Home | History | Annotate | Line # | Download | only in include
pte.h revision 1.9
      1  1.9  simonb /* $NetBSD: pte.h,v 1.9 2022/10/15 06:41:43 simonb Exp $ */
      2  1.3    maxv 
      3  1.3    maxv /*
      4  1.6   skrll  * Copyright (c) 2014, 2019, 2021 The NetBSD Foundation, Inc.
      5  1.1    matt  * All rights reserved.
      6  1.1    matt  *
      7  1.1    matt  * This code is derived from software contributed to The NetBSD Foundation
      8  1.6   skrll  * by Matt Thomas (of 3am Software Foundry), Maxime Villard, and
      9  1.6   skrll  * Nick Hudson.
     10  1.1    matt  *
     11  1.1    matt  * Redistribution and use in source and binary forms, with or without
     12  1.1    matt  * modification, are permitted provided that the following conditions
     13  1.1    matt  * are met:
     14  1.1    matt  * 1. Redistributions of source code must retain the above copyright
     15  1.1    matt  *    notice, this list of conditions and the following disclaimer.
     16  1.1    matt  * 2. Redistributions in binary form must reproduce the above copyright
     17  1.1    matt  *    notice, this list of conditions and the following disclaimer in the
     18  1.1    matt  *    documentation and/or other materials provided with the distribution.
     19  1.1    matt  *
     20  1.1    matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  1.1    matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  1.1    matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  1.1    matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  1.1    matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  1.1    matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  1.1    matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  1.1    matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  1.1    matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  1.1    matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  1.1    matt  * POSSIBILITY OF SUCH DAMAGE.
     31  1.1    matt  */
     32  1.1    matt 
     33  1.1    matt #ifndef _RISCV_PTE_H_
     34  1.9  simonb #define	_RISCV_PTE_H_
     35  1.1    matt 
     36  1.3    maxv #ifdef _LP64	/* Sv39 */
     37  1.9  simonb #define	PTE_PPN		__BITS(53, 10)
     38  1.3    maxv #define	PTE_PPN0	__BITS(18, 10)
     39  1.3    maxv #define	PTE_PPN1	__BITS(27, 19)
     40  1.3    maxv #define	PTE_PPN2	__BITS(53, 28)
     41  1.7   skrll typedef uint64_t pt_entry_t;
     42  1.7   skrll typedef uint64_t pd_entry_t;
     43  1.9  simonb #define	atomic_cas_pte	atomic_cas_64
     44  1.3    maxv #else		/* Sv32 */
     45  1.9  simonb #define	PTE_PPN		__BITS(31, 10)
     46  1.3    maxv #define	PTE_PPN0	__BITS(19, 10)
     47  1.3    maxv #define	PTE_PPN1	__BITS(31, 20)
     48  1.7   skrll typedef uint32_t pt_entry_t;
     49  1.7   skrll typedef uint32_t pd_entry_t;
     50  1.9  simonb #define	atomic_cas_pte	atomic_cas_32
     51  1.1    matt #endif
     52  1.1    matt 
     53  1.9  simonb #define	PTE_PPN_SHIFT	10
     54  1.3    maxv 
     55  1.9  simonb #define	NPTEPG		(PAGE_SIZE / sizeof(pt_entry_t))
     56  1.9  simonb #define	NSEGPG		NPTEPG
     57  1.9  simonb #define	NPDEPG		NPTEPG
     58  1.3    maxv 
     59  1.3    maxv /* Software PTE bits. */
     60  1.6   skrll #define	PTE_RSW		__BITS(9,8)
