pte.h revision 1.11 1 1.11 skrll /* $NetBSD: pte.h,v 1.11 2022/11/12 07:34:18 skrll Exp $ */
2 1.3 maxv
3 1.3 maxv /*
4 1.6 skrll * Copyright (c) 2014, 2019, 2021 The NetBSD Foundation, Inc.
5 1.1 matt * All rights reserved.
6 1.1 matt *
7 1.1 matt * This code is derived from software contributed to The NetBSD Foundation
8 1.6 skrll * by Matt Thomas (of 3am Software Foundry), Maxime Villard, and
9 1.6 skrll * Nick Hudson.
10 1.1 matt *
11 1.1 matt * Redistribution and use in source and binary forms, with or without
12 1.1 matt * modification, are permitted provided that the following conditions
13 1.1 matt * are met:
14 1.1 matt * 1. Redistributions of source code must retain the above copyright
15 1.1 matt * notice, this list of conditions and the following disclaimer.
16 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 matt * notice, this list of conditions and the following disclaimer in the
18 1.1 matt * documentation and/or other materials provided with the distribution.
19 1.1 matt *
20 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.1 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.1 matt * POSSIBILITY OF SUCH DAMAGE.
31 1.1 matt */
32 1.1 matt
33 1.1 matt #ifndef _RISCV_PTE_H_
34 1.9 simonb #define _RISCV_PTE_H_
35 1.1 matt
36 1.3 maxv #ifdef _LP64 /* Sv39 */
37 1.9 simonb #define PTE_PPN __BITS(53, 10)
38 1.3 maxv #define PTE_PPN0 __BITS(18, 10)
39 1.3 maxv #define PTE_PPN1 __BITS(27, 19)
40 1.3 maxv #define PTE_PPN2 __BITS(53, 28)
41 1.7 skrll typedef uint64_t pt_entry_t;
42 1.7 skrll typedef uint64_t pd_entry_t;
43 1.9 simonb #define atomic_cas_pte atomic_cas_64
44 1.3 maxv #else /* Sv32 */
45 1.9 simonb #define PTE_PPN __BITS(31, 10)
46 1.3 maxv #define PTE_PPN0 __BITS(19, 10)
47 1.3 maxv #define PTE_PPN1 __BITS(31, 20)
48 1.7 skrll typedef uint32_t pt_entry_t;
49 1.7 skrll typedef uint32_t pd_entry_t;
50 1.9 simonb #define atomic_cas_pte atomic_cas_32
51 1.1 matt #endif
52 1.1 matt
53 1.9 simonb #define PTE_PPN_SHIFT 10
54 1.3 maxv
55 1.9 simonb #define NPTEPG (PAGE_SIZE / sizeof(pt_entry_t))
56 1.9 simonb #define NSEGPG NPTEPG
57 1.9 simonb #define NPDEPG NPTEPG
58 1.3 maxv
59 1.11 skrll
60 1.11 skrll /* HardWare PTE bits SV39 */
61 1.11 skrll #define PTE_N __BIT(63) // Svnapot
62 1.11 skrll #define PTE_PBMT __BITS(62, 61) // Svpbmt
63 1.11 skrll #define PTE_reserved0 __BITS(60, 54) //
64 1.11 skrll
65 1.3 maxv /* Software PTE bits. */
66 1.11 skrll #define PTE_RSW __BITS(9, 8)
67 1.6 skrll #define PTE_WIRED __BIT(9)
68 1.3 maxv
69 1.3 maxv /* Hardware PTE bits. */
70 1.5 skrll // These are hardware defined bits
