Home | History | Annotate | Line # | Download | only in fpu
      1 /*	$NetBSD: fpu_implode.c,v 1.14 2022/08/28 22:09:26 rin Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  * All advertising materials mentioning features or use of this software
     12  * must display the following acknowledgement:
     13  *	This product includes software developed by the University of
     14  *	California, Lawrence Berkeley Laboratory.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  *	@(#)fpu_implode.c	8.1 (Berkeley) 6/11/93
     41  */
     42 
     43 /*
     44  * FPU subroutines: `implode' internal format numbers into the machine's
     45  * `packed binary' format.
     46  */
     47 
     48 #include <sys/cdefs.h>
     49 __KERNEL_RCSID(0, "$NetBSD: fpu_implode.c,v 1.14 2022/08/28 22:09:26 rin Exp $");
     50 
     51 #if defined(_KERNEL_OPT)
     52 #include "opt_sparc_arch.h"
     53 #endif
     54 
     55 #include <sys/types.h>
     56 #include <sys/systm.h>
     57 
     58 #include <machine/ieee.h>
     59 #include <machine/instr.h>
     60 #include <machine/reg.h>
     61 
     62 #include <sparc/fpu/fpu_arith.h>
     63 #include <sparc/fpu/fpu_emu.h>
     64 #include <sparc/fpu/fpu_extern.h>
     65 
     66 static int round(struct fpemu *, struct fpn *);
     67 static int toinf(struct fpemu *, int);
     68 
     69 /*
     70  * Round a number (algorithm from Motorola MC68882 manual, modified for
     71  * our internal format).  Set inexact exception if rounding is required.
     72  * Return true iff we rounded up.
     73  *
     74  * After rounding, we discard the guard and round bits by shifting right
     75  * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
     76  * This saves effort later.
     77  *
     78  * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
     79  * responsibility to fix this if necessary.
     80  */
     81 static int
     82 round(struct fpemu *fe, struct fpn *fp)
     83 {
     84 	u_int m0, m1, m2, m3;
     85 	int gr, s;
     86 
     87 	m0 = fp->fp_mant[0];
     88 	m1 = fp->fp_mant[1];
     89 	m2 = fp->fp_mant[2];
     90 	m3 = fp->fp_mant[3];
     91 	gr = m3 & 3;
     92 	s = fp->fp_sticky;
     93 
     94 	/* mant >>= FP_NG */
     95 	m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
     96 	m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
     97 	m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
     98 	m0 >>= FP_NG;
     99 
    100 	if ((gr | s) == 0)	/* result is exact: no rounding needed */
    101 		goto rounddown;
    102 
    103 	fe->fe_cx |= FSR_NX;	/* inexact */
    104 
    105 	/* Go to rounddown to round down; break to round up. */
    106 	switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
    107 
    108 	case FSR_RD_RN:
    109 	default:
    110 		/*
    111 		 * Round only if guard is set (gr & 2).  If guard is set,
    112 		 * but round & sticky both clear, then we want to round
    113 		 * but have a tie, so round to even, i.e., add 1 iff odd.
    114 		 */
    115 		if ((gr & 2) == 0)
    116 			goto rounddown;
    117 		if ((gr & 1) || fp->fp_sticky || (m3 & 1))
    118 			break;
    119 		goto rounddown;
    120 
    121 	case FSR_RD_RZ:
    122 		/* Round towards zero, i.e., down. */
    123 		goto rounddown;
    124 
    125 	case FSR_RD_RM:
    126 		/* Round towards -Inf: up if negative, down if positive. */
    127 		if (fp->fp_sign)
    128 			break;
    129 		goto rounddown;
    130 
    131 	case FSR_RD_RP:
    132 		/* Round towards +Inf: up if positive, down otherwise. */
    133 		if (!fp->fp_sign)
    134 			break;
    135 		goto rounddown;
    136 	}
    137 
    138 	/* Bump low bit of mantissa, with carry. */
    139 	FPU_ADDS(m3, m3, 1);
    140 	FPU_ADDCS(m2, m2, 0);
    141 	FPU_ADDCS(m1, m1, 0);
    142 	FPU_ADDC(m0, m0, 0);
    143 	fp->fp_mant[0] = m0;
    144 	fp->fp_mant[1] = m1;
    145 	fp->fp_mant[2] = m2;
    146 	fp->fp_mant[3] = m3;
    147 	return (1);
    148 
    149 rounddown:
    150 	fp->fp_mant[0] = m0;
    151 	fp->fp_mant[1] = m1;
    152 	fp->fp_mant[2] = m2;
    153 	fp->fp_mant[3] = m3;
    154 	return (0);
    155 }
    156 
    157 /*
    158  * For overflow: return true if overflow is to go to +/-Inf, according
    159  * to the sign of the overflowing result.  If false, overflow is to go
    160  * to the largest magnitude value instead.