     61  1.6   skrll #define	PTE_WIRED	__BIT(9)
     62  1.3    maxv 
     63  1.3    maxv /* Hardware PTE bits. */
     64  1.5   skrll // These are hardware defined bits
     65  1.5   skrll #define	PTE_D		__BIT(7)	// Dirty
     66  1.5   skrll #define	PTE_A		__BIT(6)	// Accessed
     67  1.5   skrll #define	PTE_G		__BIT(5)	// Global
     68  1.5   skrll #define	PTE_U		__BIT(4)	// User
     69  1.5   skrll #define	PTE_X		__BIT(3)	// eXecute
     70  1.5   skrll #define	PTE_W		__BIT(2)	// Write
     71  1.5   skrll #define	PTE_R		__BIT(1)	// Read
     72  1.5   skrll #define	PTE_V		__BIT(0)	// Valid
     73  1.3    maxv 
     74  1.9  simonb #define	PTE_HARDWIRED	(PTE_A | PTE_D)
     75  1.9  simonb #define	PTE_KERN	(PTE_V | PTE_G | PTE_A | PTE_D)
     76  1.9  simonb #define	PTE_RW		(PTE_R | PTE_W)
     77  1.9  simonb #define	PTE_RX		(PTE_R | PTE_X)
     78  1.6   skrll 
     79  1.9  simonb #define	PA_TO_PTE(pa)	(((pa) >> PAGE_SHIFT) << PTE_PPN_SHIFT)
     80  1.9  simonb #define	PTE_TO_PA(pte)	(((pte) >> PTE_PPN_SHIFT) << PAGE_SHIFT)
     81  1.3    maxv 
     82  1.3    maxv #define	L2_SHIFT	30
     83  1.3    maxv #define	L1_SHIFT	21
     84  1.3    maxv #define	L0_SHIFT	12
     85  1.3    maxv 
     86  1.3    maxv #define	L2_SIZE 	(1 << L2_SHIFT)
     87  1.3    maxv #define	L1_SIZE 	(1 << L1_SHIFT)
     88  1.3    maxv #define	L0_SIZE 	(1 << L0_SHIFT)
     89  1.3    maxv 
     90  1.3    maxv #define	L2_OFFSET 	(L2_SIZE - 1)
     91  1.3    maxv #define	L1_OFFSET 	(L1_SIZE - 1)
     92  1.3    maxv #define	L0_OFFSET 	(L0_SIZE - 1)
     93  1.3    maxv 
     94  1.3    maxv #define	Ln_ENTRIES	(1 << 9)
     95  1.3    maxv #define	Ln_ADDR_MASK	(Ln_ENTRIES - 1)
     96  1.3    maxv 
     97  1.9  simonb #define	pl2_i(va)	(((va) >> L2_SHIFT) & Ln_ADDR_MASK)
     98  1.9  simonb #define	pl1_i(va)	(((va) >> L1_SHIFT) & Ln_ADDR_MASK)
     99  1.9  simonb #define	pl0_i(va)	(((va) >> L0_SHIFT) & Ln_ADDR_MASK)
    100  1.1    matt 
    101  1.6   skrll static inline const size_t
    102  1.6   skrll pte_index(vaddr_t va)
    103  1.6   skrll {
    104  1.6   skrll 	return ((va >> PGSHIFT) & (NPTEPG - 1));
    105  1.6   skrll }
    106  1.6   skrll 
    107  1.1    matt static inline bool
    108  1.1    matt pte_valid_p(pt_entry_t pte)
    109  1.1    matt {
    110  1.1    matt 	return (pte & PTE_V) != 0;
    111  1.1    matt }
    112  1.1    matt 
    113  1.1    matt static inline bool
    114  1.1    matt pte_wired_p(pt_entry_t pte)
    115  1.1    matt {
    116  1.1    matt 	return (pte & PTE_WIRED) != 0;
    117  1.1    matt }
    118  1.1    matt 
    119  1.1    matt static inline bool
    120  1.1    matt pte_modified_p(pt_entry_t pte)
    121  1.1    matt {
    122  1.3    maxv 	return (pte & PTE_D) != 0;
    123  1.1    matt }
    124  1.1    matt 
    125  1.1    matt static inline bool
    126  1.1    matt pte_cached_p(pt_entry_t pte)
    127  1.1    matt {
    128  1.1    matt 	return true;
    129  1.1    matt }
    130  1.1    matt 
    131  1.1    matt static inline bool
    132  1.1    matt pte_deferred_exec_p(pt_entry_t pte)
    133  1.1    matt {
    134  1.3    maxv 	return false;
    135  1.1    matt }
    136  1.1    matt 
    137  1.1    matt static inline pt_entry_t
    138  1.1    matt pte_wire_entry(pt_entry_t pte)
    139  1.1    matt {
