1 1.14 rin /* $NetBSD: fpu_implode.c,v 1.14 2022/08/28 22:09:26 rin Exp $ */ 2 1.2 deraadt 3 1.1 deraadt /* 4 1.1 deraadt * Copyright (c) 1992, 1993 5 1.1 deraadt * The Regents of the University of California. All rights reserved. 6 1.1 deraadt * 7 1.1 deraadt * This software was developed by the Computer Systems Engineering group 8 1.1 deraadt * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 9 1.1 deraadt * contributed to Berkeley. 10 1.1 deraadt * 11 1.1 deraadt * All advertising materials mentioning features or use of this software 12 1.1 deraadt * must display the following acknowledgement: 13 1.1 deraadt * This product includes software developed by the University of 14 1.1 deraadt * California, Lawrence Berkeley Laboratory. 15 1.1 deraadt * 16 1.1 deraadt * Redistribution and use in source and binary forms, with or without 17 1.1 deraadt * modification, are permitted provided that the following conditions 18 1.1 deraadt * are met: 19 1.1 deraadt * 1. Redistributions of source code must retain the above copyright 20 1.1 deraadt * notice, this list of conditions and the following disclaimer. 21 1.1 deraadt * 2. Redistributions in binary form must reproduce the above copyright 22 1.1 deraadt * notice, this list of conditions and the following disclaimer in the 23 1.1 deraadt * documentation and/or other materials provided with the distribution. 24 1.12 agc * 3. Neither the name of the University nor the names of its contributors 25 1.1 deraadt * may be used to endorse or promote products derived from this software 26 1.1 deraadt * without specific prior written permission. 27 1.1 deraadt * 28 1.1 deraadt * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 1.1 deraadt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 1.1 deraadt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 1.1 deraadt * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 1.1 deraadt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 1.1 deraadt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 1.1 deraadt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 1.1 deraadt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 1.1 deraadt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 1.1 deraadt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 1.1 deraadt * SUCH DAMAGE. 39 1.1 deraadt * 40 1.1 deraadt * @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93 41 1.1 deraadt */ 42 1.1 deraadt 43 1.1 deraadt /* 44 1.1 deraadt * FPU subroutines: `implode' internal format numbers into the machine's 45 1.1 deraadt * `packed binary' format. 46 1.1 deraadt */ 47 1.11 lukem 48 1.11 lukem #include <sys/cdefs.h> 49 1.14 rin __KERNEL_RCSID(0, "$NetBSD: fpu_implode.c,v 1.14 2022/08/28 22:09:26 rin Exp $"); 50 1.9 darrenr 51 1.9 darrenr #if defined(_KERNEL_OPT) 52 1.9 darrenr #include "opt_sparc_arch.h" 53 1.9 darrenr #endif 54 1.1 deraadt 55 1.1 deraadt #include <sys/types.h> 56 1.3 christos #include <sys/systm.h> 57 1.1 deraadt 58 1.1 deraadt #include <machine/ieee.h> 59 1.1 deraadt #include <machine/instr.h> 60 1.1 deraadt #include <machine/reg.h> 61 1.1 deraadt 62 1.1 deraadt #include <sparc/fpu/fpu_arith.h> 63 1.1 deraadt #include <sparc/fpu/fpu_emu.h> 64 1.3 christos #include <sparc/fpu/fpu_extern.h> 65 1.3 christos 66 1.13 uwe static int round(struct fpemu *, struct fpn *); 67 1.13 uwe static int toinf(struct fpemu *, int); 68 1.1 deraadt 69 1.1 deraadt /* 70 1.1 deraadt * Round a number (algorithm from Motorola MC68882 manual, modified for 71 1.1 deraadt * our internal format). Set inexact exception if rounding is required. 