Home | History | Annotate | Line # | Download | only in include
pte.h revision 1.15
      1  1.15  thorpej /* $NetBSD: pte.h,v 1.15 2025/10/12 04:08:26 thorpej Exp $ */
      2   1.3     maxv 
      3   1.3     maxv /*
      4   1.6    skrll  * Copyright (c) 2014, 2019, 2021 The NetBSD Foundation, Inc.
      5   1.1     matt  * All rights reserved.
      6   1.1     matt  *
      7   1.1     matt  * This code is derived from software contributed to The NetBSD Foundation
      8   1.6    skrll  * by Matt Thomas (of 3am Software Foundry), Maxime Villard, and
      9   1.6    skrll  * Nick Hudson.
     10   1.1     matt  *
     11   1.1     matt  * Redistribution and use in source and binary forms, with or without
     12   1.1     matt  * modification, are permitted provided that the following conditions
     13   1.1     matt  * are met:
     14   1.1     matt  * 1. Redistributions of source code must retain the above copyright
     15   1.1     matt  *    notice, this list of conditions and the following disclaimer.
     16   1.1     matt  * 2. Redistributions in binary form must reproduce the above copyright
     17   1.1     matt  *    notice, this list of conditions and the following disclaimer in the
     18   1.1     matt  *    documentation and/or other materials provided with the distribution.
     19   1.1     matt  *
     20   1.1     matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21   1.1     matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22   1.1     matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23   1.1     matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24   1.1     matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25   1.1     matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26   1.1     matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27   1.1     matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28   1.1     matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29   1.1     matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30   1.1     matt  * POSSIBILITY OF SUCH DAMAGE.
     31   1.1     matt  */
     32   1.1     matt 
     33   1.1     matt #ifndef _RISCV_PTE_H_
     34   1.9   simonb #define	_RISCV_PTE_H_
     35   1.1     matt 
     36   1.3     maxv #ifdef _LP64	/* Sv39 */
     37   1.9   simonb #define	PTE_PPN		__BITS(53, 10)
     38   1.3     maxv #define	PTE_PPN0	__BITS(18, 10)
     39   1.3     maxv #define	PTE_PPN1	__BITS(27, 19)
     40   1.3     maxv #define	PTE_PPN2	__BITS(53, 28)
     41   1.7    skrll typedef uint64_t pt_entry_t;
     42   1.7    skrll typedef uint64_t pd_entry_t;
     43   1.9   simonb #define	atomic_cas_pte	atomic_cas_64
     44   1.3     maxv #else		/* Sv32 */
     45   1.9   simonb #define	PTE_PPN		__BITS(31, 10)
     46   1.3     maxv #define	PTE_PPN0	__BITS(19, 10)
     47   1.3     maxv #define	PTE_PPN1	__BITS(31, 20)
     48   1.7    skrll typedef uint32_t pt_entry_t;
     49   1.7    skrll typedef uint32_t pd_entry_t;
     50   1.9   simonb #define	atomic_cas_pte	atomic_cas_32
