Home | History | Annotate | Line # | Download | only in fpu
fpu_implode.c revision 1.10.16.2
      1 /*	$NetBSD: fpu_implode.c,v 1.10.16.2 2004/09/18 14:40:38 skrll Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  * All advertising materials mentioning features or use of this software
     12  * must display the following acknowledgement:
     13  *	This product includes software developed by the University of
     14  *	California, Lawrence Berkeley Laboratory.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  *	@(#)fpu_implode.c	8.1 (Berkeley) 6/11/93
     41  */
     42 
     43 /*
     44  * FPU subroutines: `implode' internal format numbers into the machine's
     45  * `packed binary' format.
     46  */
     47 
     48 #include <sys/cdefs.h>
     49 __KERNEL_RCSID(0, "$NetBSD: fpu_implode.c,v 1.10.16.2 2004/09/18 14:40:38 skrll Exp $");
     50 
     51 #if defined(_KERNEL_OPT)
     52 #include "opt_sparc_arch.h"
     53 #endif
     54 
     55 #include <sys/types.h>
     56 #include <sys/systm.h>
     57 
     58 #include <machine/ieee.h>
     59 #include <machine/instr.h>
     60 #include <machine/reg.h>
     61 
     62 #include <sparc/fpu/fpu_arith.h>
     63 #include <sparc/fpu/fpu_emu.h>
     64 #include <sparc/fpu/fpu_extern.h>
     65 
     66 static int round __P((register struct fpemu *, register struct fpn *));
     67 static int toinf __P((struct fpemu *, int));
     68 
     69 /*
     70  * Round a number (algorithm from Motorola MC68882 manual, modified for
     71  * our internal format).  Set inexact exception if rounding is required.
     72  * Return true iff we rounded up.
     73  *
     74  * After rounding, we discard the guard and round bits by shifting right
     75  * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
     76  * This saves effort later.
     77  *
     78  * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
     79  * responsibility to fix this if necessary.
     80  */
     81 static int
     82 round(register struct fpemu *fe, register struct fpn *fp)
     83 {
     84 	register u_int m0, m1, m2, m3;
     85 	register int gr, s;
     86 
     87 	m0 = fp->fp_mant[0];
     88 	m1 = fp->fp_mant[1];
     89 	m2 = fp->fp_mant[2];
     90 	m3 = fp->fp_mant[3];
     91 	gr = m3 & 3;
     92 	s = fp->fp_sticky;
     93 
     94 	/* mant >>= FP_NG */
     95 	m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
     96 	m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
     97 	m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
     98 	m0 >>= FP_NG;
     99 
    100 	if ((gr | s) == 0)	/* result is exact: no rounding needed */
    101 		goto rounddown;
    102 
    103 	fe->fe_cx |= FSR_NX;	/* inexact */
    104 
    105 	/* Go to rounddown to round down; break to round up. */
    106 	switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
    107 
    108 	case FSR_RD_RN:
    109 	default:
    110 		/*
    111 		 * Round only if guard is set (gr & 2).  If guard is set,
    112 		 * but round & sticky both clear, then we want to round
    113 		 * but have a tie, so round to even, i.e., add 1 iff odd.
