Home | History | Annotate | Line # | Download | only in fpu
fpu_implode.c revision 1.11
      1 /*	$NetBSD: fpu_implode.c,v 1.11 2003/07/15 00:04:59 lukem Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  * All advertising materials mentioning features or use of this software
     12  * must display the following acknowledgement:
     13  *	This product includes software developed by the University of
     14  *	California, Lawrence Berkeley Laboratory.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. All advertising materials mentioning features or use of this software
     25  *    must display the following acknowledgement:
     26  *	This product includes software developed by the University of
     27  *	California, Berkeley and its contributors.
     28  * 4. Neither the name of the University nor the names of its contributors
     29  *    may be used to endorse or promote products derived from this software
     30  *    without specific prior written permission.
     31  *
     32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     42  * SUCH DAMAGE.
     43  *
     44  *	@(#)fpu_implode.c	8.1 (Berkeley) 6/11/93
     45  */
     46 
     47 /*
     48  * FPU subroutines: `implode' internal format numbers into the machine's
     49  * `packed binary' format.
     50  */
     51 
     52 #include <sys/cdefs.h>
     53 __KERNEL_RCSID(0, "$NetBSD: fpu_implode.c,v 1.11 2003/07/15 00:04:59 lukem Exp $");
     54 
     55 #if defined(_KERNEL_OPT)
     56 #include "opt_sparc_arch.h"
     57 #endif
     58 
     59 #include <sys/types.h>
     60 #include <sys/systm.h>
     61 
     62 #include <machine/ieee.h>
     63 #include <machine/instr.h>
     64 #include <machine/reg.h>
     65 
     66 #include <sparc/fpu/fpu_arith.h>
     67 #include <sparc/fpu/fpu_emu.h>
     68 #include <sparc/fpu/fpu_extern.h>
     69 
     70 static int round __P((register struct fpemu *, register struct fpn *));
     71 static int toinf __P((struct fpemu *, int));
     72 
     73 /*
     74  * Round a number (algorithm from Motorola MC68882 manual, modified for
     75  * our internal format).  Set inexact exception if rounding is required.
     76  * Return true iff we rounded up.
     77  *
     78  * After rounding, we discard the guard and round bits by shifting right
     79  * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
     80  * This saves effort later.
     81  *
     82  * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
     83  * responsibility to fix this if necessary.
     84  */
     85 static int
     86 round(register struct fpemu *fe, register struct fpn *fp)
     87 {
     88 	register u_int m0, m1, m2, m3;
     89 	register int gr, s;
     90 
     91 	m0 = fp->fp_mant[0];
     92 	m1 = fp->fp_mant[1];
     93 	m2 = fp->fp_mant[2];
     94 	m3 = fp->fp_mant[3];
     95 	gr = m3 & 3;
     96 	s = fp->fp_sticky;
     97 
     98 	/* mant >>= FP_NG */
     99 	m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
    100 	m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
    101 	m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
    102 	m0 >>= FP_NG;
    103 
    104 	if ((gr | s) == 0)	/* result is exact: no rounding needed */
    105 		goto rounddown;
    106 
    107 	fe->fe_cx |= FSR_NX;	/* inexact */
    108 
    109 	/* Go to rounddown to round down; break to round up. */
    110 	switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
    111 
    112 	case FSR_RD_RN:
    113 	default:
    114 		/*
    115 		 * Round only if guard is set (gr & 2).  If guard is set,
    116 		 * but round & sticky both clear, then we want to round
    117 		 * but have a tie, so round to even, i.e., add 1 iff odd.