    161  */
    162 static int
    163 toinf(struct fpemu *fe, int sign)
    164 {
    165 	int inf;
    166 
    167 	/* look at rounding direction */
    168 	switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
    169 
    170 	default:
    171 	case FSR_RD_RN:		/* the nearest value is always Inf */
    172 		inf = 1;
    173 		break;
    174 
    175 	case FSR_RD_RZ:		/* toward 0 => never towards Inf */
    176 		inf = 0;
    177 		break;
    178 
    179 	case FSR_RD_RP:		/* toward +Inf iff positive */
    180 		inf = sign == 0;
    181 		break;
    182 
    183 	case FSR_RD_RM:		/* toward -Inf iff negative */
    184 		inf = sign;
    185 		break;
    186 	}
    187 	return (inf);
    188 }
    189 
    190 /*
    191  * fpn -> int (int value returned as return value).
    192  *
    193  * N.B.: this conversion always rounds towards zero (this is a peculiarity
    194  * of the SPARC instruction set).
    195  */
    196 u_int
    197 fpu_ftoi(struct fpemu *fe, struct fpn *fp)
    198 {
    199 	u_int i;
    200 	int sign, exp;
    201 
    202 	sign = fp->fp_sign;
    203 	switch (fp->fp_class) {
    204 
    205 	case FPC_ZERO:
    206 		return (0);
    207 
    208 	case FPC_NUM:
    209 		/*
    210 		 * If exp >= 2^32, overflow.  Otherwise shift value right
    211 		 * into last mantissa word (this will not exceed 0xffffffff),
    212 		 * shifting any guard and round bits out into the sticky
    213 		 * bit.  Then ``round'' towards zero, i.e., just set an
    214 		 * inexact exception if sticky is set (see round()).
    215 		 * If the result is > 0x80000000, or is positive and equals
    216 		 * 0x80000000, overflow; otherwise the last fraction word
    217 		 * is the result.
    218 		 */
    219 		if ((exp = fp->fp_exp) >= 32)
    220 			break;
    221 		/* NB: the following includes exp < 0 cases */
    222 		if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
    223 			fe->fe_cx |= FSR_NX;
    224 		i = fp->fp_mant[3];
    225 		if (i >= ((u_int)0x80000000 + sign))
    226 			break;
    227 		return (sign ? -i : i);
    228 
    229 	default:		/* Inf, qNaN, sNaN */
    230 		break;
    231 	}
    232 	/* overflow: replace any inexact exception with invalid */
    233 	fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;
    234 	return (0x7fffffff + sign);
    235 }
    236 
    237 #ifdef SUN4U
    238 /*
    239  * fpn -> extended int (high bits of int value returned as return value).
    240  *
    241  * N.B.: this conversion always rounds towards zero (this is a peculiarity
    242  * of the SPARC instruction set).
    243  */
    244 u_int
    245 fpu_ftox(struct fpemu *fe, struct fpn *fp, u_int *res)
    246 {
    247 	uint64_t i;
    248 	int sign, exp;
    249 
    250 	sign = fp->fp_sign;
    251 	switch (fp->fp_class) {
    252 
    253 	case FPC_ZERO:
    254 		res[1] = 0;
    255 		return (0);
    256 
    257 	case FPC_NUM:
    258 		/*
    259 		 * If exp >= 2^64, overflow.  Otherwise shift value right
    260 		 * into last mantissa word (this will not exceed 0xffffffffffffffff),
    261 		 * shifting any guard and round bits out into the sticky
    262 		 * bit.  Then ``round'' towards zero, i.e., just set an
    263 		 * inexact exception if sticky is set (see round()).
    264 		 * If the result is > 0x8000000000000000, or is positive and equals
    265 		 * 0x8000000000000000, overflow; otherwise the last fraction word
    266 		 * is the result.
    267 		 */
    268 		if ((exp = fp->fp_exp) >= 64)
    269 			break;
    270 		/* NB: the following includes exp < 0 cases */
    271 		if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
    272 			fe->fe_cx |= FSR_NX;
    273 		i = ((uint64_t)fp->fp_mant[2]<<32)|fp->fp_mant[3];
    274 		if (i >= ((uint64_t)0x8000000000000000LL + sign))
    275 			break;
    276 		if (sign) i = -i;
    277 		res[1] = (int)i;
    278 		return (i>>32);
    279 
    280 	default:		/* Inf, qNaN, sNaN */
    281 		break;
    282 	}
    283 	/* overflow: replace any inexact exception with invalid */
    284 	fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;
    285 	return (0x7fffffffffffffffLL + sign);
    286 }
    287 #endif /* SUN4U */
    288 
    289 /*
    290  * fpn -> single (32 bit single returned as return value).
