fpu_implode.c revision 1.13 1 1.13 uwe /* $NetBSD: fpu_implode.c,v 1.13 2005/11/16 23:24:44 uwe Exp $ */
2 1.2 deraadt
3 1.1 deraadt /*
4 1.1 deraadt * Copyright (c) 1992, 1993
5 1.1 deraadt * The Regents of the University of California. All rights reserved.
6 1.1 deraadt *
7 1.1 deraadt * This software was developed by the Computer Systems Engineering group
8 1.1 deraadt * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 1.1 deraadt * contributed to Berkeley.
10 1.1 deraadt *
11 1.1 deraadt * All advertising materials mentioning features or use of this software
12 1.1 deraadt * must display the following acknowledgement:
13 1.1 deraadt * This product includes software developed by the University of
14 1.1 deraadt * California, Lawrence Berkeley Laboratory.
15 1.1 deraadt *
16 1.1 deraadt * Redistribution and use in source and binary forms, with or without
17 1.1 deraadt * modification, are permitted provided that the following conditions
18 1.1 deraadt * are met:
19 1.1 deraadt * 1. Redistributions of source code must retain the above copyright
20 1.1 deraadt * notice, this list of conditions and the following disclaimer.
21 1.1 deraadt * 2. Redistributions in binary form must reproduce the above copyright
22 1.1 deraadt * notice, this list of conditions and the following disclaimer in the
23 1.1 deraadt * documentation and/or other materials provided with the distribution.
24 1.12 agc * 3. Neither the name of the University nor the names of its contributors
25 1.1 deraadt * may be used to endorse or promote products derived from this software
26 1.1 deraadt * without specific prior written permission.
27 1.1 deraadt *
28 1.1 deraadt * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.1 deraadt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.1 deraadt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.1 deraadt * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.1 deraadt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.1 deraadt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.1 deraadt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.1 deraadt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.1 deraadt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.1 deraadt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.1 deraadt * SUCH DAMAGE.
39 1.1 deraadt *
40 1.1 deraadt * @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93
41 1.1 deraadt */
42 1.1 deraadt
43 1.1 deraadt /*
44 1.1 deraadt * FPU subroutines: `implode' internal format numbers into the machine's
45 1.1 deraadt * `packed binary' format.
46 1.1 deraadt */
47 1.11 lukem
48 1.11 lukem #include <sys/cdefs.h>
49 1.13 uwe __KERNEL_RCSID(0, "$NetBSD: fpu_implode.c,v 1.13 2005/11/16 23:24:44 uwe Exp $");
50 1.9 darrenr
51 1.9 darrenr #if defined(_KERNEL_OPT)
52 1.9 darrenr #include "opt_sparc_arch.h"
53 1.9 darrenr #endif
54 1.1 deraadt
55 1.1 deraadt #include <sys/types.h>
56 1.3 christos #include <sys/systm.h>
57 1.1 deraadt
58 1.1 deraadt #include <machine/ieee.h>
59 1.1 deraadt #include <machine/instr.h>
60 1.1 deraadt #include <machine/reg.h>
61 1.1 deraadt
62 1.1 deraadt #include <sparc/fpu/fpu_arith.h>
63 1.1 deraadt #include <sparc/fpu/fpu_emu.h>
64 1.3 christos #include <sparc/fpu/fpu_extern.h>
65 1.3 christos
66 1.13 uwe static int round(struct fpemu *, struct fpn *);
67 1.13 uwe static int toinf(struct fpemu *, int);
68 1.1 deraadt
69 1.1 deraadt /*
70 1.1 deraadt * Round a number (algorithm from Motorola MC68882 manual, modified for
71 1.1 deraadt * our internal format). Set inexact exception if rounding is required.
72 1.1 deraadt * Return true iff we rounded up.
73 1.1 deraadt *
74 1.1 deraadt * After rounding, we discard the guard and round bits by shifting right
75 1.1 deraadt * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
76 1.1 deraadt * This saves effort later.