    118 		 */
    119 		if ((gr & 2) == 0)
    120 			goto rounddown;
    121 		if ((gr & 1) || fp->fp_sticky || (m3 & 1))
    122 			break;
    123 		goto rounddown;
    124 
    125 	case FSR_RD_RZ:
    126 		/* Round towards zero, i.e., down. */
    127 		goto rounddown;
    128 
    129 	case FSR_RD_RM:
    130 		/* Round towards -Inf: up if negative, down if positive. */
    131 		if (fp->fp_sign)
    132 			break;
    133 		goto rounddown;
    134 
    135 	case FSR_RD_RP:
    136 		/* Round towards +Inf: up if positive, down otherwise. */
    137 		if (!fp->fp_sign)
    138 			break;
    139 		goto rounddown;
    140 	}
    141 
    142 	/* Bump low bit of mantissa, with carry. */
    143 	FPU_ADDS(m3, m3, 1);
    144 	FPU_ADDCS(m2, m2, 0);
    145 	FPU_ADDCS(m1, m1, 0);
    146 	FPU_ADDC(m0, m0, 0);
    147 	fp->fp_mant[0] = m0;
    148 	fp->fp_mant[1] = m1;
    149 	fp->fp_mant[2] = m2;
    150 	fp->fp_mant[3] = m3;
    151 	return (1);
    152 
    153 rounddown:
    154 	fp->fp_mant[0] = m0;
    155 	fp->fp_mant[1] = m1;
    156 	fp->fp_mant[2] = m2;
    157 	fp->fp_mant[3] = m3;
    158 	return (0);
    159 }
    160 
    161 /*
    162  * For overflow: return true if overflow is to go to +/-Inf, according
    163  * to the sign of the overflowing result.  If false, overflow is to go
    164  * to the largest magnitude value instead.
    165  */
    166 static int
    167 toinf(struct fpemu *fe, int sign)
    168 {
    169 	int inf;
    170 
    171 	/* look at rounding direction */
    172 	switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
    173 
    174 	default:
    175 	case FSR_RD_RN:		/* the nearest value is always Inf */
    176 		inf = 1;
    177 		break;
    178 
    179 	case FSR_RD_RZ:		/* toward 0 => never towards Inf */
    180 		inf = 0;
    181 		break;
    182 
    183 	case FSR_RD_RP:		/* toward +Inf iff positive */
    184 		inf = sign == 0;
    185 		break;
    186 
    187 	case FSR_RD_RM:		/* toward -Inf iff negative */
    188 		inf = sign;
    189 		break;
    190 	}
    191 	return (inf);
    192 }
    193 
    194 /*
    195  * fpn -> int (int value returned as return value).
    196  *
    197  * N.B.: this conversion always rounds towards zero (this is a peculiarity
    198  * of the SPARC instruction set).
    199  */
    200 u_int
    201 fpu_ftoi(fe, fp)
    202 	struct fpemu *fe;
    203 	register struct fpn *fp;
    204 {
    205 	register u_int i;
    206 	register int sign, exp;
    207 
    208 	sign = fp->fp_sign;
    209 	switch (fp->fp_class) {
    210 
    211 	case FPC_ZERO:
    212 		return (0);
    213 
    214 	case FPC_NUM:
    215 		/*
    216 		 * If exp >= 2^32, overflow.  Otherwise shift value right
    217 		 * into last mantissa word (this will not exceed 0xffffffff),
    218 		 * shifting any guard and round bits out into the sticky
    219 		 * bit.  Then ``round'' towards zero, i.e., just set an
    220 		 * inexact exception if sticky is set (see round()).
    221 		 * If the result is > 0x80000000, or is positive and equals
    222 		 * 0x80000000, overflow; otherwise the last fraction word
    223 		 * is the result.
    224 		 */
    225 		if ((exp = fp->fp_exp) >= 32)
    226 			break;
    227 		/* NB: the following includes exp < 0 cases */
    228 		if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
    229 			fe->fe_cx |= FSR_NX;
    230 		i = fp->fp_mant[3];
    231 		if (i >= ((u_int)0x80000000 + sign))
    232 			break;
    233 		return (sign ? -i : i);
    234 
    235 	default:		/* Inf, qNaN, sNaN */
    236 		break;
    237 	}
    238 	/* overflow: replace any inexact exception with invalid */
    239 	fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;
    240 	return (0x7fffffff + sign);
    241 }
    242 
    243 #ifdef SUN4U
    244 /*
    245  * fpn -> extended int (high bits of int value returned as return value).