     51   1.1     matt #endif
     52   1.1     matt 
     53   1.9   simonb #define	PTE_PPN_SHIFT	10
     54   1.3     maxv 
     55  1.14    skrll #define	NPTEPG		(NBPG / sizeof(pt_entry_t))
     56   1.9   simonb #define	NSEGPG		NPTEPG
     57   1.9   simonb #define	NPDEPG		NPTEPG
     58   1.3     maxv 
     59  1.11    skrll 
     60  1.11    skrll /* HardWare PTE bits SV39 */
     61  1.11    skrll #define PTE_N		__BIT(63)	// Svnapot
     62  1.11    skrll #define PTE_PBMT	__BITS(62, 61)	// Svpbmt
     63  1.11    skrll #define PTE_reserved0	__BITS(60, 54)	//
     64  1.11    skrll 
     65  1.15  thorpej /*
     66  1.15  thorpej  * Svpbmt (Page Based Memory Types) extension:
     67  1.15  thorpej  *
     68  1.15  thorpej  * PMA --> adhere to physical memory attributes
     69  1.15  thorpej  * NC  --> non-cacheable, idempotent, weakly-ordered
     70  1.15  thorpej  * IO  --> non-cacheable, non-idempotent, strongly-ordered
     71  1.15  thorpej  */
     72  1.15  thorpej #define PTE_PBMT_PMA	__SHIFTIN(0, PTE_PBMT)
     73  1.15  thorpej #define PTE_PBMT_NC	__SHIFTIN(1, PTE_PBMT)
     74  1.15  thorpej #define PTE_PBMT_IO	__SHIFTIN(2, PTE_PBMT)
     75  1.15  thorpej 
     76  1.15  thorpej /* XTheadMae (Memory Attribute Extensions) */
     77  1.15  thorpej #define PTE_XMAE	__BITS(63,59)
     78  1.15  thorpej #define PTE_XMAE_SO	__BIT(63)	// Strong Order
     79  1.15  thorpej #define PTE_XMAE_C	__BIT(62)	// Cacheable
     80  1.15  thorpej #define PTE_XMAE_B	__BIT(61)	// Bufferable
     81  1.15  thorpej #define PTE_XMAE_SH	__BIT(60)	// Shareable
     82  1.15  thorpej #define PTE_XMAE_T	__BIT(59)	// Trustable
     83  1.15  thorpej 
     84  1.15  thorpej /*
     85  1.15  thorpej  * Map to the rough PBMT equivalent:
     86  1.15  thorpej  *
     87  1.15  thorpej  * PMA (i.e. no specific attribute) -->     C  B  SH
     88  1.15  thorpej  * NC                               -->        B  SH
     89  1.15  thorpej  * IO                               --> SO        SH
     90  1.15  thorpej  */
     91  1.15  thorpej #define PTE_XMAE_PMA	(              PTE_XMAE_C | PTE_XMAE_B | PTE_XMAE_SH)
     92  1.15  thorpej #define PTE_XMAE_NC	(                           PTE_XMAE_B | PTE_XMAE_SH)
     93  1.15  thorpej #define PTE_XMAE_IO	(PTE_XMAE_SO                           | PTE_XMAE_SH)
     94  1.15  thorpej 
     95   1.3     maxv /* Software PTE bits. */
     96  1.11    skrll #define	PTE_RSW		__BITS(9, 8)
     97   1.6    skrll #define	PTE_WIRED	__BIT(9)
     98   1.3     maxv 
     99   1.3     maxv /* Hardware PTE bits. */
    100   1.5    skrll // These are hardware defined bits
    101   1.5    skrll #define	PTE_D		__BIT(7)	// Dirty
    102   1.5    skrll #define	PTE_A		__BIT(6)	// Accessed
    103   1.5    skrll #define	PTE_G		__BIT(5)	// Global
    104   1.5    skrll #define	PTE_U		__BIT(4)	// User
    105   1.5    skrll #define	PTE_X		__BIT(3)	// eXecute
    106   1.5    skrll #define	PTE_W		__BIT(2)	// Write
    107   1.5    skrll #define	PTE_R		__BIT(1)	// Read