    291  * We assume <= 29 bits in a single-precision fraction (1.f part).
    292  */
    293 u_int
    294 fpu_ftos(struct fpemu *fe, struct fpn *fp)
    295 {
    296 	u_int sign = fp->fp_sign << 31;
    297 	int exp;
    298 
    299 #define	SNG_EXP(e)	((e) << SNG_FRACBITS)	/* makes e an exponent */
    300 #define	SNG_MASK	(SNG_EXP(1) - 1)	/* mask for fraction */
    301 
    302 	/* Take care of non-numbers first. */
    303 	if (ISNAN(fp)) {
    304 		/*
    305 		 * Preserve upper bits of NaN, per SPARC V8 appendix N.
    306 		 * Note that fp->fp_mant[0] has the quiet bit set,
    307 		 * even if it is classified as a signalling NaN.
    308 		 */
    309 		(void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
    310 		exp = SNG_EXP_INFNAN;
    311 		goto done;
    312 	}
    313 	if (ISINF(fp))
    314 		return (sign | SNG_EXP(SNG_EXP_INFNAN));
    315 	if (ISZERO(fp))
    316 		return (sign);
    317 
    318 	/*
    319 	 * Normals (including subnormals).  Drop all the fraction bits
    320 	 * (including the explicit ``implied'' 1 bit) down into the
    321 	 * single-precision range.  If the number is subnormal, move
    322 	 * the ``implied'' 1 into the explicit range as well, and shift
    323 	 * right to introduce leading zeroes.  Rounding then acts
    324 	 * differently for normals and subnormals: the largest subnormal
    325 	 * may round to the smallest normal (1.0 x 2^minexp), or may
    326 	 * remain subnormal.  In the latter case, signal an underflow
    327 	 * if the result was inexact or if underflow traps are enabled.
    328 	 *
    329 	 * Rounding a normal, on the other hand, always produces another
    330 	 * normal (although either way the result might be too big for
    331 	 * single precision, and cause an overflow).  If rounding a
    332 	 * normal produces 2.0 in the fraction, we need not adjust that
    333 	 * fraction at all, since both 1.0 and 2.0 are zero under the
    334 	 * fraction mask.
    335 	 *
    336 	 * Note that the guard and round bits vanish from the number after
    337 	 * rounding.
    338 	 */
    339 	if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) {	/* subnormal */
    340 		/* -NG for g,r; -SNG_FRACBITS-exp for fraction */
    341 		(void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
    342 		if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
    343 			return (sign | SNG_EXP(1) | 0);
    344 		if ((fe->fe_cx & FSR_NX) ||
    345 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
    346 			fe->fe_cx |= FSR_UF;
    347 		return (sign | SNG_EXP(0) | fp->fp_mant[3]);
    348 	}
    349 	/* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
    350 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
    351 #ifdef DIAGNOSTIC
    352 	if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
    353 		panic("fpu_ftos");
    354 #endif
    355 	if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
    356 		exp++;
    357 	if (exp >= SNG_EXP_INFNAN) {
    358 		/* overflow to inf or to max single */
    359 		fe->fe_cx |= FSR_OF | FSR_NX;
    360 		if (toinf(fe, sign))
    361 			return (sign | SNG_EXP(SNG_EXP_INFNAN));
    362 		return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
    363 	}
    364 done:
    365 	/* phew, made it */
    366 	return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
    367 }
    368 
    369 /*
    370  * fpn -> double (32 bit high-order result returned; 32-bit low order result
    371  * left in res[1]).  Assumes <= 61 bits in double precision fraction.
    372  *
    373  * This code mimics fpu_ftos; see it for comments.
    374  */
    375 u_int
    376 fpu_ftod(struct fpemu *fe, struct fpn *fp, u_int *res)
    377 {
    378 	u_int sign = fp->fp_sign << 31;
    379 	int exp;
    380 
    381 #define	DBL_EXP(e)	((e) << (DBL_FRACBITS & 31))
    382 #define	DBL_MASK	(DBL_EXP(1) - 1)
    383 
    384 	if (ISNAN(fp)) {
    385 		(void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
    386 		exp = DBL_EXP_INFNAN;
    387 		goto done;
    388 	}
    389 	if (ISINF(fp)) {
    390 		sign |= DBL_EXP(DBL_EXP_INFNAN);
    391 		goto zero;
    392 	}
    393 	if (ISZERO(fp)) {
    394 zero:		res[1] = 0;
    395 		return (sign);
    396 	}
    397 
    398 	if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
    399 		(void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
    400 		if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
    401 			res[1] = 0;
    402 			return (sign | DBL_EXP(1) | 0);
    403 		}
    404 		if ((fe->fe_cx & FSR_NX) ||
    405 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
    406 			fe->fe_cx |= FSR_UF;
    407 		exp = 0;
    408 		goto done;
    409 	}
    410 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
    411 	if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
    412 		exp++;
    413 	if (exp >= DBL_EXP_INFNAN) {
    414 		fe->fe_cx |= FSR_OF | FSR_NX;
    415 		if (toinf(fe, sign)) {
    416 			res[1] = 0;
    417 			return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
    418 		}
    419 		res[1] = ~0;
    420 		return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
    421 	}
    422 done:
    423 	res[1] = fp->fp_mant[3];
    424 	return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
    425 }
    426 
    427 /*
    428  * fpn -> extended (32 bit high-order result returned; low-order fraction
    429  * words left in res[1]..res[3]).  Like ftod, which is like ftos ... but
    430  * our internal format *is* extended precision, plus 2 bits for guard/round,
    431  * so we can avoid a small bit of work.
