Home | History | Annotate | Line # | Download | only in fpu
fpu_implode.c revision 1.1
      1 /*
      2  * Copyright (c) 1992, 1993
      3  *	The Regents of the University of California.  All rights reserved.
      4  *
      5  * This software was developed by the Computer Systems Engineering group
      6  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      7  * contributed to Berkeley.
      8  *
      9  * All advertising materials mentioning features or use of this software
     10  * must display the following acknowledgement:
     11  *	This product includes software developed by the University of
     12  *	California, Lawrence Berkeley Laboratory.
     13  *
     14  * Redistribution and use in source and binary forms, with or without
     15  * modification, are permitted provided that the following conditions
     16  * are met:
     17  * 1. Redistributions of source code must retain the above copyright
     18  *    notice, this list of conditions and the following disclaimer.
     19  * 2. Redistributions in binary form must reproduce the above copyright
     20  *    notice, this list of conditions and the following disclaimer in the
     21  *    documentation and/or other materials provided with the distribution.
     22  * 3. All advertising materials mentioning features or use of this software
     23  *    must display the following acknowledgement:
     24  *	This product includes software developed by the University of
     25  *	California, Berkeley and its contributors.
     26  * 4. Neither the name of the University nor the names of its contributors
     27  *    may be used to endorse or promote products derived from this software
     28  *    without specific prior written permission.
     29  *
     30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     40  * SUCH DAMAGE.
     41  *
     42  *	@(#)fpu_implode.c	8.1 (Berkeley) 6/11/93
     43  *
     44  * from: Header: fpu_implode.c,v 1.5 92/11/26 01:39:49 torek Exp
     45  * $Id: fpu_implode.c,v 1.1 1993/10/02 10:22:58 deraadt Exp $
     46  */
     47 
     48 /*
     49  * FPU subroutines: `implode' internal format numbers into the machine's
     50  * `packed binary' format.
     51  */
     52 
     53 #include <sys/types.h>
     54 
     55 #include <machine/ieee.h>
     56 #include <machine/instr.h>
     57 #include <machine/reg.h>
     58 
     59 #include <sparc/fpu/fpu_arith.h>
     60 #include <sparc/fpu/fpu_emu.h>
     61 
     62 /*
     63  * Round a number (algorithm from Motorola MC68882 manual, modified for
     64  * our internal format).  Set inexact exception if rounding is required.
     65  * Return true iff we rounded up.
     66  *
     67  * After rounding, we discard the guard and round bits by shifting right
     68  * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
     69  * This saves effort later.
     70  *
     71  * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
     72  * responsibility to fix this if necessary.
     73  */
     74 static int
     75 round(register struct fpemu *fe, register struct fpn *fp)
     76 {
     77 	register u_int m0, m1, m2, m3;
     78 	register int gr, s, ret;
     79 
     80 	m0 = fp->fp_mant[0];
     81 	m1 = fp->fp_mant[1];
     82 	m2 = fp->fp_mant[2];
     83 	m3 = fp->fp_mant[3];
     84 	gr = m3 & 3;
     85 	s = fp->fp_sticky;
     86 
     87 	/* mant >>= FP_NG */
     88 	m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
     89 	m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
     90 	m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
     91 	m0 >>= FP_NG;
     92 
     93 	if ((gr | s) == 0)	/* result is exact: no rounding needed */
     94 		goto rounddown;
     95 
     96 	fe->fe_cx |= FSR_NX;	/* inexact */
     97 
     98 	/* Go to rounddown to round down; break to round up. */
     99 	switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
    100 
    101 	case FSR_RD_RN:
    102 	default:
    103 		/*
    104 		 * Round only if guard is set (gr & 2).  If guard is set,
    105 		 * but round & sticky both clear, then we want to round
    106 		 * but have a tie, so round to even, i.e., add 1 iff odd.