    140  1.1    matt 	return pte | PTE_WIRED;
    141  1.1    matt }
    142  1.4   skrll 
    143  1.4   skrll static inline pt_entry_t
    144  1.1    matt pte_unwire_entry(pt_entry_t pte)
    145  1.1    matt {
    146  1.1    matt 	return pte & ~PTE_WIRED;
    147  1.1    matt }
    148  1.1    matt 
    149  1.1    matt static inline paddr_t
    150  1.1    matt pte_to_paddr(pt_entry_t pte)
    151  1.1    matt {
    152  1.6   skrll 	return PTE_TO_PA(pte);
    153  1.1    matt }
    154  1.1    matt 
    155  1.1    matt static inline pt_entry_t
    156  1.1    matt pte_nv_entry(bool kernel_p)
    157  1.1    matt {
    158  1.1    matt 	return kernel_p ? PTE_G : 0;
    159  1.1    matt }
    160  1.1    matt 
    161  1.1    matt static inline pt_entry_t
    162  1.1    matt pte_prot_nowrite(pt_entry_t pte)
    163  1.1    matt {
    164  1.3    maxv 	return pte & ~PTE_W;
    165  1.1    matt }
    166  1.1    matt 
    167  1.1    matt static inline pt_entry_t
    168  1.1    matt pte_prot_downgrade(pt_entry_t pte, vm_prot_t newprot)
    169  1.1    matt {
    170  1.3    maxv 	if ((newprot & VM_PROT_READ) == 0)
    171  1.3    maxv 		pte &= ~PTE_R;
    172  1.3    maxv 	if ((newprot & VM_PROT_WRITE) == 0)
    173  1.3    maxv 		pte &= ~PTE_W;
    174  1.1    matt 	if ((newprot & VM_PROT_EXECUTE) == 0)
    175  1.3    maxv 		pte &= ~PTE_X;
    176  1.1    matt 	return pte;
    177  1.1    matt }
    178  1.1    matt 
    179  1.1    matt static inline pt_entry_t
    180  1.1    matt pte_prot_bits(struct vm_page_md *mdpg, vm_prot_t prot, bool kernel_p)
    181  1.1    matt {
    182  1.3    maxv 	pt_entry_t pte;
    183  1.3    maxv 
    184  1.1    matt 	KASSERT(prot & VM_PROT_READ);
    185  1.3    maxv 
    186  1.3    maxv 	pte = PTE_R;
    187  1.1    matt 	if (prot & VM_PROT_EXECUTE) {
    188  1.3    maxv 		pte |= PTE_X;
    189  1.1    matt 	}
    190  1.1    matt 	if (prot & VM_PROT_WRITE) {
    191  1.3    maxv 		pte |= PTE_W;
    192  1.1    matt 	}
    193  1.3    maxv 
    194  1.3    maxv 	return pte;
    195  1.1    matt }
    196  1.1    matt 
    197  1.1    matt static inline pt_entry_t
    198  1.1    matt pte_flag_bits(struct vm_page_md *mdpg, int flags, bool kernel_p)
    199  1.1    matt {
    200  1.1    matt #if 0
    201  1.1    matt 	if (__predict_false(flags & PMAP_NOCACHE)) {
    202  1.1    matt 		if (__predict_true(mdpg != NULL)) {
    203  1.1    matt 			return pte_nocached_bits();
    204  1.1    matt 		} else {
    205  1.1    matt 			return pte_ionocached_bits();
    206  1.1    matt 		}
    207  1.1    matt 	} else {
    208  1.1    matt 		if (__predict_false(mdpg != NULL)) {
    209  1.1    matt 			return pte_cached_bits();
    210  1.1    matt 		} else {
    211  1.1    matt 			return pte_iocached_bits();
    212  1.1    matt 		}
    213  1.1    matt 	}
    214  1.1    matt #else
    215  1.1    matt 	return 0;
    216  1.1    matt #endif
    217  1.1    matt }
    218  1.1    matt 
    219  1.1    matt static inline pt_entry_t
    220  1.1    matt pte_make_enter(paddr_t pa, struct vm_page_md *mdpg, vm_prot_t prot,
    221  1.3    maxv     int flags, bool kernel_p)
    222  1.1    matt {
    223  1.3    maxv 	pt_entry_t pte = (pt_entry_t)PA_TO_PTE(pa);
    224  1.1    matt 
    225  1.1    matt 	pte |= pte_flag_bits(mdpg, flags, kernel_p);