71 1.5 skrll #define PTE_D __BIT(7) // Dirty
72 1.5 skrll #define PTE_A __BIT(6) // Accessed
73 1.5 skrll #define PTE_G __BIT(5) // Global
74 1.5 skrll #define PTE_U __BIT(4) // User
75 1.5 skrll #define PTE_X __BIT(3) // eXecute
76 1.5 skrll #define PTE_W __BIT(2) // Write
77 1.5 skrll #define PTE_R __BIT(1) // Read
78 1.5 skrll #define PTE_V __BIT(0) // Valid
79 1.3 maxv
80 1.9 simonb #define PTE_HARDWIRED (PTE_A | PTE_D)
81 1.9 simonb #define PTE_KERN (PTE_V | PTE_G | PTE_A | PTE_D)
82 1.9 simonb #define PTE_RW (PTE_R | PTE_W)
83 1.9 simonb #define PTE_RX (PTE_R | PTE_X)
84 1.6 skrll
85 1.9 simonb #define PA_TO_PTE(pa) (((pa) >> PAGE_SHIFT) << PTE_PPN_SHIFT)
86 1.9 simonb #define PTE_TO_PA(pte) (((pte) >> PTE_PPN_SHIFT) << PAGE_SHIFT)
87 1.3 maxv
88 1.3 maxv #define L2_SHIFT 30
89 1.3 maxv #define L1_SHIFT 21
90 1.3 maxv #define L0_SHIFT 12
91 1.3 maxv
92 1.3 maxv #define L2_SIZE (1 << L2_SHIFT)
93 1.3 maxv #define L1_SIZE (1 << L1_SHIFT)
94 1.3 maxv #define L0_SIZE (1 << L0_SHIFT)
95 1.3 maxv
96 1.3 maxv #define L2_OFFSET (L2_SIZE - 1)
97 1.3 maxv #define L1_OFFSET (L1_SIZE - 1)
98 1.3 maxv #define L0_OFFSET (L0_SIZE - 1)
99 1.3 maxv
100 1.3 maxv #define Ln_ENTRIES (1 << 9)
101 1.3 maxv #define Ln_ADDR_MASK (Ln_ENTRIES - 1)
102 1.3 maxv
103 1.9 simonb #define pl2_i(va) (((va) >> L2_SHIFT) & Ln_ADDR_MASK)
104 1.9 simonb #define pl1_i(va) (((va) >> L1_SHIFT) & Ln_ADDR_MASK)
105 1.9 simonb #define pl0_i(va) (((va) >> L0_SHIFT) & Ln_ADDR_MASK)
106 1.1 matt
107 1.6 skrll static inline const size_t
108 1.6 skrll pte_index(vaddr_t va)
109 1.6 skrll {
110 1.6 skrll return ((va >> PGSHIFT) & (NPTEPG - 1));
111 1.6 skrll }
112 1.6 skrll
113 1.1 matt static inline bool
114 1.1 matt pte_valid_p(pt_entry_t pte)
115 1.1 matt {
116 1.1 matt return (pte & PTE_V) != 0;
117 1.1 matt }
118 1.1 matt
119 1.1 matt static inline bool
120 1.1 matt pte_wired_p(pt_entry_t pte)
121 1.1 matt {
122 1.1 matt return (pte & PTE_WIRED) != 0;
123 1.1 matt }
124 1.1 matt
125 1.1 matt static inline bool
126 1.1 matt pte_modified_p(pt_entry_t pte)
127 1.1 matt {
128 1.3 maxv return (pte & PTE_D) != 0;
129 1.1 matt }
130 1.1 matt
131 1.1 matt static inline bool
132 1.1 matt pte_cached_p(pt_entry_t pte)
133 1.1 matt {
134 1.1 matt return true;
135 1.1 matt }
136 1.1 matt
137 1.1 matt static inline bool
138 1.1 matt pte_deferred_exec_p(pt_entry_t pte)
139 1.1 matt {
140 1.3 maxv return false;
141 1.1 matt }
142 1.1 matt
143 1.1 matt static inline pt_entry_t
144 1.1 matt pte_wire_entry(pt_entry_t pte)
145 1.1 matt {
146 1.1 matt return pte | PTE_WIRED;
147 1.1 matt }