77 1.1 deraadt *
78 1.1 deraadt * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
79 1.1 deraadt * responsibility to fix this if necessary.
80 1.1 deraadt */
81 1.1 deraadt static int
82 1.13 uwe round(struct fpemu *fe, struct fpn *fp)
83 1.1 deraadt {
84 1.1 deraadt register u_int m0, m1, m2, m3;
85 1.3 christos register int gr, s;
86 1.1 deraadt
87 1.1 deraadt m0 = fp->fp_mant[0];
88 1.1 deraadt m1 = fp->fp_mant[1];
89 1.1 deraadt m2 = fp->fp_mant[2];
90 1.1 deraadt m3 = fp->fp_mant[3];
91 1.1 deraadt gr = m3 & 3;
92 1.1 deraadt s = fp->fp_sticky;
93 1.1 deraadt
94 1.1 deraadt /* mant >>= FP_NG */
95 1.1 deraadt m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
96 1.1 deraadt m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
97 1.1 deraadt m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
98 1.1 deraadt m0 >>= FP_NG;
99 1.1 deraadt
100 1.1 deraadt if ((gr | s) == 0) /* result is exact: no rounding needed */
101 1.1 deraadt goto rounddown;
102 1.1 deraadt
103 1.1 deraadt fe->fe_cx |= FSR_NX; /* inexact */
104 1.1 deraadt
105 1.1 deraadt /* Go to rounddown to round down; break to round up. */
106 1.1 deraadt switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
107 1.1 deraadt
108 1.1 deraadt case FSR_RD_RN:
109 1.1 deraadt default:
110 1.1 deraadt /*
111 1.1 deraadt * Round only if guard is set (gr & 2). If guard is set,
112 1.1 deraadt * but round & sticky both clear, then we want to round
113 1.1 deraadt * but have a tie, so round to even, i.e., add 1 iff odd.
114 1.1 deraadt */
115 1.1 deraadt if ((gr & 2) == 0)
116 1.1 deraadt goto rounddown;
117 1.1 deraadt if ((gr & 1) || fp->fp_sticky || (m3 & 1))
118 1.1 deraadt break;
119 1.1 deraadt goto rounddown;
120 1.1 deraadt
121 1.1 deraadt case FSR_RD_RZ:
122 1.1 deraadt /* Round towards zero, i.e., down. */
123 1.1 deraadt goto rounddown;
124 1.1 deraadt
125 1.1 deraadt case FSR_RD_RM:
126 1.1 deraadt /* Round towards -Inf: up if negative, down if positive. */
127 1.1 deraadt if (fp->fp_sign)
128 1.1 deraadt break;
129 1.1 deraadt goto rounddown;
130 1.1 deraadt
131 1.1 deraadt case FSR_RD_RP:
132 1.1 deraadt /* Round towards +Inf: up if positive, down otherwise. */
133 1.1 deraadt if (!fp->fp_sign)
134 1.1 deraadt break;
135 1.1 deraadt goto rounddown;
136 1.1 deraadt }
137 1.1 deraadt
138 1.1 deraadt /* Bump low bit of mantissa, with carry. */
139 1.1 deraadt FPU_ADDS(m3, m3, 1);
140 1.1 deraadt FPU_ADDCS(m2, m2, 0);
141 1.1 deraadt FPU_ADDCS(m1, m1, 0);
142 1.1 deraadt FPU_ADDC(m0, m0, 0);
143 1.1 deraadt fp->fp_mant[0] = m0;
144 1.1 deraadt fp->fp_mant[1] = m1;
145 1.1 deraadt fp->fp_mant[2] = m2;
146 1.1 deraadt fp->fp_mant[3] = m3;
147 1.1 deraadt return (1);
148 1.1 deraadt
149 1.1 deraadt rounddown:
150 1.1 deraadt fp->fp_mant[0] = m0;
151 1.1 deraadt fp->fp_mant[1] = m1;
152 1.1 deraadt fp->fp_mant[2] = m2;
153 1.1 deraadt fp->fp_mant[3] = m3;
154 1.1 deraadt return (0);
155 1.1 deraadt }
156 1.1 deraadt
157 1.1 deraadt /*
158 1.1 deraadt * For overflow: return true if overflow is to go to +/-Inf, according
159 1.1 deraadt * to the sign of the overflowing result. If false, overflow is to go
160 1.1 deraadt * to the largest magnitude value instead.