    246  *
    247  * N.B.: this conversion always rounds towards zero (this is a peculiarity
    248  * of the SPARC instruction set).
    249  */
    250 u_int
    251 fpu_ftox(fe, fp, res)
    252 	struct fpemu *fe;
    253 	register struct fpn *fp;
    254 	u_int *res;
    255 {
    256 	register u_int64_t i;
    257 	register int sign, exp;
    258 
    259 	sign = fp->fp_sign;
    260 	switch (fp->fp_class) {
    261 
    262 	case FPC_ZERO:
    263 		res[1] = 0;
    264 		return (0);
    265 
    266 	case FPC_NUM:
    267 		/*
    268 		 * If exp >= 2^64, overflow.  Otherwise shift value right
    269 		 * into last mantissa word (this will not exceed 0xffffffffffffffff),
    270 		 * shifting any guard and round bits out into the sticky
    271 		 * bit.  Then ``round'' towards zero, i.e., just set an
    272 		 * inexact exception if sticky is set (see round()).
    273 		 * If the result is > 0x8000000000000000, or is positive and equals
    274 		 * 0x8000000000000000, overflow; otherwise the last fraction word
    275 		 * is the result.
    276 		 */
    277 		if ((exp = fp->fp_exp) >= 64)
    278 			break;
    279 		/* NB: the following includes exp < 0 cases */
    280 		if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
    281 			fe->fe_cx |= FSR_NX;
    282 		i = ((u_int64_t)fp->fp_mant[2]<<32)|fp->fp_mant[3];
    283 		if (i >= ((u_int64_t)0x8000000000000000LL + sign))
    284 			break;
    285 		if (sign) i = -i;
    286 		res[1] = (int)i;
    287 		return (i>>32);
    288 
    289 	default:		/* Inf, qNaN, sNaN */
    290 		break;
    291 	}
    292 	/* overflow: replace any inexact exception with invalid */
    293 	fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;
    294 	return (0x7fffffffffffffffLL + sign);
    295 }
    296 #endif /* SUN4U */
    297 
    298 /*
    299  * fpn -> single (32 bit single returned as return value).
    300  * We assume <= 29 bits in a single-precision fraction (1.f part).
    301  */
    302 u_int
    303 fpu_ftos(fe, fp)
    304 	struct fpemu *fe;
    305 	register struct fpn *fp;
    306 {
    307 	register u_int sign = fp->fp_sign << 31;
    308 	register int exp;
    309 
    310 #define	SNG_EXP(e)	((e) << SNG_FRACBITS)	/* makes e an exponent */
    311 #define	SNG_MASK	(SNG_EXP(1) - 1)	/* mask for fraction */
    312 
    313 	/* Take care of non-numbers first. */
    314 	if (ISNAN(fp)) {
    315 		/*
    316 		 * Preserve upper bits of NaN, per SPARC V8 appendix N.
    317 		 * Note that fp->fp_mant[0] has the quiet bit set,
    318 		 * even if it is classified as a signalling NaN.
    319 		 */
    320 		(void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
    321 		exp = SNG_EXP_INFNAN;
    322 		goto done;
    323 	}
    324 	if (ISINF(fp))
    325 		return (sign | SNG_EXP(SNG_EXP_INFNAN));
    326 	if (ISZERO(fp))
    327 		return (sign);
    328 
    329 	/*
    330 	 * Normals (including subnormals).  Drop all the fraction bits
    331 	 * (including the explicit ``implied'' 1 bit) down into the
    332 	 * single-precision range.  If the number is subnormal, move
    333 	 * the ``implied'' 1 into the explicit range as well, and shift
    334 	 * right to introduce leading zeroes.  Rounding then acts
    335 	 * differently for normals and subnormals: the largest subnormal
    336 	 * may round to the smallest normal (1.0 x 2^minexp), or may
    337 	 * remain subnormal.  In the latter case, signal an underflow
    338 	 * if the result was inexact or if underflow traps are enabled.