    432  */
    433 u_int
    434 fpu_ftoq(struct fpemu *fe, struct fpn *fp, u_int *res)
    435 {
    436 	u_int sign = fp->fp_sign << 31;
    437 	int exp;
    438 
    439 #define	EXT_EXP(e)	((e) << (EXT_FRACBITS & 31))
    440 #define	EXT_MASK	(EXT_EXP(1) - 1)
    441 
    442 	if (ISNAN(fp)) {
    443 		(void) fpu_shr(fp, 2);	/* since we are not rounding */
    444 		exp = EXT_EXP_INFNAN;
    445 		goto done;
    446 	}
    447 	if (ISINF(fp)) {
    448 		sign |= EXT_EXP(EXT_EXP_INFNAN);
    449 		goto zero;
    450 	}
    451 	if (ISZERO(fp)) {
    452 zero:		res[1] = res[2] = res[3] = 0;
    453 		return (sign);
    454 	}
    455 
    456 	if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) {
    457 		(void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
    458 		if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(1)) {
    459 			res[1] = res[2] = res[3] = 0;
    460 			return (sign | EXT_EXP(1) | 0);
    461 		}
    462 		if ((fe->fe_cx & FSR_NX) ||
    463 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
    464 			fe->fe_cx |= FSR_UF;
    465 		exp = 0;
    466 		goto done;
    467 	}
    468 	/* Since internal == extended, no need to shift here. */
    469 	if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(2))
    470 		exp++;
    471 	if (exp >= EXT_EXP_INFNAN) {
    472 		fe->fe_cx |= FSR_OF | FSR_NX;
    473 		if (toinf(fe, sign)) {
    474 			res[1] = res[2] = res[3] = 0;
    475 			return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
    476 		}
    477 		res[1] = res[2] = res[3] = ~0;
    478 		return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
    479 	}
    480 done:
    481 	res[1] = fp->fp_mant[1];
    482 	res[2] = fp->fp_mant[2];
    483 	res[3] = fp->fp_mant[3];
    484 	return (sign | EXT_EXP(exp) | (fp->fp_mant[0] & EXT_MASK));
    485 }
    486 
    487 /*
    488  * Implode an fpn, writing the result into the given space.
    489  */
    490 void
    491 fpu_implode(struct fpemu *fe, struct fpn *fp, int type, u_int *space)
    492 {
    493 
    494 	DPRINTF(FPE_REG, ("\n imploding: "));
    495 	DUMPFPN(FPE_REG, fp);
    496 	DPRINTF(FPE_REG, ("\n"));
    497 
    498 	switch (type) {
    499 
    500 #ifdef SUN4U
    501 	case FTYPE_LNG:
    502 		space[0] = fpu_ftox(fe, fp, space);
    503 		break;
    504 #endif /* SUN4U */
    505 
    506 	case FTYPE_INT:
    507 		space[0] = fpu_ftoi(fe, fp);
    508 		break;
    509 
    510 	case FTYPE_SNG:
    511 		space[0] = fpu_ftos(fe, fp);
    512 		break;
    513 
    514 	case FTYPE_DBL:
    515 		space[0] = fpu_ftod(fe, fp, space);
    516 		break;
    517 
    518 	case FTYPE_EXT:
    519 		/* funky rounding precision options ?? */
    520 		space[0] = fpu_ftoq(fe, fp, space);
    521 		break;
    522 
    523 	default:
    524 		panic("fpu_implode");
    525 	}
    526 #ifdef SUN4U
    527 	DPRINTF(FPE_REG, ("fpu_implode: %x %x %x %x\n",
    528 		space[0], space[1], space[2], space[3]));
    529 #else
    530 	DPRINTF(FPE_REG, ("fpu_implode: %x %x\n",
    531 		space[0], space[1]));
    532 #endif
    533 }
    534