161 1.1 deraadt */
162 1.1 deraadt static int
163 1.1 deraadt toinf(struct fpemu *fe, int sign)
164 1.1 deraadt {
165 1.1 deraadt int inf;
166 1.1 deraadt
167 1.1 deraadt /* look at rounding direction */
168 1.1 deraadt switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
169 1.1 deraadt
170 1.1 deraadt default:
171 1.1 deraadt case FSR_RD_RN: /* the nearest value is always Inf */
172 1.1 deraadt inf = 1;
173 1.1 deraadt break;
174 1.1 deraadt
175 1.1 deraadt case FSR_RD_RZ: /* toward 0 => never towards Inf */
176 1.1 deraadt inf = 0;
177 1.1 deraadt break;
178 1.1 deraadt
179 1.1 deraadt case FSR_RD_RP: /* toward +Inf iff positive */
180 1.1 deraadt inf = sign == 0;
181 1.1 deraadt break;
182 1.1 deraadt
183 1.1 deraadt case FSR_RD_RM: /* toward -Inf iff negative */
184 1.1 deraadt inf = sign;
185 1.1 deraadt break;
186 1.1 deraadt }
187 1.1 deraadt return (inf);
188 1.1 deraadt }
189 1.1 deraadt
190 1.1 deraadt /*
191 1.1 deraadt * fpn -> int (int value returned as return value).
192 1.1 deraadt *
193 1.1 deraadt * N.B.: this conversion always rounds towards zero (this is a peculiarity
194 1.1 deraadt * of the SPARC instruction set).
195 1.1 deraadt */
196 1.1 deraadt u_int
197 1.13 uwe fpu_ftoi(struct fpemu *fe, struct fpn *fp)
198 1.1 deraadt {
199 1.1 deraadt register u_int i;
200 1.1 deraadt register int sign, exp;
201 1.1 deraadt
202 1.1 deraadt sign = fp->fp_sign;
203 1.1 deraadt switch (fp->fp_class) {
204 1.1 deraadt
205 1.1 deraadt case FPC_ZERO:
206 1.1 deraadt return (0);
207 1.1 deraadt
208 1.1 deraadt case FPC_NUM:
209 1.1 deraadt /*
210 1.1 deraadt * If exp >= 2^32, overflow. Otherwise shift value right
211 1.1 deraadt * into last mantissa word (this will not exceed 0xffffffff),
212 1.1 deraadt * shifting any guard and round bits out into the sticky
213 1.1 deraadt * bit. Then ``round'' towards zero, i.e., just set an
214 1.1 deraadt * inexact exception if sticky is set (see round()).
215 1.1 deraadt * If the result is > 0x80000000, or is positive and equals
216 1.1 deraadt * 0x80000000, overflow; otherwise the last fraction word
217 1.1 deraadt * is the result.
218 1.1 deraadt */
219 1.1 deraadt if ((exp = fp->fp_exp) >= 32)
220 1.1 deraadt break;
221 1.1 deraadt /* NB: the following includes exp < 0 cases */
222 1.1 deraadt if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
223 1.1 deraadt fe->fe_cx |= FSR_NX;
224 1.1 deraadt i = fp->fp_mant[3];
225 1.1 deraadt if (i >= ((u_int)0x80000000 + sign))
226 1.1 deraadt break;
227 1.1 deraadt return (sign ? -i : i);
228 1.1 deraadt
229 1.1 deraadt default: /* Inf, qNaN, sNaN */
230 1.1 deraadt break;
231 1.1 deraadt }
232 1.1 deraadt /* overflow: replace any inexact exception with invalid */
233 1.1 deraadt fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;
234 1.1 deraadt return (0x7fffffff + sign);
235 1.1 deraadt }
236 1.1 deraadt
237 1.5 mrg #ifdef SUN4U
238 1.5 mrg /*
239 1.5 mrg * fpn -> extended int (high bits of int value returned as return value).
