pte.h revision 1.14 1 /* $NetBSD: pte.h,v 1.14 2024/10/12 12:27:33 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2014, 2019, 2021 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Matt Thomas (of 3am Software Foundry), Maxime Villard, and
9 * Nick Hudson.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #ifndef _RISCV_PTE_H_
34 #define _RISCV_PTE_H_
35
36 #ifdef _LP64 /* Sv39 */
37 #define PTE_PPN __BITS(53, 10)
38 #define PTE_PPN0 __BITS(18, 10)
39 #define PTE_PPN1 __BITS(27, 19)
40 #define PTE_PPN2 __BITS(53, 28)
41 typedef uint64_t pt_entry_t;
42 typedef uint64_t pd_entry_t;
43 #define atomic_cas_pte atomic_cas_64
44 #else /* Sv32 */
45 #define PTE_PPN __BITS(31, 10)
46 #define PTE_PPN0 __BITS(19, 10)
47 #define PTE_PPN1 __BITS(31, 20)
48 typedef uint32_t pt_entry_t;
49 typedef uint32_t pd_entry_t;
50 #define atomic_cas_pte atomic_cas_32
51 #endif
52
53 #define PTE_PPN_SHIFT 10
54
55 #define NPTEPG (NBPG / sizeof(pt_entry_t))
56 #define NSEGPG NPTEPG
57 #define NPDEPG NPTEPG
58
59
60 /* HardWare PTE bits SV39 */
61 #define PTE_N __BIT(63) // Svnapot
62 #define PTE_PBMT __BITS(62, 61) // Svpbmt
63 #define PTE_reserved0 __BITS(60, 54) //
64
65 /* Software PTE bits. */
66 #define PTE_RSW __BITS(9, 8)
67 #define PTE_WIRED __BIT(9)
68
69 /* Hardware PTE bits. */
70 // These are hardware defined bits
71 #define PTE_D __BIT(7) // Dirty
72 #define PTE_A __BIT(6) // Accessed
73 #define PTE_G __BIT(5) // Global
74 #define PTE_U __BIT(4) // User
75 #define PTE_X __BIT(3) // eXecute
76 #define PTE_W __BIT(2) // Write
77 #define PTE_R __BIT(1) // Read
78 #define PTE_V __BIT(0) // Valid
79
80 #define PTE_HARDWIRED (PTE_A | PTE_D)
81 #define PTE_USER (PTE_V | PTE_U)
82 #define PTE_KERN (PTE_V | PTE_G)
83 #define PTE_RW (PTE_R | PTE_W)
84 #define PTE_RX (PTE_R | PTE_X)
85 #define PTE_RWX (PTE_R | PTE_W | PTE_X)
86
87 #define PTE_ISLEAF_P(pte) (((pte) & PTE_RWX) != 0)
88
89 #define PA_TO_PTE(pa) (((pa) >> PGSHIFT) << PTE_PPN_SHIFT)
90 #define PTE_TO_PA(pte) (((pte) >> PTE_PPN_SHIFT) << PGSHIFT)
91
92 #if defined(_KERNEL)
93
94 static inline bool
95 pte_valid_p(pt_entry_t pte)
96 {
97 return (pte & PTE_V) != 0;
98 }
99
100 static inline bool
101 pte_wired_p(pt_entry_t pte)
102 {
103 return (pte & PTE_WIRED) != 0;
104 }
105
106 static inline bool
107 pte_modified_p(pt_entry_t pte)
108 {
109 return (pte & PTE_D) != 0;
110 }
111
112 static inline bool
113 pte_cached_p(pt_entry_t pte)
114 {
115 /* TODO: This seems wrong... */
116 return true;
117 }
118
119 static inline bool
120 pte_deferred_exec_p(pt_entry_t pte)
121 {
122 return false;
123 }
124
125 static inline pt_entry_t
126 pte_wire_entry(pt_entry_t pte)
127 {
128 return pte | PTE_HARDWIRED | PTE_WIRED;
129 }
130
131 static inline pt_entry_t
132 pte_unwire_entry(pt_entry_t pte)
133 {
134 return pte & ~(PTE_HARDWIRED | PTE_WIRED);
135 }
136
137 static inline paddr_t
138 pte_to_paddr(pt_entry_t pte)
139 {
140 return PTE_TO_PA(pte);
141 }
142
143 static inline pt_entry_t
144 pte_nv_entry(bool kernel_p)
145 {
146 return 0;
147 }
148
149 static inline pt_entry_t
150 pte_prot_nowrite(pt_entry_t pte)
151 {
152 return pte & ~PTE_W;
153 }
154
155 static inline pt_entry_t
156 pte_prot_downgrade(pt_entry_t pte, vm_prot_t newprot)
157 {
158 if ((newprot & VM_PROT_READ) == 0)
