fpu_implode.c revision 1.11 1 /* $NetBSD: fpu_implode.c,v 1.11 2003/07/15 00:04:59 lukem Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93
45 */
46
47 /*
48 * FPU subroutines: `implode' internal format numbers into the machine's
49 * `packed binary' format.
50 */
51
52 #include <sys/cdefs.h>
53 __KERNEL_RCSID(0, "$NetBSD: fpu_implode.c,v 1.11 2003/07/15 00:04:59 lukem Exp $");
54
55 #if defined(_KERNEL_OPT)
56 #include "opt_sparc_arch.h"
57 #endif
58
59 #include <sys/types.h>
60 #include <sys/systm.h>
61
62 #include <machine/ieee.h>
63 #include <machine/instr.h>
64 #include <machine/reg.h>
65
66 #include <sparc/fpu/fpu_arith.h>
67 #include <sparc/fpu/fpu_emu.h>
68 #include <sparc/fpu/fpu_extern.h>
69
70 static int round __P((register struct fpemu *, register struct fpn *));
71 static int toinf __P((struct fpemu *, int));
72
73 /*
74 * Round a number (algorithm from Motorola MC68882 manual, modified for
75 * our internal format). Set inexact exception if rounding is required.
76 * Return true iff we rounded up.
77 *
78 * After rounding, we discard the guard and round bits by shifting right
79 * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
80 * This saves effort later.
81 *
82 * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
83 * responsibility to fix this if necessary.
84 */
85 static int
86 round(register struct fpemu *fe, register struct fpn *fp)
87 {
88 register u_int m0, m1, m2, m3;
89 register int gr, s;
90
91 m0 = fp->fp_mant[0];
92 m1 = fp->fp_mant[1];
93 m2 = fp->fp_mant[2];
94 m3 = fp->fp_mant[3];
95 gr = m3 & 3;
96 s = fp->fp_sticky;
97
98 /* mant >>= FP_NG */
99 m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
100 m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
101 m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
102 m0 >>= FP_NG;
103
104 if ((gr | s) == 0) /* result is exact: no rounding needed */
105 goto rounddown;
106
107 fe->fe_cx |= FSR_NX; /* inexact */
108
109 /* Go to rounddown to round down; break to round up. */
110 switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
111
112 case FSR_RD_RN:
113 default:
114 /*
115 * Round only if guard is set (gr & 2). If guard is set,
116 * but round & sticky both clear, then we want to round
117 * but have a tie, so round to even, i.e., add 1 iff odd.
118 */
119 if ((gr & 2) == 0)
120 goto rounddown;
121 if ((gr & 1) || fp->fp_sticky || (m3 & 1))
122 break;
123 goto rounddown;
124
125 case FSR_RD_RZ:
126 /* Round towards zero, i.e., down. */
127 goto rounddown;
128
129 case FSR_RD_RM:
130 /* Round towards -Inf: up if negative, down if positive. */
131 if (fp->fp_sign)
132 break;
133 goto rounddown;
134
135 case FSR_RD_RP:
136 /* Round towards +Inf: up if positive, down otherwise. */
137 if (!fp->fp_sign)
138 break;
139 goto rounddown;
140 }
141
142 /* Bump low bit of mantissa, with carry. */
143 FPU_ADDS(m3, m3, 1);
144 FPU_ADDCS(m2, m2, 0);
145 FPU_ADDCS(m1, m1, 0);
146 FPU_ADDC(m0, m0, 0);
147 fp->fp_mant[0] = m0;
148 fp->fp_mant[1] = m1;
149 fp->fp_mant[2] = m2;
150 fp->fp_mant[3] = m3;
151 return (1);
152
153 rounddown:
154 fp->fp_mant[0] = m0;
155 fp->fp_mant[1] = m1;
156 fp->fp_mant[2] = m2;
157 fp->fp_mant[3] = m3;
158 return (0);
159 }
160
161 /*
162 * For overflow: return true if overflow is to go to +/-Inf, according
163 * to the sign of the overflowing result. If false, overflow is to go
164 * to the largest magnitude value instead.