240 1.5 mrg *
241 1.5 mrg * N.B.: this conversion always rounds towards zero (this is a peculiarity
242 1.5 mrg * of the SPARC instruction set).
243 1.5 mrg */
244 1.5 mrg u_int
245 1.13 uwe fpu_ftox(struct fpemu *fe, struct fpn *fp, u_int *res)
246 1.5 mrg {
247 1.13 uwe register uint64_t i;
248 1.5 mrg register int sign, exp;
249 1.5 mrg
250 1.5 mrg sign = fp->fp_sign;
251 1.5 mrg switch (fp->fp_class) {
252 1.5 mrg
253 1.5 mrg case FPC_ZERO:
254 1.5 mrg res[1] = 0;
255 1.5 mrg return (0);
256 1.5 mrg
257 1.5 mrg case FPC_NUM:
258 1.5 mrg /*
259 1.5 mrg * If exp >= 2^64, overflow. Otherwise shift value right
260 1.5 mrg * into last mantissa word (this will not exceed 0xffffffffffffffff),
261 1.5 mrg * shifting any guard and round bits out into the sticky
262 1.5 mrg * bit. Then ``round'' towards zero, i.e., just set an
263 1.5 mrg * inexact exception if sticky is set (see round()).
264 1.5 mrg * If the result is > 0x8000000000000000, or is positive and equals
265 1.5 mrg * 0x8000000000000000, overflow; otherwise the last fraction word
266 1.5 mrg * is the result.
267 1.5 mrg */
268 1.5 mrg if ((exp = fp->fp_exp) >= 64)
269 1.5 mrg break;
270 1.5 mrg /* NB: the following includes exp < 0 cases */
271 1.5 mrg if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
272 1.5 mrg fe->fe_cx |= FSR_NX;
273 1.13 uwe i = ((uint64_t)fp->fp_mant[2]<<32)|fp->fp_mant[3];
274 1.13 uwe if (i >= ((uint64_t)0x8000000000000000LL + sign))
275 1.5 mrg break;
276 1.10 eeh if (sign) i = -i;
277 1.10 eeh res[1] = (int)i;
278 1.10 eeh return (i>>32);
279 1.5 mrg
280 1.5 mrg default: /* Inf, qNaN, sNaN */
281 1.5 mrg break;
282 1.5 mrg }
283 1.5 mrg /* overflow: replace any inexact exception with invalid */
284 1.5 mrg fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;
285 1.5 mrg return (0x7fffffffffffffffLL + sign);
286 1.5 mrg }
287 1.5 mrg #endif /* SUN4U */
288 1.5 mrg
289 1.1 deraadt /*
290 1.1 deraadt * fpn -> single (32 bit single returned as return value).
291 1.1 deraadt * We assume <= 29 bits in a single-precision fraction (1.f part).
292 1.1 deraadt */
293 1.1 deraadt u_int
294 1.13 uwe fpu_ftos(struct fpemu *fe, struct fpn *fp)
295 1.1 deraadt {
296 1.1 deraadt register u_int sign = fp->fp_sign << 31;
297 1.1 deraadt register int exp;
298 1.1 deraadt
299 1.1 deraadt #define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */
300 1.1 deraadt #define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */
301 1.1 deraadt
302 1.1 deraadt /* Take care of non-numbers first. */
303 1.1 deraadt if (ISNAN(fp)) {
304 1.1 deraadt /*
305 1.1 deraadt * Preserve upper bits of NaN, per SPARC V8 appendix N.
306 1.1 deraadt * Note that fp->fp_mant[0] has the quiet bit set,
307 1.1 deraadt * even if it is classified as a signalling NaN.