    108   1.5    skrll #define	PTE_V		__BIT(0)	// Valid
    109   1.3     maxv 
    110   1.9   simonb #define	PTE_HARDWIRED	(PTE_A | PTE_D)
    111  1.13    skrll #define	PTE_USER	(PTE_V | PTE_U)
    112  1.13    skrll #define	PTE_KERN	(PTE_V | PTE_G)
    113   1.9   simonb #define	PTE_RW		(PTE_R | PTE_W)
    114   1.9   simonb #define	PTE_RX		(PTE_R | PTE_X)
    115  1.13    skrll #define	PTE_RWX		(PTE_R | PTE_W | PTE_X)
    116  1.13    skrll 
    117  1.13    skrll #define	PTE_ISLEAF_P(pte) (((pte) & PTE_RWX) != 0)
    118   1.6    skrll 
    119  1.14    skrll #define	PA_TO_PTE(pa)	(((pa) >> PGSHIFT) << PTE_PPN_SHIFT)
    120  1.15  thorpej #define	PTE_TO_PA(pte)	(__SHIFTOUT((pte), PTE_PPN) << PGSHIFT)
    121   1.1     matt 
    122  1.14    skrll #if defined(_KERNEL)
    123   1.6    skrll 
    124   1.1     matt static inline bool
    125   1.1     matt pte_valid_p(pt_entry_t pte)
    126   1.1     matt {
    127   1.1     matt 	return (pte & PTE_V) != 0;
    128   1.1     matt }
    129   1.1     matt 
    130   1.1     matt static inline bool
    131   1.1     matt pte_wired_p(pt_entry_t pte)
    132   1.1     matt {
    133   1.1     matt 	return (pte & PTE_WIRED) != 0;
    134   1.1     matt }
    135   1.1     matt 
    136   1.1     matt static inline bool
    137   1.1     matt pte_modified_p(pt_entry_t pte)
    138   1.1     matt {
    139   1.3     maxv 	return (pte & PTE_D) != 0;
    140   1.1     matt }
    141   1.1     matt 
    142   1.1     matt static inline bool
    143   1.1     matt pte_cached_p(pt_entry_t pte)
    144   1.1     matt {
    145  1.13    skrll 	/* TODO: This seems wrong... */
    146   1.1     matt 	return true;
    147   1.1     matt }
    148   1.1     matt 
    149   1.1     matt static inline bool
    150   1.1     matt pte_deferred_exec_p(pt_entry_t pte)
    151   1.1     matt {
    152   1.3     maxv 	return false;
    153   1.1     matt }
    154   1.1     matt 
    155   1.1     matt static inline pt_entry_t
    156   1.1     matt pte_wire_entry(pt_entry_t pte)
    157   1.1     matt {
    158  1.13    skrll 	return pte | PTE_HARDWIRED | PTE_WIRED;
    159   1.1     matt }
    160   1.4    skrll 
    161   1.4    skrll static inline pt_entry_t
    162   1.1     matt pte_unwire_entry(pt_entry_t pte)
    163   1.1     matt {
    164  1.13    skrll 	return pte & ~(PTE_HARDWIRED | PTE_WIRED);
    165   1.1     matt }
    166   1.1     matt 
    167   1.1     matt static inline paddr_t
    168   1.1     matt pte_to_paddr(pt_entry_t pte)
    169   1.1     matt {
    170   1.6    skrll 	return PTE_TO_PA(pte);
    171   1.1     matt }
    172   1.1     matt 
    173   1.1     matt static inline pt_entry_t
    174   1.1     matt pte_nv_entry(bool kernel_p)
    175   1.1     matt {
    176  1.11    skrll 	return 0;
    177   1.1     matt }
    178   1.1     matt 
    179   1.1     matt static inline pt_entry_t
    180   1.1     matt pte_prot_nowrite(pt_entry_t pte)
    181   1.1     matt {
    182   1.3     maxv 	return pte & ~PTE_W;
    183   1.1     matt }
    184   1.1     matt 
