fpu_implode.c revision 1.2 1 /* $NetBSD: fpu_implode.c,v 1.2 1994/11/20 20:52:42 deraadt Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93
45 */
46
47 /*
48 * FPU subroutines: `implode' internal format numbers into the machine's
49 * `packed binary' format.
50 */
51
52 #include <sys/types.h>
53
54 #include <machine/ieee.h>
55 #include <machine/instr.h>
56 #include <machine/reg.h>
57
58 #include <sparc/fpu/fpu_arith.h>
59 #include <sparc/fpu/fpu_emu.h>
60
61 /*
62 * Round a number (algorithm from Motorola MC68882 manual, modified for
63 * our internal format). Set inexact exception if rounding is required.
64 * Return true iff we rounded up.
65 *
66 * After rounding, we discard the guard and round bits by shifting right
67 * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
68 * This saves effort later.
69 *
70 * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
71 * responsibility to fix this if necessary.
72 */
73 static int
74 round(register struct fpemu *fe, register struct fpn *fp)
75 {
76 register u_int m0, m1, m2, m3;
77 register int gr, s, ret;
78
79 m0 = fp->fp_mant[0];
80 m1 = fp->fp_mant[1];
81 m2 = fp->fp_mant[2];
82 m3 = fp->fp_mant[3];
83 gr = m3 & 3;
84 s = fp->fp_sticky;
85
86 /* mant >>= FP_NG */
87 m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
88 m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
89 m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
90 m0 >>= FP_NG;
91
92 if ((gr | s) == 0) /* result is exact: no rounding needed */
93 goto rounddown;
94
95 fe->fe_cx |= FSR_NX; /* inexact */
96
97 /* Go to rounddown to round down; break to round up. */
98 switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
99
100 case FSR_RD_RN:
101 default:
102 /*
103 * Round only if guard is set (gr & 2). If guard is set,
104 * but round & sticky both clear, then we want to round
105 * but have a tie, so round to even, i.e., add 1 iff odd.
106 */
107 if ((gr & 2) == 0)
108 goto rounddown;
109 if ((gr & 1) || fp->fp_sticky || (m3 & 1))
110 break;
111 goto rounddown;
112
113 case FSR_RD_RZ:
114 /* Round towards zero, i.e., down. */
115 goto rounddown;
116
117 case FSR_RD_RM:
118 /* Round towards -Inf: up if negative, down if positive. */
119 if (fp->fp_sign)
120 break;
121 goto rounddown;
122
123 case FSR_RD_RP:
124 /* Round towards +Inf: up if positive, down otherwise. */
125 if (!fp->fp_sign)
126 break;
127 goto rounddown;
128 }
129
130 /* Bump low bit of mantissa, with carry. */
131 #ifdef sparc /* ``cheating'' (left out FPU_DECL_CARRY; know this is faster) */
132 FPU_ADDS(m3, m3, 1);
133 FPU_ADDCS(m2, m2, 0);
134 FPU_ADDCS(m1, m1, 0);
135 FPU_ADDC(m0, m0, 0);
136 #else
137 if (++m3 == 0 && ++m2 == 0 && ++m1 == 0)
138 m0++;
139 #endif
140 fp->fp_mant[0] = m0;
141 fp->fp_mant[1] = m1;
142 fp->fp_mant[2] = m2;
143 fp->fp_mant[3] = m3;
144 return (1);
145
146 rounddown:
147 fp->fp_mant[0] = m0;
148 fp->fp_mant[1] = m1;
149 fp->fp_mant[2] = m2;
150 fp->fp_mant[3] = m3;
151 return (0);
152 }
153
154 /*
155 * For overflow: return true if overflow is to go to +/-Inf, according
156 * to the sign of the overflowing result. If false, overflow is to go
157 * to the largest magnitude value instead.
158 */
159 static int
160 toinf(struct fpemu *fe, int sign)
161 {
162 int inf;
163
164 /* look at rounding direction */
165 switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
166
167 default:
168 case FSR_RD_RN: /* the nearest value is always Inf */
169 inf = 1;
170 break;
171
172 case FSR_RD_RZ: /* toward 0 => never towards Inf */
173 inf = 0;
174 break;
175
176 case FSR_RD_RP: /* toward +Inf iff positive */
177 inf = sign == 0;
178 break;
179
180 case FSR_RD_RM: /* toward -Inf iff negative */
181 inf = sign;
182 break;
183 }
184 return (inf);
185 }
186
187 /*
188 * fpn -> int (int value returned as return value).
189 *
190 * N.B.: this conversion always rounds towards zero (this is a peculiarity
191 * of the SPARC instruction set).
192 */
193 u_int
194 fpu_ftoi(fe, fp)
195 struct fpemu *fe;
196 register struct fpn *fp;
197 {
198 register u_int i;
199 register int sign, exp;
200
201 sign = fp->fp_sign;
202 switch (fp->fp_class) {
203
204 case FPC_ZERO:
205 return (0);
206
207 case FPC_NUM:
208 /*
209 * If exp >= 2^32, overflow. Otherwise shift value right
210 * into last mantissa word (this will not exceed 0xffffffff),
211 * shifting any guard and round bits out into the sticky
212 * bit. Then ``round'' towards zero, i.e., just set an
213 * inexact exception if sticky is set (see round()).