308 1.1 deraadt */
309 1.1 deraadt (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
310 1.1 deraadt exp = SNG_EXP_INFNAN;
311 1.1 deraadt goto done;
312 1.1 deraadt }
313 1.1 deraadt if (ISINF(fp))
314 1.1 deraadt return (sign | SNG_EXP(SNG_EXP_INFNAN));
315 1.1 deraadt if (ISZERO(fp))
316 1.1 deraadt return (sign);
317 1.1 deraadt
318 1.1 deraadt /*
319 1.1 deraadt * Normals (including subnormals). Drop all the fraction bits
320 1.1 deraadt * (including the explicit ``implied'' 1 bit) down into the
321 1.1 deraadt * single-precision range. If the number is subnormal, move
322 1.1 deraadt * the ``implied'' 1 into the explicit range as well, and shift
323 1.1 deraadt * right to introduce leading zeroes. Rounding then acts
324 1.1 deraadt * differently for normals and subnormals: the largest subnormal
325 1.1 deraadt * may round to the smallest normal (1.0 x 2^minexp), or may
326 1.1 deraadt * remain subnormal. In the latter case, signal an underflow
327 1.1 deraadt * if the result was inexact or if underflow traps are enabled.
328 1.1 deraadt *
329 1.1 deraadt * Rounding a normal, on the other hand, always produces another
330 1.1 deraadt * normal (although either way the result might be too big for
331 1.1 deraadt * single precision, and cause an overflow). If rounding a
332 1.1 deraadt * normal produces 2.0 in the fraction, we need not adjust that
333 1.1 deraadt * fraction at all, since both 1.0 and 2.0 are zero under the
334 1.1 deraadt * fraction mask.
335 1.1 deraadt *
336 1.1 deraadt * Note that the guard and round bits vanish from the number after
337 1.1 deraadt * rounding.
338 1.1 deraadt */
339 1.1 deraadt if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) { /* subnormal */
340 1.1 deraadt /* -NG for g,r; -SNG_FRACBITS-exp for fraction */
341 1.1 deraadt (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
342 1.1 deraadt if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
343 1.1 deraadt return (sign | SNG_EXP(1) | 0);
344 1.1 deraadt if ((fe->fe_cx & FSR_NX) ||
345 1.1 deraadt (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
346 1.1 deraadt fe->fe_cx |= FSR_UF;
347 1.1 deraadt return (sign | SNG_EXP(0) | fp->fp_mant[3]);
348 1.1 deraadt }
349 1.1 deraadt /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
350 1.1 deraadt (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
351 1.1 deraadt #ifdef DIAGNOSTIC
352 1.1 deraadt if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
353 1.1 deraadt panic("fpu_ftos");
354 1.1 deraadt #endif
355 1.1 deraadt if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
356 1.1 deraadt exp++;
357 1.1 deraadt if (exp >= SNG_EXP_INFNAN) {
358 1.1 deraadt /* overflow to inf or to max single */
359 1.1 deraadt fe->fe_cx |= FSR_OF | FSR_NX;
360 1.1 deraadt if (toinf(fe, sign))
361 1.1 deraadt return (sign | SNG_EXP(SNG_EXP_INFNAN));
362 1.1 deraadt return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
363 1.1 deraadt }
364 1.1 deraadt done:
365 1.1 deraadt /* phew, made it */
366 1.1 deraadt return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
367 1.1 deraadt }
368 1.1 deraadt
369 1.1 deraadt /*
370 1.1 deraadt * fpn -> double (32 bit high-order result returned; 32-bit low order result
371 1.1 deraadt * left in res[1]). Assumes <= 61 bits in double precision fraction.
372 1.1 deraadt *
373 1.1 deraadt * This code mimics fpu_ftos; see it for comments.
