    204  1.13   skrll 			* This is a writable mapping, and the page's mod state
    205  1.13   skrll 			* indicates it has already been modified.  No need for
    206  1.13   skrll 			* modified emulation.
    207  1.13   skrll 			*/
    208  1.13   skrll 			pte |= PTE_A;
    209  1.13   skrll 		} else if ((flags & VM_PROT_ALL) || VM_PAGEMD_REFERENCED_P(mdpg)) {
    210  1.13   skrll 			/*
    211  1.13   skrll 			* - The access type indicates that we don't need to do
    212  1.13   skrll 			*   referenced emulation.
    213  1.13   skrll 			* OR
    214  1.13   skrll 			* - The physical page has already been referenced so no need
    215  1.13   skrll 			*   to re-do referenced emulation here.
    216  1.13   skrll 			*/
    217  1.13   skrll 			pte |= PTE_A;
    218  1.13   skrll 		}
    219  1.13   skrll 	} else {
    220  1.13   skrll 		pte |= PTE_A | PTE_D;
    221  1.13   skrll 	}
    222   1.1    matt 
    223   1.1    matt 	return pte;
    224   1.1    matt }
    225   1.1    matt 
    226   1.1    matt static inline pt_entry_t
    227   1.1    matt pte_make_kenter_pa(paddr_t pa, struct vm_page_md *mdpg, vm_prot_t prot,
    228   1.3    maxv     int flags)
    229   1.1    matt {
    230   1.3    maxv 	pt_entry_t pte = (pt_entry_t)PA_TO_PTE(pa);
    231   1.1    matt 
    232  1.13   skrll 	pte |= PTE_KERN | PTE_HARDWIRED | PTE_WIRED;
    233   1.1    matt 	pte |= pte_flag_bits(NULL, flags, true);
    234  1.13   skrll 	pte |= pte_prot_bits(NULL, prot, true);
    235   1.1    matt 
    236   1.1    matt 	return pte;
    237   1.1    matt }
    238   1.1    matt 
    239   1.1    matt static inline void
    240   1.1    matt pte_set(pt_entry_t *ptep, pt_entry_t pte)
    241   1.1    matt {
    242   1.1    matt 	*ptep = pte;
    243   1.1    matt }
    244   1.1    matt 
    245   1.6   skrll static inline pd_entry_t
    246   1.6   skrll pte_invalid_pde(void)
    247   1.6   skrll {
    248   1.6   skrll 	return 0;
    249   1.6   skrll }
    250   1.6   skrll 
    251   1.6   skrll static inline pd_entry_t
    252   1.6   skrll pte_pde_pdetab(paddr_t pa, bool kernel_p)
    253   1.6   skrll {
    254  1.14   skrll 	return PTE_V | PA_TO_PTE(pa);
    255   1.6   skrll }
    256   1.6   skrll 
    257   1.6   skrll static inline pd_entry_t
    258   1.6   skrll pte_pde_ptpage(paddr_t pa, bool kernel_p)
    259   1.6   skrll {
    260  1.14   skrll 	return PTE_V | PA_TO_PTE(pa);
    261   1.6   skrll }
    262   1.6   skrll 
    263   1.6   skrll static inline bool
    264   1.6   skrll pte_pde_valid_p(pd_entry_t pde)
    265   1.6   skrll {
    266  1.10   skrll 	return (pde & (PTE_X | PTE_W | PTE_R | PTE_V)) == PTE_V;
    267   1.6   skrll }
    268   1.6   skrll 
    269   1.6   skrll static inline paddr_t
    270   1.6   skrll pte_pde_to_paddr(pd_entry_t pde)
    271   1.6   skrll {
    272   1.6   skrll 	return pte_to_paddr((pt_entry_t)pde);
    273   1.6   skrll }
    274   1.6   skrll 
    275   1.6   skrll static inline pd_entry_t
    276   1.6   skrll pte_pde_cas(pd_entry_t *pdep, pd_entry_t opde, pt_entry_t npde)
    277   1.6   skrll {
    278   1.6   skrll #ifdef MULTIPROCESSOR
    279   1.6   skrll #ifdef _LP64
    280   1.6   skrll 	return atomic_cas_64(pdep, opde, npde);
    281   1.6   skrll #else
    282   1.6   skrll 	return atomic_cas_32(pdep, opde, npde);
    283   1.6   skrll #endif
    284   1.6   skrll #else
    285   1.6   skrll 	*pdep = npde;
    286   1.6   skrll 	return 0;
    287   1.6   skrll #endif
    288   1.6   skrll }
    289   1.6   skrll 
    290   1.6   skrll static inline void
    291   1.6   skrll pte_pde_set(pd_entry_t *pdep, pd_entry_t npde)
    292   1.6   skrll {
    293   1.6   skrll 
    294   1.6   skrll 	*pdep = npde;
    295   1.6   skrll }
    296   1.6   skrll 
    297   1.2    maxv static inline pt_entry_t
    298   1.2    maxv pte_value(pt_entry_t pte)
    299   1.2    maxv {
    300   1.2    maxv 	return pte;
    301   1.2    maxv }
    302   1.2    maxv 
    303  1.14   skrll #endif /* _KERNEL */
    304  1.14   skrll 
    305   1.1    matt #endif /* _RISCV_PTE_H_ */
    306