72 1.1 deraadt * Return true iff we rounded up. 73 1.1 deraadt * 74 1.1 deraadt * After rounding, we discard the guard and round bits by shifting right 75 1.1 deraadt * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky). 76 1.1 deraadt * This saves effort later. 77 1.1 deraadt * 78 1.1 deraadt * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's 79 1.1 deraadt * responsibility to fix this if necessary. 80 1.1 deraadt */ 81 1.1 deraadt static int 82 1.13 uwe round(struct fpemu *fe, struct fpn *fp) 83 1.1 deraadt { 84 1.14 rin u_int m0, m1, m2, m3; 85 1.14 rin int gr, s; 86 1.1 deraadt 87 1.1 deraadt m0 = fp->fp_mant[0]; 88 1.1 deraadt m1 = fp->fp_mant[1]; 89 1.1 deraadt m2 = fp->fp_mant[2]; 90 1.1 deraadt m3 = fp->fp_mant[3]; 91 1.1 deraadt gr = m3 & 3; 92 1.1 deraadt s = fp->fp_sticky; 93 1.1 deraadt 94 1.1 deraadt /* mant >>= FP_NG */ 95 1.1 deraadt m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG)); 96 1.1 deraadt m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG)); 97 1.1 deraadt m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG)); 98 1.1 deraadt m0 >>= FP_NG; 99 1.1 deraadt 100 1.1 deraadt if ((gr | s) == 0) /* result is exact: no rounding needed */ 101 1.1 deraadt goto rounddown; 102 1.1 deraadt 103 1.1 deraadt fe->fe_cx |= FSR_NX; /* inexact */ 104 1.1 deraadt 105 1.1 deraadt /* Go to rounddown to round down; break to round up. */ 106 1.1 deraadt switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) { 107 1.1 deraadt 108 1.1 deraadt case FSR_RD_RN: 109 1.1 deraadt default: 110 1.1 deraadt /* 111 1.1 deraadt * Round only if guard is set (gr & 2). If guard is set, 112 1.1 deraadt * but round & sticky both clear, then we want to round 113 1.1 deraadt * but have a tie, so round to even, i.e., add 1 iff odd. 114 1.1 deraadt */ 115 1.1 deraadt if ((gr & 2) == 0) 116 1.1 deraadt goto rounddown; 117 1.1 deraadt if ((gr & 1) || fp->fp_sticky || (m3 & 1)) 118 1.1 deraadt break; 119 1.1 deraadt goto rounddown; 120 1.1 deraadt 121 1.1 deraadt case FSR_RD_RZ: 122 1.1 deraadt /* Round towards zero, i.e., down. */ 123 1.1 deraadt goto rounddown; 124 1.1 deraadt 125 1.1 deraadt case FSR_RD_RM: 126 1.1 deraadt /* Round towards -Inf: up if negative, down if positive. */ 127 1.1 deraadt if (fp->fp_sign) 128 1.1 deraadt break; 129 1.1 deraadt goto rounddown; 130 1.1 deraadt 131 1.1 deraadt case FSR_RD_RP: 132 1.1 deraadt /* Round towards +Inf: up if positive, down otherwise. */ 133 1.1 deraadt if (!fp->fp_sign) 134 1.1 deraadt break; 135 1.1 deraadt goto rounddown; 136 1.1 deraadt } 137 1.1 deraadt 138 1.1 deraadt /* Bump low bit of mantissa, with carry. */ 139 1.1 deraadt FPU_ADDS(m3, m3, 1); 140 1.1 deraadt FPU_ADDCS(m2, m2, 0); 141 1.1 deraadt FPU_ADDCS(m1, m1, 0); 142 1.1 deraadt FPU_ADDC(m0, m0, 0); 143 1.1 deraadt