374 1.1 deraadt */
375 1.1 deraadt u_int
376 1.13 uwe fpu_ftod(struct fpemu *fe, struct fpn *fp, u_int *res)
377 1.1 deraadt {
378 1.1 deraadt register u_int sign = fp->fp_sign << 31;
379 1.1 deraadt register int exp;
380 1.1 deraadt
381 1.1 deraadt #define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31))
382 1.1 deraadt #define DBL_MASK (DBL_EXP(1) - 1)
383 1.1 deraadt
384 1.1 deraadt if (ISNAN(fp)) {
385 1.1 deraadt (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
386 1.1 deraadt exp = DBL_EXP_INFNAN;
387 1.1 deraadt goto done;
388 1.1 deraadt }
389 1.1 deraadt if (ISINF(fp)) {
390 1.1 deraadt sign |= DBL_EXP(DBL_EXP_INFNAN);
391 1.1 deraadt goto zero;
392 1.1 deraadt }
393 1.1 deraadt if (ISZERO(fp)) {
394 1.1 deraadt zero: res[1] = 0;
395 1.1 deraadt return (sign);
396 1.1 deraadt }
397 1.1 deraadt
398 1.1 deraadt if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
399 1.1 deraadt (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
400 1.1 deraadt if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
401 1.1 deraadt res[1] = 0;
402 1.1 deraadt return (sign | DBL_EXP(1) | 0);
403 1.1 deraadt }
404 1.1 deraadt if ((fe->fe_cx & FSR_NX) ||
405 1.1 deraadt (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
406 1.1 deraadt fe->fe_cx |= FSR_UF;
407 1.1 deraadt exp = 0;
408 1.1 deraadt goto done;
409 1.1 deraadt }
410 1.1 deraadt (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
411 1.1 deraadt if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
412 1.1 deraadt exp++;
413 1.1 deraadt if (exp >= DBL_EXP_INFNAN) {
414 1.1 deraadt fe->fe_cx |= FSR_OF | FSR_NX;
415 1.1 deraadt if (toinf(fe, sign)) {
416 1.1 deraadt res[1] = 0;
417 1.1 deraadt return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
418 1.1 deraadt }
419 1.1 deraadt res[1] = ~0;
420 1.1 deraadt return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
421 1.1 deraadt }
422 1.1 deraadt done:
423 1.1 deraadt res[1] = fp->fp_mant[3];
424 1.1 deraadt return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
425 1.1 deraadt }
426 1.1 deraadt
427 1.1 deraadt /*
428 1.1 deraadt * fpn -> extended (32 bit high-order result returned; low-order fraction
429 1.1 deraadt * words left in res[1]..res[3]). Like ftod, which is like ftos ... but
430 1.1 deraadt * our internal format *is* extended precision, plus 2 bits for guard/round,
431 1.1 deraadt * so we can avoid a small bit of work.
432 1.1 deraadt */
433 1.1 deraadt u_int
434 1.13 uwe fpu_ftoq(struct fpemu *fe, struct fpn *fp, u_int *res)
435 1.1 deraadt {
436 1.1 deraadt register u_int sign = fp->fp_sign << 31;
437 1.1 deraadt register int exp;
438 1.1 deraadt
439 1.1 deraadt #define EXT_EXP(e) ((e) << (EXT_FRACBITS & 31))
440 1.1 deraadt #define EXT_MASK (EXT_EXP(1) - 1)
441 1.1 deraadt
442 1.1 deraadt if (ISNAN(fp)) {
443 1.1 deraadt (void) fpu_shr(fp, 2); /* since we are not rounding */
444 1.1 deraadt exp = EXT_EXP_INFNAN;
445 1.1 deraadt goto done;
446 1.1 deraadt }
447 1.1 deraadt if (ISINF(fp)) {
448 1.1 deraadt sign |= EXT_EXP(EXT_EXP_INFNAN);
449 1.1 deraadt goto zero;