148 1.4 skrll
149 1.4 skrll static inline pt_entry_t
150 1.1 matt pte_unwire_entry(pt_entry_t pte)
151 1.1 matt {
152 1.1 matt return pte & ~PTE_WIRED;
153 1.1 matt }
154 1.1 matt
155 1.1 matt static inline paddr_t
156 1.1 matt pte_to_paddr(pt_entry_t pte)
157 1.1 matt {
158 1.6 skrll return PTE_TO_PA(pte);
159 1.1 matt }
160 1.1 matt
161 1.1 matt static inline pt_entry_t
162 1.1 matt pte_nv_entry(bool kernel_p)
163 1.1 matt {
164 1.11 skrll return 0;
165 1.1 matt }
166 1.1 matt
167 1.1 matt static inline pt_entry_t
168 1.1 matt pte_prot_nowrite(pt_entry_t pte)
169 1.1 matt {
170 1.3 maxv return pte & ~PTE_W;
171 1.1 matt }
172 1.1 matt
173 1.1 matt static inline pt_entry_t
174 1.1 matt pte_prot_downgrade(pt_entry_t pte, vm_prot_t newprot)
175 1.1 matt {
176 1.3 maxv if ((newprot & VM_PROT_READ) == 0)
177 1.3 maxv pte &= ~PTE_R;
178 1.3 maxv if ((newprot & VM_PROT_WRITE) == 0)
179 1.3 maxv pte &= ~PTE_W;
180 1.1 matt if ((newprot & VM_PROT_EXECUTE) == 0)
181 1.3 maxv pte &= ~PTE_X;
182 1.1 matt return pte;
183 1.1 matt }
184 1.1 matt
185 1.1 matt static inline pt_entry_t
186 1.1 matt pte_prot_bits(struct vm_page_md *mdpg, vm_prot_t prot, bool kernel_p)
187 1.1 matt {
188 1.3 maxv pt_entry_t pte;
189 1.3 maxv
190 1.1 matt KASSERT(prot & VM_PROT_READ);
191 1.3 maxv
192 1.3 maxv pte = PTE_R;
193 1.1 matt if (prot & VM_PROT_EXECUTE) {
194 1.3 maxv pte |= PTE_X;
195 1.1 matt }
196 1.1 matt if (prot & VM_PROT_WRITE) {
197 1.3 maxv pte |= PTE_W;
198 1.1 matt }
199 1.3 maxv
200 1.3 maxv return pte;
201 1.1 matt }
202 1.1 matt
203 1.1 matt static inline pt_entry_t
204 1.1 matt pte_flag_bits(struct vm_page_md *mdpg, int flags, bool kernel_p)
205 1.1 matt {
206 1.1 matt #if 0
207 1.1 matt if (__predict_false(flags & PMAP_NOCACHE)) {
208 1.1 matt if (__predict_true(mdpg != NULL)) {
209 1.1 matt return pte_nocached_bits();
210 1.1 matt } else {
211 1.1 matt return pte_ionocached_bits();
212 1.1 matt }
213 1.1 matt } else {
214 1.1 matt if (__predict_false(mdpg != NULL)) {
215 1.1 matt return pte_cached_bits();
216 1.1 matt } else {
217 1.1 matt return pte_iocached_bits();
218 1.1 matt }
219 1.1 matt }
220 1.1 matt #else
221 1.1 matt return 0;
222 1.1 matt #endif
223 1.1 matt }
224 1.1 matt
225 1.1 matt static inline pt_entry_t
226 1.1 matt pte_make_enter(paddr_t pa, struct vm_page_md *mdpg, vm_prot_t prot,
227 1.3 maxv int flags, bool kernel_p)
228 1.1 matt {
229 1.3 maxv pt_entry_t pte = (pt_entry_t)PA_TO_PTE(pa);
230 1.1 matt
231 1.1 matt pte |= pte_flag_bits(mdpg, flags, kernel_p);
232 1.1 matt pte |= pte_prot_bits(mdpg, prot, kernel_p);
233 1.1 matt