fp->fp_mant[0] = m0; 144 1.1 deraadt fp->fp_mant[1] = m1; 145 1.1 deraadt fp->fp_mant[2] = m2; 146 1.1 deraadt fp->fp_mant[3] = m3; 147 1.1 deraadt return (1); 148 1.1 deraadt 149 1.1 deraadt rounddown: 150 1.1 deraadt fp->fp_mant[0] = m0; 151 1.1 deraadt fp->fp_mant[1] = m1; 152 1.1 deraadt fp->fp_mant[2] = m2; 153 1.1 deraadt fp->fp_mant[3] = m3; 154 1.1 deraadt return (0); 155 1.1 deraadt } 156 1.1 deraadt 157 1.1 deraadt /* 158 1.1 deraadt * For overflow: return true if overflow is to go to +/-Inf, according 159 1.1 deraadt * to the sign of the overflowing result. If false, overflow is to go 160 1.1 deraadt * to the largest magnitude value instead. 161 1.1 deraadt */ 162 1.1 deraadt static int 163 1.1 deraadt toinf(struct fpemu *fe, int sign) 164 1.1 deraadt { 165 1.1 deraadt int inf; 166 1.1 deraadt 167 1.1 deraadt /* look at rounding direction */ 168 1.1 deraadt switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) { 169 1.1 deraadt 170 1.1 deraadt default: 171 1.1 deraadt case FSR_RD_RN: /* the nearest value is always Inf */ 172 1.1 deraadt inf = 1; 173 1.1 deraadt break; 174 1.1 deraadt 175 1.1 deraadt case FSR_RD_RZ: /* toward 0 => never towards Inf */ 176 1.1 deraadt inf = 0; 177 1.1 deraadt break; 178 1.1 deraadt 179 1.1 deraadt case FSR_RD_RP: /* toward +Inf iff positive */ 180 1.1 deraadt inf = sign == 0; 181 1.1 deraadt break; 182 1.1 deraadt 183 1.1 deraadt case FSR_RD_RM: /* toward -Inf iff negative */ 184 1.1 deraadt inf = sign; 185 1.1 deraadt break; 186 1.1 deraadt } 187 1.1 deraadt return (inf); 188 1.1 deraadt } 189 1.1 deraadt 190 1.1 deraadt /* 191 1.1 deraadt * fpn -> int (int value returned as return value). 192 1.1 deraadt * 193 1.1 deraadt * N.B.: this conversion always rounds towards zero (this is a peculiarity 194 1.1 deraadt * of the SPARC instruction set). 195 1.1 deraadt */ 196 1.1 deraadt u_int 197 1.13 uwe fpu_ftoi(struct fpemu *fe, struct fpn *fp) 198 1.1 deraadt { 199 1.14 rin u_int i; 200 1.14 rin int sign, exp; 201 1.1 deraadt 202 1.1 deraadt sign = fp->fp_sign; 203 1.1 deraadt switch (fp->fp_class) { 204 1.1 deraadt 205 1.1 deraadt case FPC_ZERO: 206 1.1 deraadt return (0); 207 1.1 deraadt 208 1.1 deraadt case FPC_NUM: 209 1.1 deraadt /* 210 1.1 deraadt * If exp >= 2^32, overflow. Otherwise shift value right 211 1.1 deraadt * into last mantissa word (this will not exceed 0xffffffff), 212 1.1 deraadt * shifting any guard and round bits out into the sticky 213 1.1 deraadt * bit. Then ``round'' towards zero, i.e., just set an 214 1.1 deraadt * inexact exception if sticky is set (see round()). 215 1.1 deraadt * If the result is > 0x80000000, or is positive and equals 216 1.1 deraadt * 0x80000000, overflow; otherwise the last fraction word 217 1.1 deraadt * is the result. 