    339 	 *
    340 	 * Rounding a normal, on the other hand, always produces another
    341 	 * normal (although either way the result might be too big for
    342 	 * single precision, and cause an overflow).  If rounding a
    343 	 * normal produces 2.0 in the fraction, we need not adjust that
    344 	 * fraction at all, since both 1.0 and 2.0 are zero under the
    345 	 * fraction mask.
    346 	 *
    347 	 * Note that the guard and round bits vanish from the number after
    348 	 * rounding.
    349 	 */
    350 	if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) {	/* subnormal */
    351 		/* -NG for g,r; -SNG_FRACBITS-exp for fraction */
    352 		(void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
    353 		if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
    354 			return (sign | SNG_EXP(1) | 0);
    355 		if ((fe->fe_cx & FSR_NX) ||
    356 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
    357 			fe->fe_cx |= FSR_UF;
    358 		return (sign | SNG_EXP(0) | fp->fp_mant[3]);
    359 	}
    360 	/* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
    361 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
    362 #ifdef DIAGNOSTIC
    363 	if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
    364 		panic("fpu_ftos");
    365 #endif
    366 	if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
    367 		exp++;
    368 	if (exp >= SNG_EXP_INFNAN) {
    369 		/* overflow to inf or to max single */
    370 		fe->fe_cx |= FSR_OF | FSR_NX;
    371 		if (toinf(fe, sign))
    372 			return (sign | SNG_EXP(SNG_EXP_INFNAN));
    373 		return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
    374 	}
    375 done:
    376 	/* phew, made it */
    377 	return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
    378 }
    379 
    380 /*
    381  * fpn -> double (32 bit high-order result returned; 32-bit low order result
    382  * left in res[1]).  Assumes <= 61 bits in double precision fraction.
    383  *
    384  * This code mimics fpu_ftos; see it for comments.
    385  */
    386 u_int
    387 fpu_ftod(fe, fp, res)
    388 	struct fpemu *fe;
    389 	register struct fpn *fp;
    390 	u_int *res;
    391 {
    392 	register u_int sign = fp->fp_sign << 31;
    393 	register int exp;
    394 
    395 #define	DBL_EXP(e)	((e) << (DBL_FRACBITS & 31))
    396 #define	DBL_MASK	(DBL_EXP(1) - 1)
    397 
    398 	if (ISNAN(fp)) {
    399 		(void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
    400 		exp = DBL_EXP_INFNAN;
    401 		goto done;
    402 	}
    403 	if (ISINF(fp)) {
    404 		sign |= DBL_EXP(DBL_EXP_INFNAN);
    405 		goto zero;
    406 	}
    407 	if (ISZERO(fp)) {
    408 zero:		res[1] = 0;
    409 		return (sign);
    410 	}
    411 
    412 	if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
    413 		(void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
    414 		if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
    415 			res[1] = 0;
    416 			return (sign | DBL_EXP(1) | 0);
    417 		}
    418 		if ((fe->fe_cx & FSR_NX) ||
    419 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
    420 			fe->fe_cx |= FSR_UF;
    421 		exp = 0;
    422 		goto done;
    423 	}
    424 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
    425 	if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
    426 		exp++;
    427 	if (exp >= DBL_EXP_INFNAN) {
    428 		fe->fe_cx |= FSR_OF | FSR_NX;
    429 		if (toinf(fe, sign)) {
    430 			res[1] = 0;
    431 			return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
    432 		}
    433 		res[1] = ~0;
    434 		return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
    435 	}
    436 done:
    437 	res[1] = fp->fp_mant[3];
    438 	return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
    439 }
    440 
    441 /*
    442  * fpn -> extended (32 bit high-order result returned; low-order fraction
    443  * words left in res[1]..res[3]).  Like ftod, which is like ftos ... but
    444  * our internal format *is* extended precision, plus 2 bits for guard/round,
    445  * so we can avoid a small bit of work.