165 */
166 static int
167 toinf(struct fpemu *fe, int sign)
168 {
169 int inf;
170
171 /* look at rounding direction */
172 switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
173
174 default:
175 case FSR_RD_RN: /* the nearest value is always Inf */
176 inf = 1;
177 break;
178
179 case FSR_RD_RZ: /* toward 0 => never towards Inf */
180 inf = 0;
181 break;
182
183 case FSR_RD_RP: /* toward +Inf iff positive */
184 inf = sign == 0;
185 break;
186
187 case FSR_RD_RM: /* toward -Inf iff negative */
188 inf = sign;
189 break;
190 }
191 return (inf);
192 }
193
194 /*
195 * fpn -> int (int value returned as return value).
196 *
197 * N.B.: this conversion always rounds towards zero (this is a peculiarity
198 * of the SPARC instruction set).
199 */
200 u_int
201 fpu_ftoi(fe, fp)
202 struct fpemu *fe;
203 register struct fpn *fp;
204 {
205 register u_int i;
206 register int sign, exp;
207
208 sign = fp->fp_sign;
209 switch (fp->fp_class) {
210
211 case FPC_ZERO:
212 return (0);
213
214 case FPC_NUM:
215 /*
216 * If exp >= 2^32, overflow. Otherwise shift value right
217 * into last mantissa word (this will not exceed 0xffffffff),
218 * shifting any guard and round bits out into the sticky
219 * bit. Then ``round'' towards zero, i.e., just set an
220 * inexact exception if sticky is set (see round()).
221 * If the result is > 0x80000000, or is positive and equals
222 * 0x80000000, overflow; otherwise the last fraction word
223 * is the result.
224 */
225 if ((exp = fp->fp_exp) >= 32)
226 break;
227 /* NB: the following includes exp < 0 cases */
228 if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
229 fe->fe_cx |= FSR_NX;
230 i = fp->fp_mant[3];
231 if (i >= ((u_int)0x80000000 + sign))
232 break;
233 return (sign ? -i : i);
234
235 default: /* Inf, qNaN, sNaN */
236 break;
237 }
238 /* overflow: replace any inexact exception with invalid */
239 fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;
240 return (0x7fffffff + sign);
241 }
242
243 #ifdef SUN4U
244 /*
245 * fpn -> extended int (high bits of int value returned as return value).
246 *
247 * N.B.: this conversion always rounds towards zero (this is a peculiarity
248 * of the SPARC instruction set).
249 */
250 u_int
251 fpu_ftox(fe, fp, res)
252 struct fpemu *fe;
253 register struct fpn *fp;
254 u_int *res;
255 {
256 register u_int64_t i;
257 register int sign, exp;
258
259 sign = fp->fp_sign;
260 switch (fp->fp_class) {
261
262 case FPC_ZERO:
263 res[1] = 0;
264 return (0);
265
266 case FPC_NUM:
267 /*
268 * If exp >= 2^64, overflow. Otherwise shift value right
269 * into last mantissa word (this will not exceed 0xffffffffffffffff),
270 * shifting any guard and round bits out into the sticky
271 * bit. Then ``round'' towards zero, i.e., just set an
272 * inexact exception if sticky is set (see round()).
273 * If the result is > 0x8000000000000000, or is positive and equals
274 * 0x8000000000000000, overflow; otherwise the last fraction word
275 * is the result.
276 */
277 if ((exp = fp->fp_exp) >= 64)
278 break;
279 /* NB: the following includes exp < 0 cases */
280 if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
281 fe->fe_cx |= FSR_NX;
282 i = ((u_int64_t)fp->fp_mant[2]<<32)|fp->fp_mant[3];
283 if (i >= ((u_int64_t)0x8000000000000000LL + sign))
284 break;
285 if (sign) i = -i;
286 res[1] = (int)i;
287 return (i>>32);
288
289 default: /* Inf, qNaN, sNaN */
290 break;
291 }
292 /* overflow: replace any inexact exception with invalid */
293 fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;
294 return (0x7fffffffffffffffLL + sign);
295 }
296 #endif /* SUN4U */
297
298 /*
299 * fpn -> single (32 bit single returned as return value).