218 1.1 deraadt */ 219 1.1 deraadt if ((exp = fp->fp_exp) >= 32) 220 1.1 deraadt break; 221 1.1 deraadt /* NB: the following includes exp < 0 cases */ 222 1.1 deraadt if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0) 223 1.1 deraadt fe->fe_cx |= FSR_NX; 224 1.1 deraadt i = fp->fp_mant[3]; 225 1.1 deraadt if (i >= ((u_int)0x80000000 + sign)) 226 1.1 deraadt break; 227 1.1 deraadt return (sign ? -i : i); 228 1.1 deraadt 229 1.1 deraadt default: /* Inf, qNaN, sNaN */ 230 1.1 deraadt break; 231 1.1 deraadt } 232 1.1 deraadt /* overflow: replace any inexact exception with invalid */ 233 1.1 deraadt fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV; 234 1.1 deraadt return (0x7fffffff + sign); 235 1.1 deraadt } 236 1.1 deraadt 237 1.5 mrg #ifdef SUN4U 238 1.5 mrg /* 239 1.5 mrg * fpn -> extended int (high bits of int value returned as return value). 240 1.5 mrg * 241 1.5 mrg * N.B.: this conversion always rounds towards zero (this is a peculiarity 242 1.5 mrg * of the SPARC instruction set). 243 1.5 mrg */ 244 1.5 mrg u_int 245 1.13 uwe fpu_ftox(struct fpemu *fe, struct fpn *fp, u_int *res) 246 1.5 mrg { 247 1.14 rin uint64_t i; 248 1.14 rin int sign, exp; 249 1.5 mrg 250 1.5 mrg sign = fp->fp_sign; 251 1.5 mrg switch (fp->fp_class) { 252 1.5 mrg 253 1.5 mrg case FPC_ZERO: 254 1.5 mrg res[1] = 0; 255 1.5 mrg return (0); 256 1.5 mrg 257 1.5 mrg case FPC_NUM: 258 1.5 mrg /* 259 1.5 mrg * If exp >= 2^64, overflow. Otherwise shift value right 260 1.5 mrg * into last mantissa word (this will not exceed 0xffffffffffffffff), 261 1.5 mrg * shifting any guard and round bits out into the sticky 262 1.5 mrg * bit. Then ``round'' towards zero, i.e., just set an 263 1.5 mrg * inexact exception if sticky is set (see round()). 264 1.5 mrg * If the result is > 0x8000000000000000, or is positive and equals 265 1.5 mrg * 0x8000000000000000, overflow; otherwise the last fraction word 266 1.5 mrg * is the result. 267 1.5 mrg */ 268 1.5 mrg if ((exp = fp->fp_exp) >= 64) 269 1.5 mrg break; 270 1.5 mrg /* NB: the following includes exp < 0 cases */ 271 1.5 mrg if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0) 272 1.5 mrg fe->fe_cx |= FSR_NX; 273 1.13 uwe i = ((uint64_t)fp->fp_mant[2]<<32)|fp->fp_mant[3]; 274 1.13 uwe if (i >= ((uint64_t)0x8000000000000000LL + sign)) 275 1.5 mrg break; 276 1.10 eeh if (sign) i = -i; 277 1.10 eeh res[1] = (int)i; 278 1.10 eeh return (i>>32); 279 1.5 mrg 280 1.5 mrg default: /* Inf, qNaN, sNaN */ 281 1.5 mrg break; 282 1.5 mrg } 283 1.5 mrg /* overflow: replace any inexact exception with invalid */ 284 1.5 mrg fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV; 285 1.5 mrg return (0x7fffffffffffffffLL + sign); 286 1.5 mrg } 287 1.5 mrg #endif /* SUN4U */ 288 1.5 mrg 289 1.1 deraadt /* 290 1.1 deraadt * fpn -> single (32 bit single returned as return value). 291 1.1 deraadt * We assume <= 29 bits in a single-precision fraction (1.f part). 292 1.1 deraadt */ 293 1.1 deraadt u_int 294 1.13 uwe fpu_ftos(struct fpemu *fe, struct fpn *fp) 295 1.1 deraadt { 296 1.14 rin u_int sign = fp->fp_sign << 31; 297 1.14 rin int exp; 298 1.1 deraadt 299 1.1 deraadt #define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */ 300 1.1 deraadt #define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */ 301 1.1 deraadt 302 1.1 deraadt /* Take care of non-numbers first. */ 303 1.1 deraadt if (ISNAN(fp)) { 304 1.1 deraadt /* 305 1.1 deraadt * Preserve upper bits of NaN, per SPARC V8 appendix N. 306 1.1 deraadt * Note that fp->fp_mant[0] has the quiet bit set, 307 1.1 deraadt * even if it is classified as a signalling NaN. 308 1.1 