    185   1.1     matt static inline pt_entry_t
    186   1.1     matt pte_prot_downgrade(pt_entry_t pte, vm_prot_t newprot)
    187   1.1     matt {
    188   1.3     maxv 	if ((newprot & VM_PROT_READ) == 0)
    189   1.3     maxv 		pte &= ~PTE_R;
    190   1.3     maxv 	if ((newprot & VM_PROT_WRITE) == 0)
    191   1.3     maxv 		pte &= ~PTE_W;
    192   1.1     matt 	if ((newprot & VM_PROT_EXECUTE) == 0)
    193   1.3     maxv 		pte &= ~PTE_X;
    194   1.1     matt 	return pte;
    195   1.1     matt }
    196   1.1     matt 
    197   1.1     matt static inline pt_entry_t
    198   1.1     matt pte_prot_bits(struct vm_page_md *mdpg, vm_prot_t prot, bool kernel_p)
    199   1.1     matt {
    200   1.1     matt 	KASSERT(prot & VM_PROT_READ);
    201  1.13    skrll 	pt_entry_t pte = PTE_R;
    202   1.3     maxv 
    203   1.1     matt 	if (prot & VM_PROT_EXECUTE) {
    204   1.3     maxv 		pte |= PTE_X;
    205   1.1     matt 	}
    206   1.1     matt 	if (prot & VM_PROT_WRITE) {
    207   1.3     maxv 		pte |= PTE_W;
    208   1.1     matt 	}
    209   1.3     maxv 
    210   1.3     maxv 	return pte;
    211   1.1     matt }
    212   1.1     matt 
    213   1.1     matt static inline pt_entry_t
    214   1.1     matt pte_flag_bits(struct vm_page_md *mdpg, int flags, bool kernel_p)
    215   1.1     matt {
    216   1.1     matt 	return 0;
    217   1.1     matt }
    218   1.1     matt 
    219  1.15  thorpej pt_entry_t	pte_enter_flags_to_pbmt(int);
    220  1.15  thorpej 
    221   1.1     matt static inline pt_entry_t
    222   1.1     matt pte_make_enter(paddr_t pa, struct vm_page_md *mdpg, vm_prot_t prot,
    223   1.3     maxv     int flags, bool kernel_p)
    224   1.1     matt {
    225   1.3     maxv 	pt_entry_t pte = (pt_entry_t)PA_TO_PTE(pa);
    226   1.1     matt 
    227  1.13    skrll 	pte |= kernel_p ? PTE_KERN : PTE_USER;
    228   1.1     matt 	pte |= pte_flag_bits(mdpg, flags, kernel_p);
    229   1.1     matt 	pte |= pte_prot_bits(mdpg, prot, kernel_p);
    230  1.15  thorpej 	pte |= pte_enter_flags_to_pbmt(flags);
    231   1.1     matt 
    232  1.13    skrll 	if (mdpg != NULL) {
    233  1.13    skrll 
    234  1.13    skrll 		if ((prot & VM_PROT_WRITE) != 0 &&
    235  1.13    skrll 		    ((flags & VM_PROT_WRITE) != 0 || VM_PAGEMD_MODIFIED_P(mdpg))) {
    236  1.13    skrll 			/*
    237  1.13    skrll 			* This is a writable mapping, and the page's mod state
    238  1.13    skrll 			* indicates it has already been modified.  No need for
    239  1.13    skrll 			* modified emulation.
    240  1.13    skrll 			*/
    241  1.13    skrll 			pte |= PTE_A;
    242  1.13    skrll 		} else if ((flags & VM_PROT_ALL) || VM_PAGEMD_REFERENCED_P(mdpg)) {
    243  1.13    skrll 			/*
    244  1.13    skrll 			* - The access type indicates that we don't need to do
    245  1.13    skrll 			*   referenced emulation.
    246  1.13    skrll 			* OR
    247  1.13    skrll 			* - The physical page has already been referenced so no need
    248  1.13    skrll 			*   to re-do referenced emulation here.