300 * We assume <= 29 bits in a single-precision fraction (1.f part).
301 */
302 u_int
303 fpu_ftos(fe, fp)
304 struct fpemu *fe;
305 register struct fpn *fp;
306 {
307 register u_int sign = fp->fp_sign << 31;
308 register int exp;
309
310 #define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */
311 #define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */
312
313 /* Take care of non-numbers first. */
314 if (ISNAN(fp)) {
315 /*
316 * Preserve upper bits of NaN, per SPARC V8 appendix N.
317 * Note that fp->fp_mant[0] has the quiet bit set,
318 * even if it is classified as a signalling NaN.
319 */
320 (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
321 exp = SNG_EXP_INFNAN;
322 goto done;
323 }
324 if (ISINF(fp))
325 return (sign | SNG_EXP(SNG_EXP_INFNAN));
326 if (ISZERO(fp))
327 return (sign);
328
329 /*
330 * Normals (including subnormals). Drop all the fraction bits
331 * (including the explicit ``implied'' 1 bit) down into the
332 * single-precision range. If the number is subnormal, move
333 * the ``implied'' 1 into the explicit range as well, and shift
334 * right to introduce leading zeroes. Rounding then acts
335 * differently for normals and subnormals: the largest subnormal
336 * may round to the smallest normal (1.0 x 2^minexp), or may
337 * remain subnormal. In the latter case, signal an underflow
338 * if the result was inexact or if underflow traps are enabled.
339 *
340 * Rounding a normal, on the other hand, always produces another
341 * normal (although either way the result might be too big for
342 * single precision, and cause an overflow). If rounding a
343 * normal produces 2.0 in the fraction, we need not adjust that
344 * fraction at all, since both 1.0 and 2.0 are zero under the
345 * fraction mask.
346 *
347 * Note that the guard and round bits vanish from the number after
348 * rounding.
349 */
350 if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) { /* subnormal */
351 /* -NG for g,r; -SNG_FRACBITS-exp for fraction */
352 (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
353 if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
354 return (sign | SNG_EXP(1) | 0);
355 if ((fe->fe_cx & FSR_NX) ||
356 (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
357 fe->fe_cx |= FSR_UF;
358 return (sign | SNG_EXP(0) | fp->fp_mant[3]);
359 }
360 /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
361 (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
362 #ifdef DIAGNOSTIC
363 if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
364 panic("fpu_ftos");
365 #endif
366 if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
367 exp++;
368 if (exp >= SNG_EXP_INFNAN) {
369 /* overflow to inf or to max single */
370 fe->fe_cx |= FSR_OF | FSR_NX;
371 if (toinf(fe, sign))
372 return (sign | SNG_EXP(SNG_EXP_INFNAN));
373 return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
374 }
375 done:
376 /* phew, made it */
377 return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
378 }
379
380 /*
381 * fpn -> double (32 bit high-order result returned; 32-bit low order result
382 * left in res[1]). Assumes <= 61 bits in double precision fraction.
383 *
384 * This code mimics fpu_ftos; see it for comments.
385 */
386 u_int
387 fpu_ftod(fe, fp, res)
388 struct fpemu *fe;
389 register struct fpn *fp;
390 u_int *res;
391 {
392 register u_int sign = fp->fp_sign << 31;
393 register int exp;
394
395 #define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31))
396 #define DBL_MASK (DBL_EXP(1) - 1)
397
398 if (ISNAN(fp)) {
399 (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
400 exp = DBL_EXP_INFNAN;
401 goto done;
402 }
403 if (ISINF(fp)) {
404 sign |= DBL_EXP(DBL_EXP_INFNAN);
405 goto zero;
406 }
407 if (ISZERO(fp)) {
408 zero: res[1] = 0;
409 return (sign);
410 }
411
412 if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
413 (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
414 if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
415 res[1] = 0;
416 return (sign | DBL_EXP(1) | 0);
417 }
418 if ((fe->fe_cx & FSR_NX) ||
419 (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
420 fe->fe_cx |= FSR_UF;
421 exp = 0;
422 goto done;
423 }
424 (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
425 if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
426 exp++;
427 if (exp >= DBL_EXP_INFNAN) {
428 fe->fe_cx |= FSR_OF | FSR_NX;
429 if (toinf(fe, sign)) {
430 res[1] = 0;
431 return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
432 }
433 res[1] = ~0;
434 return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
435 }
436 done:
437 res[1] = fp->fp_mant[3];
438 return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
439 }
440
441 /*
442 * fpn -> extended (32 bit high-order result returned; low-order fraction
443 * words left in res[1]..res[3]). Like ftod, which is like ftos ... but
444 * our internal format *is* extended precision, plus 2 bits for guard/round,
445 * so we can avoid a small bit of work.