deraadt */ 309 1.1 deraadt (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS); 310 1.1 deraadt exp = SNG_EXP_INFNAN; 311 1.1 deraadt goto done; 312 1.1 deraadt } 313 1.1 deraadt if (ISINF(fp)) 314 1.1 deraadt return (sign | SNG_EXP(SNG_EXP_INFNAN)); 315 1.1 deraadt if (ISZERO(fp)) 316 1.1 deraadt return (sign); 317 1.1 deraadt 318 1.1 deraadt /* 319 1.1 deraadt * Normals (including subnormals). Drop all the fraction bits 320 1.1 deraadt * (including the explicit ``implied'' 1 bit) down into the 321 1.1 deraadt * single-precision range. If the number is subnormal, move 322 1.1 deraadt * the ``implied'' 1 into the explicit range as well, and shift 323 1.1 deraadt * right to introduce leading zeroes. Rounding then acts 324 1.1 deraadt * differently for normals and subnormals: the largest subnormal 325 1.1 deraadt * may round to the smallest normal (1.0 x 2^minexp), or may 326 1.1 deraadt * remain subnormal. In the latter case, signal an underflow 327 1.1 deraadt * if the result was inexact or if underflow traps are enabled. 328 1.1 deraadt * 329 1.1 deraadt * Rounding a normal, on the other hand, always produces another 330 1.1 deraadt * normal (although either way the result might be too big for 331 1.1 deraadt * single precision, and cause an overflow). If rounding a 332 1.1 deraadt * normal produces 2.0 in the fraction, we need not adjust that 333 1.1 deraadt * fraction at all, since both 1.0 and 2.0 are zero under the 334 1.1 deraadt * fraction mask. 335 1.1 deraadt * 336 1.1 deraadt * Note that the guard and round bits vanish from the number after 337 1.1 deraadt * rounding. 338 1.1 deraadt */ 339 1.1 deraadt if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) { /* subnormal */ 340 1.1 deraadt /* -NG for g,r; -SNG_FRACBITS-exp for fraction */ 341 1.1 deraadt (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp); 342 1.1 deraadt if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1)) 343 1.1 deraadt return (sign | SNG_EXP(1) | 0); 344 1.1 deraadt if ((fe->fe_cx & FSR_NX) || 345 1.1 deraadt (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT))) 346 1.1 deraadt fe->fe_cx |= FSR_UF; 347 1.1 deraadt return (sign | SNG_EXP(0) | fp->fp_mant[3]); 348 1.1 deraadt } 349 1.1 deraadt /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */ 350 1.1 deraadt (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS); 351 1.1 deraadt #ifdef DIAGNOSTIC 352 1.1 deraadt if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0) 353 1.1 deraadt panic("fpu_ftos"); 354 1.1 deraadt #endif 355 1.1 deraadt if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2)) 356 1.1 deraadt exp++; 357 1.1 deraadt if (exp >= SNG_EXP_INFNAN) { 358 1.1 deraadt /* overflow to inf or to max single */ 359 1.1 deraadt fe->fe_cx |= FSR_OF | FSR_NX; 360 1.1 deraadt if (toinf(fe, sign)) 361 1.1 deraadt return (sign | SNG_EXP(SNG_EXP_INFNAN)); 362 1.1 deraadt return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK); 363 1.1 deraadt } 364 1.1 deraadt done: 365 1.1 deraadt /* phew, made it */ 366 1.1 deraadt return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK)); 367 1.1 deraadt } 368 1.1 deraadt 369 1.1 deraadt /* 370 1.1 deraadt * fpn -> double (32 bit high-order result returned; 32-bit low order result 371 1.1 deraadt * left in res[1]). Assumes <= 61 bits in double precision fraction. 