234 1.1 matt if (mdpg == NULL && VM_PAGEMD_REFERENCED_P(mdpg))
235 1.1 matt pte |= PTE_V;
236 1.1 matt
237 1.1 matt return pte;
238 1.1 matt }
239 1.1 matt
240 1.1 matt static inline pt_entry_t
241 1.1 matt pte_make_kenter_pa(paddr_t pa, struct vm_page_md *mdpg, vm_prot_t prot,
242 1.3 maxv int flags)
243 1.1 matt {
244 1.3 maxv pt_entry_t pte = (pt_entry_t)PA_TO_PTE(pa);
245 1.1 matt
246 1.6 skrll pte |= PTE_WIRED | PTE_G | PTE_V;
247 1.1 matt pte |= pte_flag_bits(NULL, flags, true);
248 1.1 matt pte |= pte_prot_bits(NULL, prot, true); /* pretend unmanaged */
249 1.1 matt
250 1.1 matt return pte;
251 1.1 matt }
252 1.1 matt
253 1.1 matt static inline void
254 1.1 matt pte_set(pt_entry_t *ptep, pt_entry_t pte)
255 1.1 matt {
256 1.1 matt *ptep = pte;
257 1.1 matt }
258 1.1 matt
259 1.6 skrll static inline pd_entry_t
260 1.6 skrll pte_invalid_pde(void)
261 1.6 skrll {
262 1.6 skrll return 0;
263 1.6 skrll }
264 1.6 skrll
265 1.6 skrll static inline pd_entry_t
266 1.6 skrll pte_pde_pdetab(paddr_t pa, bool kernel_p)
267 1.6 skrll {
268 1.10 skrll return PTE_V | (pa >> PAGE_SHIFT) << PTE_PPN_SHIFT;
269 1.6 skrll }
270 1.6 skrll
271 1.6 skrll static inline pd_entry_t
272 1.6 skrll pte_pde_ptpage(paddr_t pa, bool kernel_p)
273 1.6 skrll {
274 1.11 skrll return PTE_V | (pa >> PAGE_SHIFT) << PTE_PPN_SHIFT;
275 1.6 skrll }
276 1.6 skrll
277 1.6 skrll static inline bool
278 1.6 skrll pte_pde_valid_p(pd_entry_t pde)
279 1.6 skrll {
280 1.10 skrll return (pde & (PTE_X | PTE_W | PTE_R | PTE_V)) == PTE_V;
281 1.6 skrll }
282 1.6 skrll
283 1.6 skrll static inline paddr_t
284 1.6 skrll pte_pde_to_paddr(pd_entry_t pde)
285 1.6 skrll {
286 1.6 skrll return pte_to_paddr((pt_entry_t)pde);
287 1.6 skrll }
288 1.6 skrll
289 1.6 skrll static inline pd_entry_t
290 1.6 skrll pte_pde_cas(pd_entry_t *pdep, pd_entry_t opde, pt_entry_t npde)
291 1.6 skrll {
292 1.6 skrll #ifdef MULTIPROCESSOR
293 1.6 skrll #ifdef _LP64
294 1.6 skrll return atomic_cas_64(pdep, opde, npde);
295 1.6 skrll #else
296 1.6 skrll return atomic_cas_32(pdep, opde, npde);
297 1.6 skrll #endif
298 1.6 skrll #else
299 1.6 skrll *pdep = npde;
300 1.6 skrll return 0;
301 1.6 skrll #endif
302 1.6 skrll }
303 1.6 skrll
304 1.6 skrll static inline void
305 1.6 skrll pte_pde_set(pd_entry_t *pdep, pd_entry_t npde)
306 1.6 skrll {
307 1.6 skrll
308 1.6 skrll *pdep = npde;
309 1.6 skrll }
310 1.6 skrll
311 1.6 skrll
312 1.2 maxv static inline pt_entry_t
313 1.2 maxv pte_value(pt_entry_t pte)
314 1.2 maxv {
315 1.2 maxv return pte;
316 1.2 maxv }
317 1.2 maxv
318 1.1 matt #endif /* _RISCV_PTE_H_ */
319