450 1.1 deraadt }
451 1.1 deraadt if (ISZERO(fp)) {
452 1.1 deraadt zero: res[1] = res[2] = res[3] = 0;
453 1.1 deraadt return (sign);
454 1.1 deraadt }
455 1.1 deraadt
456 1.1 deraadt if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) {
457 1.1 deraadt (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
458 1.1 deraadt if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(1)) {
459 1.1 deraadt res[1] = res[2] = res[3] = 0;
460 1.1 deraadt return (sign | EXT_EXP(1) | 0);
461 1.1 deraadt }
462 1.1 deraadt if ((fe->fe_cx & FSR_NX) ||
463 1.1 deraadt (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
464 1.1 deraadt fe->fe_cx |= FSR_UF;
465 1.1 deraadt exp = 0;
466 1.1 deraadt goto done;
467 1.1 deraadt }
468 1.1 deraadt /* Since internal == extended, no need to shift here. */
469 1.1 deraadt if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(2))
470 1.1 deraadt exp++;
471 1.1 deraadt if (exp >= EXT_EXP_INFNAN) {
472 1.1 deraadt fe->fe_cx |= FSR_OF | FSR_NX;
473 1.1 deraadt if (toinf(fe, sign)) {
474 1.1 deraadt res[1] = res[2] = res[3] = 0;
475 1.1 deraadt return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
476 1.1 deraadt }
477 1.1 deraadt res[1] = res[2] = res[3] = ~0;
478 1.1 deraadt return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
479 1.1 deraadt }
480 1.1 deraadt done:
481 1.1 deraadt res[1] = fp->fp_mant[1];
482 1.1 deraadt res[2] = fp->fp_mant[2];
483 1.1 deraadt res[3] = fp->fp_mant[3];
484 1.1 deraadt return (sign | EXT_EXP(exp) | (fp->fp_mant[0] & EXT_MASK));
485 1.1 deraadt }
486 1.1 deraadt
487 1.1 deraadt /*
488 1.1 deraadt * Implode an fpn, writing the result into the given space.
489 1.1 deraadt */
490 1.1 deraadt void
491 1.13 uwe fpu_implode(struct fpemu *fe, struct fpn *fp, int type, u_int *space)
492 1.1 deraadt {
493 1.10 eeh
494 1.10 eeh DPRINTF(FPE_REG, ("\n imploding: "));
495 1.10 eeh DUMPFPN(FPE_REG, fp);
496 1.10 eeh DPRINTF(FPE_REG, ("\n"));
497 1.1 deraadt
498 1.1 deraadt switch (type) {
499 1.5 mrg
500 1.5 mrg #ifdef SUN4U
501 1.5 mrg case FTYPE_LNG:
502 1.7 eeh space[0] = fpu_ftox(fe, fp, space);
503 1.5 mrg break;
504 1.5 mrg #endif /* SUN4U */
505 1.1 deraadt
506 1.1 deraadt case FTYPE_INT:
507 1.1 deraadt space[0] = fpu_ftoi(fe, fp);
508 1.1 deraadt break;
509 1.1 deraadt
510 1.1 deraadt case FTYPE_SNG:
511 1.1 deraadt space[0] = fpu_ftos(fe, fp);
512 1.1 deraadt break;
513 1.1 deraadt
514 1.1 deraadt case FTYPE_DBL:
515 1.1 deraadt space[0] = fpu_ftod(fe, fp, space);
516 1.1 deraadt break;
517 1.1 deraadt
518 1.1 deraadt case FTYPE_EXT:
519 1.1 deraadt /* funky rounding precision options ?? */
520 1.7 eeh space[0] = fpu_ftoq(fe, fp, space);
521 1.1 deraadt break;
522 1.1 deraadt
523 1.1 deraadt default:
524 1.1 deraadt panic("fpu_implode");
525 1.1 deraadt }
526 1.8 eeh #ifdef SUN4U
527 1.13 uwe DPRINTF(FPE_REG, ("fpu_implode: %x %x %x %x\n",
528 1.8 eeh space[0], space[1], space[2], space[3]));
529 1.8 eeh #else
530 1.13 uwe DPRINTF(FPE_REG, ("fpu_implode: %x %x\n",
531 1.8 eeh space[0], space[1]));
532 1.8 eeh #endif
533 1.1 deraadt }
534