    446  */
    447 u_int
    448 fpu_ftoq(fe, fp, res)
    449 	struct fpemu *fe;
    450 	register struct fpn *fp;
    451 	u_int *res;
    452 {
    453 	register u_int sign = fp->fp_sign << 31;
    454 	register int exp;
    455 
    456 #define	EXT_EXP(e)	((e) << (EXT_FRACBITS & 31))
    457 #define	EXT_MASK	(EXT_EXP(1) - 1)
    458 
    459 	if (ISNAN(fp)) {
    460 		(void) fpu_shr(fp, 2);	/* since we are not rounding */
    461 		exp = EXT_EXP_INFNAN;
    462 		goto done;
    463 	}
    464 	if (ISINF(fp)) {
    465 		sign |= EXT_EXP(EXT_EXP_INFNAN);
    466 		goto zero;
    467 	}
    468 	if (ISZERO(fp)) {
    469 zero:		res[1] = res[2] = res[3] = 0;
    470 		return (sign);
    471 	}
    472 
    473 	if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) {
    474 		(void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
    475 		if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(1)) {
    476 			res[1] = res[2] = res[3] = 0;
    477 			return (sign | EXT_EXP(1) | 0);
    478 		}
    479 		if ((fe->fe_cx & FSR_NX) ||
    480 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
    481 			fe->fe_cx |= FSR_UF;
    482 		exp = 0;
    483 		goto done;
    484 	}
    485 	/* Since internal == extended, no need to shift here. */
    486 	if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(2))
    487 		exp++;
    488 	if (exp >= EXT_EXP_INFNAN) {
    489 		fe->fe_cx |= FSR_OF | FSR_NX;
    490 		if (toinf(fe, sign)) {
    491 			res[1] = res[2] = res[3] = 0;
    492 			return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
    493 		}
    494 		res[1] = res[2] = res[3] = ~0;
    495 		return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
    496 	}
    497 done:
    498 	res[1] = fp->fp_mant[1];
    499 	res[2] = fp->fp_mant[2];
    500 	res[3] = fp->fp_mant[3];
    501 	return (sign | EXT_EXP(exp) | (fp->fp_mant[0] & EXT_MASK));
    502 }
    503 
    504 /*
    505  * Implode an fpn, writing the result into the given space.
    506  */
    507 void
    508 fpu_implode(fe, fp, type, space)
    509 	struct fpemu *fe;
    510 	register struct fpn *fp;
    511 	int type;
    512 	register u_int *space;
    513 {
    514 
    515 	DPRINTF(FPE_REG, ("\n imploding: "));
    516 	DUMPFPN(FPE_REG, fp);
    517 	DPRINTF(FPE_REG, ("\n"));
    518 
    519 	switch (type) {
    520 
    521 #ifdef SUN4U
    522 	case FTYPE_LNG:
    523 		space[0] = fpu_ftox(fe, fp, space);
    524 		break;
    525 #endif /* SUN4U */
    526 
    527 	case FTYPE_INT:
    528 		space[0] = fpu_ftoi(fe, fp);
    529 		break;
    530 
    531 	case FTYPE_SNG:
    532 		space[0] = fpu_ftos(fe, fp);
    533 		break;
    534 
    535 	case FTYPE_DBL:
    536 		space[0] = fpu_ftod(fe, fp, space);
    537 		break;
    538 
    539 	case FTYPE_EXT:
    540 		/* funky rounding precision options ?? */
    541 		space[0] = fpu_ftoq(fe, fp, space);
    542 		break;
    543 
    544 	default:
    545 		panic("fpu_implode");
    546 	}
    547 #ifdef SUN4U
    548 	DPRINTF(FPE_REG, ("fpu_implode: %x %x %x %x\n",
    549 		space[0], space[1], space[2], space[3]));
    550 #else
    551 	DPRINTF(FPE_REG, ("fpu_implode: %x %x\n",
    552 		space[0], space[1]));
    553 #endif
    554 }
    555