372 1.1 deraadt * 373 1.1 deraadt * This code mimics fpu_ftos; see it for comments. 374 1.1 deraadt */ 375 1.1 deraadt u_int 376 1.13 uwe fpu_ftod(struct fpemu *fe, struct fpn *fp, u_int *res) 377 1.1 deraadt { 378 1.14 rin u_int sign = fp->fp_sign << 31; 379 1.14 rin int exp; 380 1.1 deraadt 381 1.1 deraadt #define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31)) 382 1.1 deraadt #define DBL_MASK (DBL_EXP(1) - 1) 383 1.1 deraadt 384 1.1 deraadt if (ISNAN(fp)) { 385 1.1 deraadt (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS); 386 1.1 deraadt exp = DBL_EXP_INFNAN; 387 1.1 deraadt goto done; 388 1.1 deraadt } 389 1.1 deraadt if (ISINF(fp)) { 390 1.1 deraadt sign |= DBL_EXP(DBL_EXP_INFNAN); 391 1.1 deraadt goto zero; 392 1.1 deraadt } 393 1.1 deraadt if (ISZERO(fp)) { 394 1.1 deraadt zero: res[1] = 0; 395 1.1 deraadt return (sign); 396 1.1 deraadt } 397 1.1 deraadt 398 1.1 deraadt if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) { 399 1.1 deraadt (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp); 400 1.1 deraadt if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) { 401 1.1 deraadt res[1] = 0; 402 1.1 deraadt return (sign | DBL_EXP(1) | 0); 403 1.1 deraadt } 404 1.1 deraadt if ((fe->fe_cx & FSR_NX) || 405 1.1 deraadt (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT))) 406 1.1 deraadt fe->fe_cx |= FSR_UF; 407 1.1 deraadt exp = 0; 408 1.1 deraadt goto done; 409 1.1 deraadt } 410 1.1 deraadt (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS); 411 1.1 deraadt if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2)) 412 1.1 deraadt exp++; 413 1.1 deraadt if (exp >= DBL_EXP_INFNAN) { 414 1.1 deraadt fe->fe_cx |= FSR_OF | FSR_NX; 415 1.1 deraadt if (toinf(fe, sign)) { 416 1.1 deraadt res[1] = 0; 417 1.1 deraadt return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0); 418 1.1 deraadt } 419 1.1 deraadt res[1] = ~0; 420 1.1 deraadt return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK); 421 1.1 deraadt } 422 1.1 deraadt done: 423 1.1 deraadt res[1] = fp->fp_mant[3]; 424 1.1 deraadt return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK)); 425 1.1 deraadt } 426 1.1 deraadt 427 1.1 deraadt /* 428 1.1 deraadt * fpn -> extended (32 bit high-order result returned; low-order fraction 429 1.1 deraadt * words left in res[1]..res[3]). Like ftod, which is like ftos ... but 430 1.1 deraadt * our internal format *is* extended precision, plus 2 bits for guard/round, 431 1.1 deraadt * so we can avoid a small bit of work. 432 1.1 deraadt */ 433 1.1 deraadt u_int 434 1.13 uwe fpu_ftoq(struct fpemu *fe, struct fpn *fp, u_int *res) 435 1.1 deraadt { 436 1.14 rin u_int sign = fp->fp_sign << 31; 437 1.14 rin int exp; 438 1.1 deraadt 439 1.1 deraadt #define EXT_EXP(e) ((e) << (EXT_FRACBITS & 31)) 440 1.1 deraadt #define EXT_MASK (EXT_EXP(1) - 1) 441 1.1 deraadt 442 1.1 deraadt if (ISNAN(fp)) { 443 1.1 deraadt (void) fpu_shr(fp, 2); /* since we are not rounding */ 444 1.1 deraadt exp = EXT_EXP_INFNAN; 445 1.1 deraadt goto done; 446 1.1 deraadt } 447 