    107 		 */
    108 		if ((gr & 2) == 0)
    109 			goto rounddown;
    110 		if ((gr & 1) || fp->fp_sticky || (m3 & 1))
    111 			break;
    112 		goto rounddown;
    113 
    114 	case FSR_RD_RZ:
    115 		/* Round towards zero, i.e., down. */
    116 		goto rounddown;
    117 
    118 	case FSR_RD_RM:
    119 		/* Round towards -Inf: up if negative, down if positive. */
    120 		if (fp->fp_sign)
    121 			break;
    122 		goto rounddown;
    123 
    124 	case FSR_RD_RP:
    125 		/* Round towards +Inf: up if positive, down otherwise. */
    126 		if (!fp->fp_sign)
    127 			break;
    128 		goto rounddown;
    129 	}
    130 
    131 	/* Bump low bit of mantissa, with carry. */
    132 #ifdef sparc /* ``cheating'' (left out FPU_DECL_CARRY; know this is faster) */
    133 	FPU_ADDS(m3, m3, 1);
    134 	FPU_ADDCS(m2, m2, 0);
    135 	FPU_ADDCS(m1, m1, 0);
    136 	FPU_ADDC(m0, m0, 0);
    137 #else
    138 	if (++m3 == 0 && ++m2 == 0 && ++m1 == 0)
    139 		m0++;
    140 #endif
    141 	fp->fp_mant[0] = m0;
    142 	fp->fp_mant[1] = m1;
    143 	fp->fp_mant[2] = m2;
    144 	fp->fp_mant[3] = m3;
    145 	return (1);
    146 
    147 rounddown:
    148 	fp->fp_mant[0] = m0;
    149 	fp->fp_mant[1] = m1;
    150 	fp->fp_mant[2] = m2;
    151 	fp->fp_mant[3] = m3;
    152 	return (0);
    153 }
    154 
    155 /*
    156  * For overflow: return true if overflow is to go to +/-Inf, according
    157  * to the sign of the overflowing result.  If false, overflow is to go
    158  * to the largest magnitude value instead.
    159  */
    160 static int
    161 toinf(struct fpemu *fe, int sign)
    162 {
    163 	int inf;
    164 
    165 	/* look at rounding direction */
    166 	switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
    167 
    168 	default:
    169 	case FSR_RD_RN:		/* the nearest value is always Inf */
    170 		inf = 1;
    171 		break;
    172 
    173 	case FSR_RD_RZ:		/* toward 0 => never towards Inf */
    174 		inf = 0;
    175 		break;
    176 
    177 	case FSR_RD_RP:		/* toward +Inf iff positive */
    178 		inf = sign == 0;
    179 		break;
    180 
    181 	case FSR_RD_RM:		/* toward -Inf iff negative */
    182 		inf = sign;
    183 		break;
    184 	}
    185 	return (inf);
    186 }
    187 
    188 /*
    189  * fpn -> int (int value returned as return value).
    190  *
    191  * N.B.: this conversion always rounds towards zero (this is a peculiarity
    192  * of the SPARC instruction set).
    193  */
    194 u_int
    195 fpu_ftoi(fe, fp)
    196 	struct fpemu *fe;
    197 	register struct fpn *fp;
    198 {
    199 	register u_int i;
    200 	register int sign, exp;
    201 
    202 	sign = fp->fp_sign;
    203 	switch (fp->fp_class) {
    204 
    205 	case FPC_ZERO:
    206 		return (0);
    207 
    208 	case FPC_NUM:
    209 		/*
    210 		 * If exp >= 2^32, overflow.  Otherwise shift value right
    211 		 * into last mantissa word (this will not exceed 0xffffffff),
    212 		 * shifting any guard and round bits out into the sticky
    213 		 * bit.  Then ``round'' towards zero, i.e., just set an
    214 		 * inexact exception if sticky is set (see round()).
    215 		 * If the result is > 0x80000000, or is positive and equals
    216 		 * 0x80000000, overflow; otherwise the last fraction word
    217 		 * is the result.
    218 		 */
    219 		if ((exp = fp->fp_exp) >= 32)
    220 			break;
    221 		/* NB: the following includes exp < 0 cases */
    222 		if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
    223 			fe->fe_cx |= FSR_NX;
    224 		i = fp->fp_mant[3];
    225 		if (i >= ((u_int)0x80000000 + sign))
    226 			break;
    227 		return (sign ? -i : i);
    228 
    229 	default:		/* Inf, qNaN, sNaN */
    230 		break;
    231 	}
    232 	/* overflow: replace any inexact exception with invalid */
    233 	fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;
    234 	return (0x7fffffff + sign);
    235 }
    236 
    237 /*
    238  * fpn -> single (32 bit single returned as return value).
    239  * We assume <= 29 bits in a single-precision fraction (1.f part).