    114 		 */
    115 		if ((gr & 2) == 0)
    116 			goto rounddown;
    117 		if ((gr & 1) || fp->fp_sticky || (m3 & 1))
    118 			break;
    119 		goto rounddown;
    120 
    121 	case FSR_RD_RZ:
    122 		/* Round towards zero, i.e., down. */
    123 		goto rounddown;
    124 
    125 	case FSR_RD_RM:
    126 		/* Round towards -Inf: up if negative, down if positive. */
    127 		if (fp->fp_sign)
    128 			break;
    129 		goto rounddown;
    130 
    131 	case FSR_RD_RP:
    132 		/* Round towards +Inf: up if positive, down otherwise. */
    133 		if (!fp->fp_sign)
    134 			break;
    135 		goto rounddown;
    136 	}
    137 
    138 	/* Bump low bit of mantissa, with carry. */
    139 	FPU_ADDS(m3, m3, 1);
    140 	FPU_ADDCS(m2, m2, 0);
    141 	FPU_ADDCS(m1, m1, 0);
    142 	FPU_ADDC(m0, m0, 0);
    143 	fp->fp_mant[0] = m0;
    144 	fp->fp_mant[1] = m1;
    145 	fp->fp_mant[2] = m2;
    146 	fp->fp_mant[3] = m3;
    147 	return (1);
    148 
    149 rounddown:
    150 	fp->fp_mant[0] = m0;
    151 	fp->fp_mant[1] = m1;
    152 	fp->fp_mant[2] = m2;
    153 	fp->fp_mant[3] = m3;
    154 	return (0);
    155 }
    156 
    157 /*
    158  * For overflow: return true if overflow is to go to +/-Inf, according
    159  * to the sign of the overflowing result.  If false, overflow is to go
    160  * to the largest magnitude value instead.
    161  */
    162 static int
    163 toinf(struct fpemu *fe, int sign)
    164 {
    165 	int inf;
    166 
    167 	/* look at rounding direction */
    168 	switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
    169 
    170 	default:
    171 	case FSR_RD_RN:		/* the nearest value is always Inf */
    172 		inf = 1;
    173 		break;
    174 
    175 	case FSR_RD_RZ:		/* toward 0 => never towards Inf */
    176 		inf = 0;
    177 		break;
    178 
    179 	case FSR_RD_RP:		/* toward +Inf iff positive */
    180 		inf = sign == 0;
    181 		break;
    182 
    183 	case FSR_RD_RM:		/* toward -Inf iff negative */
    184 		inf = sign;
    185 		break;
    186 	}
    187 	return (inf);
    188 }
    189 
    190 /*
    191  * fpn -> int (int value returned as return value).
    192  *
    193  * N.B.: this conversion always rounds towards zero (this is a peculiarity
    194  * of the SPARC instruction set).
    195  */
    196 u_int
    197 fpu_ftoi(fe, fp)
    198 	struct fpemu *fe;
    199 	register struct fpn *fp;
    200 {
    201 	register u_int i;
    202 	register int sign, exp;
    203 
    204 	sign = fp->fp_sign;
    205 	switch (fp->fp_class) {
    206 
    207 	case FPC_ZERO:
    208 		return (0);
    209 
    210 	case FPC_NUM:
    211 		/*
    212 		 * If exp >= 2^32, overflow.  Otherwise shift value right
    213 		 * into last mantissa word (this will not exceed 0xffffffff),
    214 		 * shifting any guard and round bits out into the sticky
    215 		 * bit.  Then ``round'' towards zero, i.e., just set an
    216 		 * inexact exception if sticky is set (see round()).
    217 		 * If the result is > 0x80000000, or is positive and equals
    218 		 * 0x80000000, overflow; otherwise the last fraction word
    219 		 * is the result.
    220 		 */
    221 		if ((exp = fp->fp_exp) >= 32)
    222 			break;
    223 		/* NB: the following includes exp < 0 cases */
    224 		if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
    225 			fe->fe_cx |= FSR_NX;
    226 		i = fp->fp_mant[3];
    227 		if (i >= ((u_int)0x80000000 + sign))
    228 			break;
    229 		return (sign ? -i : i);
    230 
    231 	default:		/* Inf, qNaN, sNaN */
    232 		break;
    233 	}
    234 	/* overflow: replace any inexact exception with invalid */
    235 	fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;
    236 	return (0x7fffffff + sign);
    237 }
    238 
    239 #ifdef SUN4U
    240 /*
    241  * fpn -> extended int (high bits of int value returned as return value).
    242  *
    243  * N.B.: this conversion always rounds towards zero (this is a peculiarity
    244  * of the SPARC instruction set).