159 pte &= ~PTE_R;
160 if ((newprot & VM_PROT_WRITE) == 0)
161 pte &= ~PTE_W;
162 if ((newprot & VM_PROT_EXECUTE) == 0)
163 pte &= ~PTE_X;
164 return pte;
165 }
166
167 static inline pt_entry_t
168 pte_prot_bits(struct vm_page_md *mdpg, vm_prot_t prot, bool kernel_p)
169 {
170 KASSERT(prot & VM_PROT_READ);
171 pt_entry_t pte = PTE_R;
172
173 if (prot & VM_PROT_EXECUTE) {
174 pte |= PTE_X;
175 }
176 if (prot & VM_PROT_WRITE) {
177 pte |= PTE_W;
178 }
179
180 return pte;
181 }
182
183 static inline pt_entry_t
184 pte_flag_bits(struct vm_page_md *mdpg, int flags, bool kernel_p)
185 {
186 return 0;
187 }
188
189 static inline pt_entry_t
190 pte_make_enter(paddr_t pa, struct vm_page_md *mdpg, vm_prot_t prot,
191 int flags, bool kernel_p)
192 {
193 pt_entry_t pte = (pt_entry_t)PA_TO_PTE(pa);
194
195 pte |= kernel_p ? PTE_KERN : PTE_USER;
196 pte |= pte_flag_bits(mdpg, flags, kernel_p);
197 pte |= pte_prot_bits(mdpg, prot, kernel_p);
198
199 if (mdpg != NULL) {
200
201 if ((prot & VM_PROT_WRITE) != 0 &&
202 ((flags & VM_PROT_WRITE) != 0 || VM_PAGEMD_MODIFIED_P(mdpg))) {
203 /*
204 * This is a writable mapping, and the page's mod state
205 * indicates it has already been modified. No need for
206 * modified emulation.
207 */
208 pte |= PTE_A;
209 } else if ((flags & VM_PROT_ALL) || VM_PAGEMD_REFERENCED_P(mdpg)) {
210 /*
211 * - The access type indicates that we don't need to do
212 * referenced emulation.
213 * OR
214 * - The physical page has already been referenced so no need
215 * to re-do referenced emulation here.
216 */
217 pte |= PTE_A;
218 }
219 } else {
220 pte |= PTE_A | PTE_D;
221 }
222
223 return pte;
224 }
225
226 static inline pt_entry_t
227 pte_make_kenter_pa(paddr_t pa, struct vm_page_md *mdpg, vm_prot_t prot,
228 int flags)
229 {
230 pt_entry_t pte = (pt_entry_t)PA_TO_PTE(pa);
231
232 pte |= PTE_KERN | PTE_HARDWIRED | PTE_WIRED;
233 pte |= pte_flag_bits(NULL, flags, true);
234 pte |= pte_prot_bits(NULL, prot, true);
235
236 return pte;
237 }
238
239 static inline void
240 pte_set(pt_entry_t *ptep, pt_entry_t pte)
241 {
242 *ptep = pte;
243 }
244
245 static inline pd_entry_t
246 pte_invalid_pde(void)
247 {
248 return 0;
249 }
250
251 static inline pd_entry_t
252 pte_pde_pdetab(paddr_t pa, bool kernel_p)
253 {
254 return PTE_V | PA_TO_PTE(pa);
255 }
256
257 static inline pd_entry_t
258 pte_pde_ptpage(paddr_t pa, bool kernel_p)
259 {
260 return PTE_V | PA_TO_PTE(pa);
261 }
262
263 static inline bool
264 pte_pde_valid_p(pd_entry_t pde)
265 {
266 return (pde & (PTE_X | PTE_W | PTE_R | PTE_V)) == PTE_V;
267 }
268
269 static inline paddr_t
270 pte_pde_to_paddr(pd_entry_t pde)
271 {
272 return pte_to_paddr((pt_entry_t)pde);
273 }
274
275 static inline pd_entry_t
276 pte_pde_cas(pd_entry_t *pdep, pd_entry_t opde, pt_entry_t npde)
277 {
278 #ifdef MULTIPROCESSOR
279 #ifdef _LP64
280 return atomic_cas_64(pdep, opde, npde);
281 #else
282 return atomic_cas_32(pdep, opde, npde);
283 #endif
284 #else
285 *pdep = npde;
286 return 0;
287 #endif
288 }
289
290 static inline void
291 pte_pde_set(pd_entry_t *pdep, pd_entry_t npde)
292 {
293
294 *pdep = npde;
295 }
296
297 static inline pt_entry_t
298 pte_value(pt_entry_t pte)
299 {
300 return pte;
301 }
302
303 #endif /* _KERNEL */
304
305 #endif /* _RISCV_PTE_H_ */
306