    226  1.1    matt 	pte |= pte_prot_bits(mdpg, prot, kernel_p);
    227  1.1    matt 
    228  1.1    matt 	if (mdpg == NULL && VM_PAGEMD_REFERENCED_P(mdpg))
    229  1.1    matt 		pte |= PTE_V;
    230  1.1    matt 
    231  1.1    matt 	return pte;
    232  1.1    matt }
    233  1.1    matt 
    234  1.1    matt static inline pt_entry_t
    235  1.1    matt pte_make_kenter_pa(paddr_t pa, struct vm_page_md *mdpg, vm_prot_t prot,
    236  1.3    maxv     int flags)
    237  1.1    matt {
    238  1.3    maxv 	pt_entry_t pte = (pt_entry_t)PA_TO_PTE(pa);
    239  1.1    matt 
    240  1.6   skrll 	pte |= PTE_WIRED | PTE_G | PTE_V;
    241  1.1    matt 	pte |= pte_flag_bits(NULL, flags, true);
    242  1.1    matt 	pte |= pte_prot_bits(NULL, prot, true); /* pretend unmanaged */
    243  1.1    matt 
    244  1.1    matt 	return pte;
    245  1.1    matt }
    246  1.1    matt 
    247  1.1    matt static inline void
    248  1.1    matt pte_set(pt_entry_t *ptep, pt_entry_t pte)
    249  1.1    matt {
    250  1.1    matt 	*ptep = pte;
    251  1.1    matt }
    252  1.1    matt 
    253  1.6   skrll static inline pd_entry_t
    254  1.6   skrll pte_invalid_pde(void)
    255  1.6   skrll {
    256  1.6   skrll 	return 0;
    257  1.6   skrll }
    258  1.6   skrll 
    259  1.6   skrll static inline pd_entry_t
    260  1.6   skrll pte_pde_pdetab(paddr_t pa, bool kernel_p)
    261  1.6   skrll {
    262  1.6   skrll 	return PTE_V | (pa >> PAGE_SHIFT) << L2_SHIFT;
    263  1.6   skrll }
    264  1.6   skrll 
    265  1.6   skrll static inline pd_entry_t
    266  1.6   skrll pte_pde_ptpage(paddr_t pa, bool kernel_p)
    267  1.6   skrll {
    268  1.6   skrll 	return PTE_V | PTE_X | PTE_W | PTE_R | (pa >> PAGE_SHIFT) << L2_SHIFT;
    269  1.6   skrll }
    270  1.6   skrll 
    271  1.6   skrll static inline bool
    272  1.6   skrll pte_pde_valid_p(pd_entry_t pde)
    273  1.6   skrll {
    274  1.6   skrll 	return (pde & (PTE_X | PTE_W | PTE_R)) == 0;
    275  1.6   skrll }
    276  1.6   skrll 
    277  1.6   skrll static inline paddr_t
    278  1.6   skrll pte_pde_to_paddr(pd_entry_t pde)
    279  1.6   skrll {
    280  1.6   skrll 	return pte_to_paddr((pt_entry_t)pde);
    281  1.6   skrll }
    282  1.6   skrll 
    283  1.6   skrll static inline pd_entry_t
    284  1.6   skrll pte_pde_cas(pd_entry_t *pdep, pd_entry_t opde, pt_entry_t npde)
    285  1.6   skrll {
    286  1.6   skrll #ifdef MULTIPROCESSOR
    287  1.6   skrll #ifdef _LP64
    288  1.6   skrll 	return atomic_cas_64(pdep, opde, npde);
    289  1.6   skrll #else
    290  1.6   skrll 	return atomic_cas_32(pdep, opde, npde);
    291  1.6   skrll #endif
    292  1.6   skrll #else
    293  1.6   skrll 	*pdep = npde;
    294  1.6   skrll 	return 0;
    295  1.6   skrll #endif
    296  1.6   skrll }
    297  1.6   skrll 
    298  1.6   skrll static inline void
    299  1.6   skrll pte_pde_set(pd_entry_t *pdep, pd_entry_t npde)
    300  1.6   skrll {
    301  1.6   skrll 
    302  1.6   skrll 	*pdep = npde;
    303  1.6   skrll }
    304  1.6   skrll 
    305  1.6   skrll 
    306  1.2    maxv static inline pt_entry_t
    307  1.2    maxv pte_value(pt_entry_t pte)
    308  1.2    maxv {
    309  1.2    maxv 	return pte;
    310  1.2    maxv }
    311  1.2    maxv 
    312  1.1    matt #endif /* _RISCV_PTE_H_ */
    313