    245  */
    246 u_int
    247 fpu_ftox(fe, fp, res)
    248 	struct fpemu *fe;
    249 	register struct fpn *fp;
    250 	u_int *res;
    251 {
    252 	register u_int64_t i;
    253 	register int sign, exp;
    254 
    255 	sign = fp->fp_sign;
    256 	switch (fp->fp_class) {
    257 
    258 	case FPC_ZERO:
    259 		res[1] = 0;
    260 		return (0);
    261 
    262 	case FPC_NUM:
    263 		/*
    264 		 * If exp >= 2^64, overflow.  Otherwise shift value right
    265 		 * into last mantissa word (this will not exceed 0xffffffffffffffff),
    266 		 * shifting any guard and round bits out into the sticky
    267 		 * bit.  Then ``round'' towards zero, i.e., just set an
    268 		 * inexact exception if sticky is set (see round()).
    269 		 * If the result is > 0x8000000000000000, or is positive and equals
    270 		 * 0x8000000000000000, overflow; otherwise the last fraction word
    271 		 * is the result.
    272 		 */
    273 		if ((exp = fp->fp_exp) >= 64)
    274 			break;
    275 		/* NB: the following includes exp < 0 cases */
    276 		if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
    277 			fe->fe_cx |= FSR_NX;
    278 		i = ((u_int64_t)fp->fp_mant[2]<<32)|fp->fp_mant[3];
    279 		if (i >= ((u_int64_t)0x8000000000000000LL + sign))
    280 			break;
    281 		if (sign) i = -i;
    282 		res[1] = (int)i;
    283 		return (i>>32);
    284 
    285 	default:		/* Inf, qNaN, sNaN */
    286 		break;
    287 	}
    288 	/* overflow: replace any inexact exception with invalid */
    289 	fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;
    290 	return (0x7fffffffffffffffLL + sign);
    291 }
    292 #endif /* SUN4U */
    293 
    294 /*
    295  * fpn -> single (32 bit single returned as return value).
    296  * We assume <= 29 bits in a single-precision fraction (1.f part).
    297  */
    298 u_int
    299 fpu_ftos(fe, fp)
    300 	struct fpemu *fe;
    301 	register struct fpn *fp;
    302 {
    303 	register u_int sign = fp->fp_sign << 31;
    304 	register int exp;
    305 
    306 #define	SNG_EXP(e)	((e) << SNG_FRACBITS)	/* makes e an exponent */
    307 #define	SNG_MASK	(SNG_EXP(1) - 1)	/* mask for fraction */
    308 
    309 	/* Take care of non-numbers first. */
    310 	if (ISNAN(fp)) {
    311 		/*
    312 		 * Preserve upper bits of NaN, per SPARC V8 appendix N.
    313 		 * Note that fp->fp_mant[0] has the quiet bit set,
    314 		 * even if it is classified as a signalling NaN.
    315 		 */
    316 		(void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
    317 		exp = SNG_EXP_INFNAN;
    318 		goto done;
    319 	}
    320 	if (ISINF(fp))
    321 		return (sign | SNG_EXP(SNG_EXP_INFNAN));
    322 	if (ISZERO(fp))
    323 		return (sign);
    324 
    325 	/*
    326 	 * Normals (including subnormals).  Drop all the fraction bits
    327 	 * (including the explicit ``implied'' 1 bit) down into the
    328 	 * single-precision range.  If the number is subnormal, move
    329 	 * the ``implied'' 1 into the explicit range as well, and shift
    330 	 * right to introduce leading zeroes.  Rounding then acts
    331 	 * differently for normals and subnormals: the largest subnormal
    332 	 * may round to the smallest normal (1.0 x 2^minexp), or may
    333 	 * remain subnormal.  In the latter case, signal an underflow
    334 	 * if the result was inexact or if underflow traps are enabled.