    240  */
    241 u_int
    242 fpu_ftos(fe, fp)
    243 	struct fpemu *fe;
    244 	register struct fpn *fp;
    245 {
    246 	register u_int sign = fp->fp_sign << 31;
    247 	register int exp;
    248 
    249 #define	SNG_EXP(e)	((e) << SNG_FRACBITS)	/* makes e an exponent */
    250 #define	SNG_MASK	(SNG_EXP(1) - 1)	/* mask for fraction */
    251 
    252 	/* Take care of non-numbers first. */
    253 	if (ISNAN(fp)) {
    254 		/*
    255 		 * Preserve upper bits of NaN, per SPARC V8 appendix N.
    256 		 * Note that fp->fp_mant[0] has the quiet bit set,
    257 		 * even if it is classified as a signalling NaN.
    258 		 */
    259 		(void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
    260 		exp = SNG_EXP_INFNAN;
    261 		goto done;
    262 	}
    263 	if (ISINF(fp))
    264 		return (sign | SNG_EXP(SNG_EXP_INFNAN));
    265 	if (ISZERO(fp))
    266 		return (sign);
    267 
    268 	/*
    269 	 * Normals (including subnormals).  Drop all the fraction bits
    270 	 * (including the explicit ``implied'' 1 bit) down into the
    271 	 * single-precision range.  If the number is subnormal, move
    272 	 * the ``implied'' 1 into the explicit range as well, and shift
    273 	 * right to introduce leading zeroes.  Rounding then acts
    274 	 * differently for normals and subnormals: the largest subnormal
    275 	 * may round to the smallest normal (1.0 x 2^minexp), or may
    276 	 * remain subnormal.  In the latter case, signal an underflow
    277 	 * if the result was inexact or if underflow traps are enabled.
    278 	 *
    279 	 * Rounding a normal, on the other hand, always produces another
    280 	 * normal (although either way the result might be too big for
    281 	 * single precision, and cause an overflow).  If rounding a
    282 	 * normal produces 2.0 in the fraction, we need not adjust that
    283 	 * fraction at all, since both 1.0 and 2.0 are zero under the
    284 	 * fraction mask.
    285 	 *
    286 	 * Note that the guard and round bits vanish from the number after
    287 	 * rounding.
    288 	 */
    289 	if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) {	/* subnormal */
    290 		/* -NG for g,r; -SNG_FRACBITS-exp for fraction */
    291 		(void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
    292 		if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
    293 			return (sign | SNG_EXP(1) | 0);
    294 		if ((fe->fe_cx & FSR_NX) ||
    295 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
    296 			fe->fe_cx |= FSR_UF;
    297 		return (sign | SNG_EXP(0) | fp->fp_mant[3]);
    298 	}
    299 	/* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
    300 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
    301 #ifdef DIAGNOSTIC
    302 	if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
    303 		panic("fpu_ftos");
    304 #endif
    305 	if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
    306 		exp++;
    307 	if (exp >= SNG_EXP_INFNAN) {
    308 		/* overflow to inf or to max single */
    309 		fe->fe_cx |= FSR_OF | FSR_NX;
    310 		if (toinf(fe, sign))
    311 			return (sign | SNG_EXP(SNG_EXP_INFNAN));
    312 		return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
    313 	}
    314 done:
    315 	/* phew, made it */
    316 	return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
    317 }
    318 
    319 /*
    320  * fpn -> double (32 bit high-order result returned; 32-bit low order result
    321  * left in res[1]).  Assumes <= 61 bits in double precision fraction.
    322  *
    323  * This code mimics fpu_ftos; see it for comments.