1.1 deraadt if (ISINF(fp)) { 448 1.1 deraadt sign |= EXT_EXP(EXT_EXP_INFNAN); 449 1.1 deraadt goto zero; 450 1.1 deraadt } 451 1.1 deraadt if (ISZERO(fp)) { 452 1.1 deraadt zero: res[1] = res[2] = res[3] = 0; 453 1.1 deraadt return (sign); 454 1.1 deraadt } 455 1.1 deraadt 456 1.1 deraadt if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) { 457 1.1 deraadt (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp); 458 1.1 deraadt if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(1)) { 459 1.1 deraadt res[1] = res[2] = res[3] = 0; 460 1.1 deraadt return (sign | EXT_EXP(1) | 0); 461 1.1 deraadt } 462 1.1 deraadt if ((fe->fe_cx & FSR_NX) || 463 1.1 deraadt (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT))) 464 1.1 deraadt fe->fe_cx |= FSR_UF; 465 1.1 deraadt exp = 0; 466 1.1 deraadt goto done; 467 1.1 deraadt } 468 1.1 deraadt /* Since internal == extended, no need to shift here. */ 469 1.1 deraadt if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(2)) 470 1.1 deraadt exp++; 471 1.1 deraadt if (exp >= EXT_EXP_INFNAN) { 472 1.1 deraadt fe->fe_cx |= FSR_OF | FSR_NX; 473 1.1 deraadt if (toinf(fe, sign)) { 474 1.1 deraadt res[1] = res[2] = res[3] = 0; 475 1.1 deraadt return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0); 476 1.1 deraadt } 477 1.1 deraadt res[1] = res[2] = res[3] = ~0; 478 1.1 deraadt return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK); 479 1.1 deraadt } 480 1.1 deraadt done: 481 1.1 deraadt res[1] = fp->fp_mant[1]; 482 1.1 deraadt res[2] = fp->fp_mant[2]; 483 1.1 deraadt res[3] = fp->fp_mant[3]; 484 1.1 deraadt return (sign | EXT_EXP(exp) | (fp->fp_mant[0] & EXT_MASK)); 485 1.1 deraadt } 486 1.1 deraadt 487 1.1 deraadt /* 488 1.1 deraadt * Implode an fpn, writing the result into the given space. 489 1.1 deraadt */ 490 1.1 deraadt void 491 1.13 uwe fpu_implode(struct fpemu *fe, struct fpn *fp, int type, u_int *space) 492 1.1 deraadt { 493 1.10 eeh 494 1.10 eeh DPRINTF(FPE_REG, ("\n imploding: ")); 495 1.10 eeh DUMPFPN(FPE_REG, fp); 496 1.10 eeh DPRINTF(FPE_REG, ("\n")); 497 1.1 deraadt 498 1.1 deraadt switch (type) { 499 1.5 mrg 500 1.5 mrg #ifdef SUN4U 501 1.5 mrg case FTYPE_LNG: 502 1.7 eeh space[0] = fpu_ftox(fe, fp, space); 503 1.5 mrg break; 504 1.5 mrg #endif /* SUN4U */ 505 1.1 deraadt 506 1.1 deraadt case FTYPE_INT: 507 1.1 deraadt space[0] = fpu_ftoi(fe, fp); 508 1.1 deraadt break; 509 1.1 deraadt 510 1.1 deraadt case FTYPE_SNG: 511 1.1 deraadt space[0] = fpu_ftos(fe, fp); 512 1.1 deraadt break; 513 1.1 deraadt 514 1.1 deraadt case FTYPE_DBL: 515 1.1 deraadt space[0] = fpu_ftod(fe, fp, space); 516 1.1 deraadt break; 517 1.1 deraadt 518 1.1 deraadt case FTYPE_EXT: 519 1.1 deraadt /* funky rounding precision options ?? */ 520 1.7 eeh space[0] = fpu_ftoq(fe, fp, space); 521 1.1 deraadt break; 522 1.1 deraadt 523 1.1 deraadt default: 524 1.1 deraadt panic("fpu_implode"); 525 1.1 deraadt } 526 1.8 eeh #ifdef SUN4U 527 1.13 uwe DPRINTF(FPE_REG, ("fpu_implode: %x %x %x %x\n", 528 1.8 eeh space[0], space[1], space[2], space[3])); 529 1.8 eeh #else 530 1.13 uwe DPRINTF(FPE_REG, ("fpu_implode: %x %x\n", 531 1.8 eeh space[0], space[1])); 532 1.8 eeh #endif 533 1.1 deraadt } 534