    249  1.13    skrll 			*/
    250  1.13    skrll 			pte |= PTE_A;
    251  1.13    skrll 		}
    252  1.13    skrll 	} else {
    253  1.13    skrll 		pte |= PTE_A | PTE_D;
    254  1.13    skrll 	}
    255   1.1     matt 
    256   1.1     matt 	return pte;
    257   1.1     matt }
    258   1.1     matt 
    259   1.1     matt static inline pt_entry_t
    260   1.1     matt pte_make_kenter_pa(paddr_t pa, struct vm_page_md *mdpg, vm_prot_t prot,
    261   1.3     maxv     int flags)
    262   1.1     matt {
    263   1.3     maxv 	pt_entry_t pte = (pt_entry_t)PA_TO_PTE(pa);
    264   1.1     matt 
    265  1.13    skrll 	pte |= PTE_KERN | PTE_HARDWIRED | PTE_WIRED;
    266   1.1     matt 	pte |= pte_flag_bits(NULL, flags, true);
    267  1.13    skrll 	pte |= pte_prot_bits(NULL, prot, true);
    268  1.15  thorpej 	pte |= pte_enter_flags_to_pbmt(flags);
    269   1.1     matt 
    270   1.1     matt 	return pte;
    271   1.1     matt }
    272   1.1     matt 
    273   1.1     matt static inline void
    274   1.1     matt pte_set(pt_entry_t *ptep, pt_entry_t pte)
    275   1.1     matt {
    276   1.1     matt 	*ptep = pte;
    277   1.1     matt }
    278   1.1     matt 
    279   1.6    skrll static inline pd_entry_t
    280   1.6    skrll pte_invalid_pde(void)
    281   1.6    skrll {
    282   1.6    skrll 	return 0;
    283   1.6    skrll }
    284   1.6    skrll 
    285   1.6    skrll static inline pd_entry_t
    286   1.6    skrll pte_pde_pdetab(paddr_t pa, bool kernel_p)
    287   1.6    skrll {
    288  1.14    skrll 	return PTE_V | PA_TO_PTE(pa);
    289   1.6    skrll }
    290   1.6    skrll 
    291   1.6    skrll static inline pd_entry_t
    292   1.6    skrll pte_pde_ptpage(paddr_t pa, bool kernel_p)
    293   1.6    skrll {
    294  1.14    skrll 	return PTE_V | PA_TO_PTE(pa);
    295   1.6    skrll }
    296   1.6    skrll 
    297   1.6    skrll static inline bool
    298   1.6    skrll pte_pde_valid_p(pd_entry_t pde)
    299   1.6    skrll {
    300  1.10    skrll 	return (pde & (PTE_X | PTE_W | PTE_R | PTE_V)) == PTE_V;
    301   1.6    skrll }
    302   1.6    skrll 
    303   1.6    skrll static inline paddr_t
    304   1.6    skrll pte_pde_to_paddr(pd_entry_t pde)
    305   1.6    skrll {
    306   1.6    skrll 	return pte_to_paddr((pt_entry_t)pde);
    307   1.6    skrll }
    308   1.6    skrll 
    309   1.6    skrll static inline pd_entry_t
    310   1.6    skrll pte_pde_cas(pd_entry_t *pdep, pd_entry_t opde, pt_entry_t npde)
    311   1.6    skrll {
    312   1.6    skrll #ifdef MULTIPROCESSOR
    313   1.6    skrll #ifdef _LP64
    314   1.6    skrll 	return atomic_cas_64(pdep, opde, npde);
    315   1.6    skrll #else
    316   1.6    skrll 	return atomic_cas_32(pdep, opde, npde);
    317   1.6    skrll #endif
    318   1.6    skrll #else
    319   1.6    skrll 	*pdep = npde;
    320   1.6    skrll 	return 0;
    321   1.6    skrll #endif
    322   1.6    skrll }
    323   1.6    skrll 
    324   1.6    skrll static inline void
    325   1.6    skrll pte_pde_set(pd_entry_t *pdep, pd_entry_t npde)
    326   1.6    skrll {
    327   1.6    skrll 
    328   1.6    skrll 	*pdep = npde;
    329   1.6    skrll }
    330   1.6    skrll 
    331   1.2     maxv static inline pt_entry_t
    332   1.2     maxv pte_value(pt_entry_t pte)
    333   1.2     maxv {
    334   1.2     maxv 	return pte;
    335   1.2     maxv }
    336   1.2     maxv 
    337  1.14    skrll #endif /* _KERNEL */
    338  1.14    skrll 
    339   1.1     matt #endif /* _RISCV_PTE_H_ */
    340