Home | History | Annotate | Line # | Download | only in include
pte.h revision 1.4.4.1
      1 /* $NetBSD: pte.h,v 1.4.4.1 2020/12/14 14:38:00 thorpej Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2014, 2019 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Matt Thomas (of 3am Software Foundry) and Maxime Villard.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #ifndef _RISCV_PTE_H_
     33 #define _RISCV_PTE_H_
     34 
     35 #ifdef _LP64	/* Sv39 */
     36 #define PTE_PPN		__BITS(53, 10)
     37 #define	PTE_PPN0	__BITS(18, 10)
     38 #define	PTE_PPN1	__BITS(27, 19)
     39 #define	PTE_PPN2	__BITS(53, 28)
     40 typedef __uint64_t pt_entry_t;
     41 typedef __uint64_t pd_entry_t;
     42 #define atomic_cas_pte	atomic_cas_64
     43 #else		/* Sv32 */
     44 #define PTE_PPN		__BITS(31, 10)
     45 #define	PTE_PPN0	__BITS(19, 10)
     46 #define	PTE_PPN1	__BITS(31, 20)
     47 typedef __uint32_t pt_entry_t;
     48 typedef __uint32_t pd_entry_t;
     49 #define atomic_cas_pte	atomic_cas_32
     50 #endif
     51 
     52 #define PTE_PPN_SHIFT	10
     53 
     54 #define NPTEPG		(PAGE_SIZE / sizeof(pt_entry_t))
     55 #define NSEGPG		NPTEPG
     56 #define NPDEPG		NPTEPG
     57 
     58 /* Software PTE bits. */
     59 #define	PTE_WIRED	__BIT(8)
     60 
     61 /* Hardware PTE bits. */
     62 // These are hardware defined bits
     63 #define	PTE_D		__BIT(7)	// Dirty
     64 #define	PTE_A		__BIT(6)	// Accessed
     65 #define	PTE_G		__BIT(5)	// Global
     66 #define	PTE_U		__BIT(4)	// User
     67 #define	PTE_X		__BIT(3)	// eXecute
     68 #define	PTE_W		__BIT(2)	// Write
     69 #define	PTE_R		__BIT(1)	// Read
     70 #define	PTE_V		__BIT(0)	// Valid
     71 
     72 #define PA_TO_PTE(pa)	(((pa) >> PAGE_SHIFT) << PTE_PPN_SHIFT)
     73 #define PTE_TO_PA(pte)	(((pte) >> PTE_PPN_SHIFT) << PAGE_SHIFT)
     74 
     75 #define	L2_SHIFT	30
     76 #define	L1_SHIFT	21
     77 #define	L0_SHIFT	12
     78 
     79 #define	L2_SIZE 	(1 << L2_SHIFT)
     80 #define	L1_SIZE 	(1 << L1_SHIFT)
     81 #define	L0_SIZE 	(1 << L0_SHIFT)
     82 
     83 #define	L2_OFFSET 	(L2_SIZE - 1)
     84 #define	L1_OFFSET 	(L1_SIZE - 1)
     85 #define	L0_OFFSET 	(L0_SIZE - 1)
     86 
     87 #define	Ln_ENTRIES	(1 << 9)
     88 #define	Ln_ADDR_MASK	(Ln_ENTRIES - 1)
     89 
     90 #define pl2_i(va)	(((va) >> L2_SHIFT) & Ln_ADDR_MASK)
     91 #define pl1_i(va)	(((va) >> L1_SHIFT) & Ln_ADDR_MASK)
     92 #define pl0_i(va)	(((va) >> L0_SHIFT) & Ln_ADDR_MASK)
     93 
     94 static inline bool
     95 pte_valid_p(pt_entry_t pte)
     96 {
     97 	return (pte & PTE_V) != 0;
     98 }
     99 
    100 static inline bool
    101 pte_wired_p(pt_entry_t pte)
    102 {
    103 	return (pte & PTE_WIRED) != 0;
    104 }
    105 
    106 static inline bool
    107 pte_modified_p(pt_entry_t pte)
    108 {
    109 	return (pte & PTE_D) != 0;
    110 }
    111 
    112 static inline bool
    113 pte_cached_p(pt_entry_t pte)
    114 {
    115 	return true;
    116 }
    117 
    118 static inline bool
    119 pte_deferred_exec_p(pt_entry_t pte)
    120 {
    121 	return false;
    122 }
    123 
    124 static inline pt_entry_t