    335 	 *
    336 	 * Rounding a normal, on the other hand, always produces another
    337 	 * normal (although either way the result might be too big for
    338 	 * single precision, and cause an overflow).  If rounding a
    339 	 * normal produces 2.0 in the fraction, we need not adjust that
    340 	 * fraction at all, since both 1.0 and 2.0 are zero under the
    341 	 * fraction mask.
    342 	 *
    343 	 * Note that the guard and round bits vanish from the number after
    344 	 * rounding.
    345 	 */
    346 	if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) {	/* subnormal */
    347 		/* -NG for g,r; -SNG_FRACBITS-exp for fraction */
    348 		(void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
    349 		if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
    350 			return (sign | SNG_EXP(1) | 0);
    351 		if ((fe->fe_cx & FSR_NX) ||
    352 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
    353 			fe->fe_cx |= FSR_UF;
    354 		return (sign | SNG_EXP(0) | fp->fp_mant[3]);
    355 	}
    356 	/* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
    357 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
    358 #ifdef DIAGNOSTIC
    359 	if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
    360 		panic("fpu_ftos");
    361 #endif
    362 	if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
    363 		exp++;
    364 	if (exp >= SNG_EXP_INFNAN) {
    365 		/* overflow to inf or to max single */
    366 		fe->fe_cx |= FSR_OF | FSR_NX;
    367 		if (toinf(fe, sign))
    368 			return (sign | SNG_EXP(SNG_EXP_INFNAN));
    369 		return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
    370 	}
    371 done:
    372 	/* phew, made it */
    373 	return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
    374 }
    375 
    376 /*
    377  * fpn -> double (32 bit high-order result returned; 32-bit low order result
    378  * left in res[1]).  Assumes <= 61 bits in double precision fraction.
    379  *
    380  * This code mimics fpu_ftos; see it for comments.
    381  */
    382 u_int
    383 fpu_ftod(fe, fp, res)
    384 	struct fpemu *fe;
    385 	register struct fpn *fp;
    386 	u_int *res;
    387 {
    388 	register u_int sign = fp->fp_sign << 31;
    389 	register int exp;
    390 
    391 #define	DBL_EXP(e)	((e) << (DBL_FRACBITS & 31))
    392 #define	DBL_MASK	(DBL_EXP(1) - 1)
    393 
    394 	if (ISNAN(fp)) {
    395 		(void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
    396 		exp = DBL_EXP_INFNAN;
    397 		goto done;
    398 	}
    399 	if (ISINF(fp)) {
    400 		sign |= DBL_EXP(DBL_EXP_INFNAN);
    401 		goto zero;
    402 	}
    403 	if (ISZERO(fp)) {
    404 zero:		res[1] = 0;
    405 		return (sign);
    406 	}
    407 
    408 	if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
    409 		(void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
    410 		if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
    411 			res[1] = 0;
    412 			return (sign | DBL_EXP(1) | 0);
    413 		}
    414 		if ((fe->fe_cx & FSR_NX) ||
    415 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
    416 			fe->fe_cx |= FSR_UF;
    417 		exp = 0;
    418 		goto done;
    419 	}
    420 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
    421 	if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
    422 		exp++;
    423 	if (exp >= DBL_EXP_INFNAN) {
    424 		fe->fe_cx |= FSR_OF | FSR_NX;
    425 		if (toinf(fe, sign)) {
    426 			res[1] = 0;
    427 			return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
    428 		}
    429 		res[1] = ~0;
    430 		return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
    431 	}
    432 done:
    433 	res[1] = fp->fp_mant[3];
    434 	return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
    435 }
    436 
    437 /*
    438  * fpn -> extended (32 bit high-order result returned; low-order fraction
    439  * words left in res[1]..res[3]).  Like ftod, which is like ftos ... but
    440  * our internal format *is* extended precision, plus 2 bits for guard/round,
    441  * so we can avoid a small bit of work.