446 */
447 u_int
448 fpu_ftoq(fe, fp, res)
449 struct fpemu *fe;
450 register struct fpn *fp;
451 u_int *res;
452 {
453 register u_int sign = fp->fp_sign << 31;
454 register int exp;
455
456 #define EXT_EXP(e) ((e) << (EXT_FRACBITS & 31))
457 #define EXT_MASK (EXT_EXP(1) - 1)
458
459 if (ISNAN(fp)) {
460 (void) fpu_shr(fp, 2); /* since we are not rounding */
461 exp = EXT_EXP_INFNAN;
462 goto done;
463 }
464 if (ISINF(fp)) {
465 sign |= EXT_EXP(EXT_EXP_INFNAN);
466 goto zero;
467 }
468 if (ISZERO(fp)) {
469 zero: res[1] = res[2] = res[3] = 0;
470 return (sign);
471 }
472
473 if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) {
474 (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
475 if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(1)) {
476 res[1] = res[2] = res[3] = 0;
477 return (sign | EXT_EXP(1) | 0);
478 }
479 if ((fe->fe_cx & FSR_NX) ||
480 (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
481 fe->fe_cx |= FSR_UF;
482 exp = 0;
483 goto done;
484 }
485 /* Since internal == extended, no need to shift here. */
486 if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(2))
487 exp++;
488 if (exp >= EXT_EXP_INFNAN) {
489 fe->fe_cx |= FSR_OF | FSR_NX;
490 if (toinf(fe, sign)) {
491 res[1] = res[2] = res[3] = 0;
492 return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
493 }
494 res[1] = res[2] = res[3] = ~0;
495 return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
496 }
497 done:
498 res[1] = fp->fp_mant[1];
499 res[2] = fp->fp_mant[2];
500 res[3] = fp->fp_mant[3];
501 return (sign | EXT_EXP(exp) | (fp->fp_mant[0] & EXT_MASK));
502 }
503
504 /*
505 * Implode an fpn, writing the result into the given space.
506 */
507 void
508 fpu_implode(fe, fp, type, space)
509 struct fpemu *fe;
510 register struct fpn *fp;
511 int type;
512 register u_int *space;
513 {
514
515 DPRINTF(FPE_REG, ("\n imploding: "));
516 DUMPFPN(FPE_REG, fp);
517 DPRINTF(FPE_REG, ("\n"));
518
519 switch (type) {
520
521 #ifdef SUN4U
522 case FTYPE_LNG:
523 space[0] = fpu_ftox(fe, fp, space);
524 break;
525 #endif /* SUN4U */
526
527 case FTYPE_INT:
528 space[0] = fpu_ftoi(fe, fp);
529 break;
530
531 case FTYPE_SNG:
532 space[0] = fpu_ftos(fe, fp);
533 break;
534
535 case FTYPE_DBL:
536 space[0] = fpu_ftod(fe, fp, space);
537 break;
538
539 case FTYPE_EXT:
540 /* funky rounding precision options ?? */
541 space[0] = fpu_ftoq(fe, fp, space);
542 break;
543
544 default:
545 panic("fpu_implode");
546 }
547 #ifdef SUN4U
548 DPRINTF(FPE_REG, ("fpu_implode: %x %x %x %x\n",
549 space[0], space[1], space[2], space[3]));
550 #else
551 DPRINTF(FPE_REG, ("fpu_implode: %x %x\n",
552 space[0], space[1]));
553 #endif
554 }
555