    125 pte_wire_entry(pt_entry_t pte)
    126 {
    127 	return pte | PTE_WIRED;
    128 }
    129 
    130 static inline pt_entry_t
    131 pte_unwire_entry(pt_entry_t pte)
    132 {
    133 	return pte & ~PTE_WIRED;
    134 }
    135 
    136 static inline paddr_t
    137 pte_to_paddr(pt_entry_t pte)
    138 {
    139 	return pte & ~PAGE_MASK;
    140 }
    141 
    142 static inline pt_entry_t
    143 pte_nv_entry(bool kernel_p)
    144 {
    145 	return kernel_p ? PTE_G : 0;
    146 }
    147 
    148 static inline pt_entry_t
    149 pte_prot_nowrite(pt_entry_t pte)
    150 {
    151 	return pte & ~PTE_W;
    152 }
    153 
    154 static inline pt_entry_t
    155 pte_prot_downgrade(pt_entry_t pte, vm_prot_t newprot)
    156 {
    157 	if ((newprot & VM_PROT_READ) == 0)
    158 		pte &= ~PTE_R;
    159 	if ((newprot & VM_PROT_WRITE) == 0)
    160 		pte &= ~PTE_W;
    161 	if ((newprot & VM_PROT_EXECUTE) == 0)
    162 		pte &= ~PTE_X;
    163 	return pte;
    164 }
    165 
    166 static inline pt_entry_t
    167 pte_prot_bits(struct vm_page_md *mdpg, vm_prot_t prot, bool kernel_p)
    168 {
    169 	pt_entry_t pte;
    170 
    171 	KASSERT(prot & VM_PROT_READ);
    172 
    173 	pte = PTE_R;
    174 	if (prot & VM_PROT_EXECUTE) {
    175 		pte |= PTE_X;
    176 	}
    177 	if (prot & VM_PROT_WRITE) {
    178 		pte |= PTE_W;
    179 	}
    180 
    181 	return pte;
    182 }
    183 
    184 static inline pt_entry_t
    185 pte_flag_bits(struct vm_page_md *mdpg, int flags, bool kernel_p)
    186 {
    187 #if 0
    188 	if (__predict_false(flags & PMAP_NOCACHE)) {
    189 		if (__predict_true(mdpg != NULL)) {
    190 			return pte_nocached_bits();
    191 		} else {
    192 			return pte_ionocached_bits();
    193 		}
    194 	} else {
    195 		if (__predict_false(mdpg != NULL)) {
    196 			return pte_cached_bits();
    197 		} else {
    198 			return pte_iocached_bits();
    199 		}
    200 	}
    201 #else
    202 	return 0;
    203 #endif
    204 }
    205 
    206 static inline pt_entry_t
    207 pte_make_enter(paddr_t pa, struct vm_page_md *mdpg, vm_prot_t prot,
    208     int flags, bool kernel_p)
    209 {
    210 	pt_entry_t pte = (pt_entry_t)PA_TO_PTE(pa);
    211 
    212 	pte |= pte_flag_bits(mdpg, flags, kernel_p);
    213 	pte |= pte_prot_bits(mdpg, prot, kernel_p);
    214 
    215 	if (mdpg == NULL && VM_PAGEMD_REFERENCED_P(mdpg))
    216 		pte |= PTE_V;
    217 
    218 	return pte;
    219 }
    220 
    221 static inline pt_entry_t
    222 pte_make_kenter_pa(paddr_t pa, struct vm_page_md *mdpg, vm_prot_t prot,
    223     int flags)
    224 {
    225 	pt_entry_t pte = (pt_entry_t)PA_TO_PTE(pa);
    226 
    227 	pte |= PTE_WIRED | PTE_V;
    228 	pte |= pte_flag_bits(NULL, flags, true);
    229 	pte |= pte_prot_bits(NULL, prot, true); /* pretend unmanaged */
    230 
    231 	return pte;
    232 }
    233 
    234 static inline void
    235 pte_set(pt_entry_t *ptep, pt_entry_t pte)
    236 {
    237 	*ptep = pte;
    238 }
    239 
    240 static inline pt_entry_t
    241 pte_value(pt_entry_t pte)
    242 {
    243 	return pte;
    244 }
    245 
    246 #endif /* _RISCV_PTE_H_ */
    247