    324  */
    325 u_int
    326 fpu_ftod(fe, fp, res)
    327 	struct fpemu *fe;
    328 	register struct fpn *fp;
    329 	u_int *res;
    330 {
    331 	register u_int sign = fp->fp_sign << 31;
    332 	register int exp;
    333 
    334 #define	DBL_EXP(e)	((e) << (DBL_FRACBITS & 31))
    335 #define	DBL_MASK	(DBL_EXP(1) - 1)
    336 
    337 	if (ISNAN(fp)) {
    338 		(void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
    339 		exp = DBL_EXP_INFNAN;
    340 		goto done;
    341 	}
    342 	if (ISINF(fp)) {
    343 		sign |= DBL_EXP(DBL_EXP_INFNAN);
    344 		goto zero;
    345 	}
    346 	if (ISZERO(fp)) {
    347 zero:		res[1] = 0;
    348 		return (sign);
    349 	}
    350 
    351 	if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
    352 		(void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
    353 		if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
    354 			res[1] = 0;
    355 			return (sign | DBL_EXP(1) | 0);
    356 		}
    357 		if ((fe->fe_cx & FSR_NX) ||
    358 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
    359 			fe->fe_cx |= FSR_UF;
    360 		exp = 0;
    361 		goto done;
    362 	}
    363 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
    364 	if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
    365 		exp++;
    366 	if (exp >= DBL_EXP_INFNAN) {
    367 		fe->fe_cx |= FSR_OF | FSR_NX;
    368 		if (toinf(fe, sign)) {
    369 			res[1] = 0;
    370 			return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
    371 		}
    372 		res[1] = ~0;
    373 		return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
    374 	}
    375 done:
    376 	res[1] = fp->fp_mant[3];
    377 	return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
    378 }
    379 
    380 /*
    381  * fpn -> extended (32 bit high-order result returned; low-order fraction
    382  * words left in res[1]..res[3]).  Like ftod, which is like ftos ... but
    383  * our internal format *is* extended precision, plus 2 bits for guard/round,
    384  * so we can avoid a small bit of work.
    385  */
    386 u_int
    387 fpu_ftox(fe, fp, res)
    388 	struct fpemu *fe;
    389 	register struct fpn *fp;
    390 	u_int *res;
    391 {
    392 	register u_int sign = fp->fp_sign << 31;
    393 	register int exp;
    394 
    395 #define	EXT_EXP(e)	((e) << (EXT_FRACBITS & 31))
    396 #define	EXT_MASK	(EXT_EXP(1) - 1)
    397 
    398 	if (ISNAN(fp)) {
    399 		(void) fpu_shr(fp, 2);	/* since we are not rounding */
    400 		exp = EXT_EXP_INFNAN;
    401 		goto done;
    402 	}
    403 	if (ISINF(fp)) {
    404 		sign |= EXT_EXP(EXT_EXP_INFNAN);
    405 		goto zero;
    406 	}
    407 	if (ISZERO(fp)) {
    408 zero:		res[1] = res[2] = res[3] = 0;
    409 		return (sign);
    410 	}
    411 
    412 	if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) {
    413 		(void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
    414 		if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(1)) {
    415 			res[1] = res[2] = res[3] = 0;
    416 			return (sign | EXT_EXP(1) | 0);
    417 		}
    418 		if ((fe->fe_cx & FSR_NX) ||
    419 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
    420 			fe->fe_cx |= FSR_UF;
    421 		exp = 0;
    422 		goto done;
    423 	}
    424 	/* Since internal == extended, no need to shift here. */
    425 	if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(2))
    426 		exp++;
    427 	if (exp >= EXT_EXP_INFNAN) {
    428 		fe->fe_cx |= FSR_OF | FSR_NX;
    429 		if (toinf(fe, sign)) {
    430 			res[1] = res[2] = res[3] = 0;
    431 			return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
    432 		}
    433 		res[1] = res[2] = res[3] = ~0;
    434 		return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
    435 	}
    436 done:
    437 	res[1] = fp->fp_mant[1];
    438 	res[2] = fp->fp_mant[2];
    439 	res[3] = fp->fp_mant[3];
    440 	return (sign | EXT_EXP(exp) | (fp->fp_mant[0] & EXT_MASK));
    441 }
    442 
    443 /*
    444  * Implode an fpn, writing the result into the given space.
    445  */
    446 void
    447 fpu_implode(fe, fp, type, space)
    448 	struct fpemu *fe;
    449 	register struct fpn *fp;
    450 	int type;
    451 	register u_int *space;
    452 {
    453 
    454 	switch (type) {
    455 
    456 	case FTYPE_INT:
    457 		space[0] = fpu_ftoi(fe, fp);
    458 		break;
    459 
    460 	case FTYPE_SNG:
    461 		space[0] = fpu_ftos(fe, fp);
    462 		break;
    463 
    464 	case FTYPE_DBL:
    465 		space[0] = fpu_ftod(fe, fp, space);
    466 		break;
    467 
    468 	case FTYPE_EXT:
    469 		/* funky rounding precision options ?? */
    470 		space[0] = fpu_ftox(fe, fp, space);
    471 		break;
    472 
    473 	default:
    474 		panic("fpu_implode");
    475 	}
    476 }
    477