    442  */
    443 u_int
    444 fpu_ftoq(fe, fp, res)
    445 	struct fpemu *fe;
    446 	register struct fpn *fp;
    447 	u_int *res;
    448 {
    449 	register u_int sign = fp->fp_sign << 31;
    450 	register int exp;
    451 
    452 #define	EXT_EXP(e)	((e) << (EXT_FRACBITS & 31))
    453 #define	EXT_MASK	(EXT_EXP(1) - 1)
    454 
    455 	if (ISNAN(fp)) {
    456 		(void) fpu_shr(fp, 2);	/* since we are not rounding */
    457 		exp = EXT_EXP_INFNAN;
    458 		goto done;
    459 	}
    460 	if (ISINF(fp)) {
    461 		sign |= EXT_EXP(EXT_EXP_INFNAN);
    462 		goto zero;
    463 	}
    464 	if (ISZERO(fp)) {
    465 zero:		res[1] = res[2] = res[3] = 0;
    466 		return (sign);
    467 	}
    468 
    469 	if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) {
    470 		(void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
    471 		if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(1)) {
    472 			res[1] = res[2] = res[3] = 0;
    473 			return (sign | EXT_EXP(1) | 0);
    474 		}
    475 		if ((fe->fe_cx & FSR_NX) ||
    476 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
    477 			fe->fe_cx |= FSR_UF;
    478 		exp = 0;
    479 		goto done;
    480 	}
    481 	/* Since internal == extended, no need to shift here. */
    482 	if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(2))
    483 		exp++;
    484 	if (exp >= EXT_EXP_INFNAN) {
    485 		fe->fe_cx |= FSR_OF | FSR_NX;
    486 		if (toinf(fe, sign)) {
    487 			res[1] = res[2] = res[3] = 0;
    488 			return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
    489 		}
    490 		res[1] = res[2] = res[3] = ~0;
    491 		return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
    492 	}
    493 done:
    494 	res[1] = fp->fp_mant[1];
    495 	res[2] = fp->fp_mant[2];
    496 	res[3] = fp->fp_mant[3];
    497 	return (sign | EXT_EXP(exp) | (fp->fp_mant[0] & EXT_MASK));
    498 }
    499 
    500 /*
    501  * Implode an fpn, writing the result into the given space.
    502  */
    503 void
    504 fpu_implode(fe, fp, type, space)
    505 	struct fpemu *fe;
    506 	register struct fpn *fp;
    507 	int type;
    508 	register u_int *space;
    509 {
    510 
    511 	DPRINTF(FPE_REG, ("\n imploding: "));
    512 	DUMPFPN(FPE_REG, fp);
    513 	DPRINTF(FPE_REG, ("\n"));
    514 
    515 	switch (type) {
    516 
    517 #ifdef SUN4U
    518 	case FTYPE_LNG:
    519 		space[0] = fpu_ftox(fe, fp, space);
    520 		break;
    521 #endif /* SUN4U */
    522 
    523 	case FTYPE_INT:
    524 		space[0] = fpu_ftoi(fe, fp);
    525 		break;
    526 
    527 	case FTYPE_SNG:
    528 		space[0] = fpu_ftos(fe, fp);
    529 		break;
    530 
    531 	case FTYPE_DBL:
    532 		space[0] = fpu_ftod(fe, fp, space);
    533 		break;
    534 
    535 	case FTYPE_EXT:
    536 		/* funky rounding precision options ?? */
    537 		space[0] = fpu_ftoq(fe, fp, space);
    538 		break;
    539 
    540 	default:
    541 		panic("fpu_implode");
    542 	}
    543 #ifdef SUN4U
    544 	DPRINTF(FPE_REG, ("fpu_implode: %x %x %x %x\n",
    545 		space[0], space[1], space[2], space[3]));
    546 #else
    547 	DPRINTF(FPE_REG, ("fpu_implode: %x %x\n",
    548 		space[0], space[1]));
    549 #endif
    550 }
    551