214 * If the result is > 0x80000000, or is positive and equals
215 * 0x80000000, overflow; otherwise the last fraction word
216 * is the result.
217 */
218 if ((exp = fp->fp_exp) >= 32)
219 break;
220 /* NB: the following includes exp < 0 cases */
221 if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
222 fe->fe_cx |= FSR_NX;
223 i = fp->fp_mant[3];
224 if (i >= ((u_int)0x80000000 + sign))
225 break;
226 return (sign ? -i : i);
227
228 default: /* Inf, qNaN, sNaN */
229 break;
230 }
231 /* overflow: replace any inexact exception with invalid */
232 fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;
233 return (0x7fffffff + sign);
234 }
235
236 /*
237 * fpn -> single (32 bit single returned as return value).
238 * We assume <= 29 bits in a single-precision fraction (1.f part).
239 */
240 u_int
241 fpu_ftos(fe, fp)
242 struct fpemu *fe;
243 register struct fpn *fp;
244 {
245 register u_int sign = fp->fp_sign << 31;
246 register int exp;
247
248 #define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */
249 #define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */
250
251 /* Take care of non-numbers first. */
252 if (ISNAN(fp)) {
253 /*
254 * Preserve upper bits of NaN, per SPARC V8 appendix N.
255 * Note that fp->fp_mant[0] has the quiet bit set,
256 * even if it is classified as a signalling NaN.
257 */
258 (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
259 exp = SNG_EXP_INFNAN;
260 goto done;
261 }
262 if (ISINF(fp))
263 return (sign | SNG_EXP(SNG_EXP_INFNAN));
264 if (ISZERO(fp))
265 return (sign);
266
267 /*
268 * Normals (including subnormals). Drop all the fraction bits
269 * (including the explicit ``implied'' 1 bit) down into the
270 * single-precision range. If the number is subnormal, move
271 * the ``implied'' 1 into the explicit range as well, and shift
272 * right to introduce leading zeroes. Rounding then acts
273 * differently for normals and subnormals: the largest subnormal
274 * may round to the smallest normal (1.0 x 2^minexp), or may
275 * remain subnormal. In the latter case, signal an underflow
276 * if the result was inexact or if underflow traps are enabled.
277 *
278 * Rounding a normal, on the other hand, always produces another
279 * normal (although either way the result might be too big for
280 * single precision, and cause an overflow). If rounding a
281 * normal produces 2.0 in the fraction, we need not adjust that
282 * fraction at all, since both 1.0 and 2.0 are zero under the
283 * fraction mask.
284 *
285 * Note that the guard and round bits vanish from the number after
286 * rounding.
287 */
288 if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) { /* subnormal */
289 /* -NG for g,r; -SNG_FRACBITS-exp for fraction */
290 (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
291 if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
292 return (sign | SNG_EXP(1) | 0);
293 if ((fe->fe_cx & FSR_NX) ||
294 (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
295 fe->fe_cx |= FSR_UF;
296 return (sign | SNG_EXP(0) | fp->fp_mant[3]);
297 }
298 /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
299 (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
300 #ifdef DIAGNOSTIC
301 if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
302 panic("fpu_ftos");
303 #endif
304 if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
305 exp++;
306 if (exp >= SNG_EXP_INFNAN) {
307 /* overflow to inf or to max single */
308 fe->fe_cx |= FSR_OF | FSR_NX;
309 if (toinf(fe, sign))
310 return (sign | SNG_EXP(SNG_EXP_INFNAN));
311 return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
312 }
313 done:
314 /* phew, made it */
315 return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
316 }
317
318 /*
319 * fpn -> double (32 bit high-order result returned; 32-bit low order result
320 * left in res[1]). Assumes <= 61 bits in double precision fraction.
321 *
322 * This code mimics fpu_ftos; see it for comments.
323 */
324 u_int
325 fpu_ftod(fe, fp, res)
326 struct fpemu *fe;
327 register struct fpn *fp;
328 u_int *res;
329 {
330 register u_int sign = fp->fp_sign << 31;
331 register int exp;
332
333 #define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31))
334 #define DBL_MASK (DBL_EXP(1) - 1)
335
336 if (ISNAN(fp)) {
337 (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
338 exp = DBL_EXP_INFNAN;
339 goto done;
340 }
341 if (ISINF(fp)) {
342 sign |= DBL_EXP(DBL_EXP_INFNAN);
343 goto zero;
344 }
345 if (ISZERO(fp)) {
346 zero: res[1] = 0;
347 return (sign);
348 }
349
350 if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
351 (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
352 if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
353 res[1] = 0;
354 return (sign | DBL_EXP(1) | 0);
355 }
356 if ((fe->fe_cx & FSR_NX) ||
357 (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
358 fe->fe_cx |= FSR_UF;
359 exp = 0;
360 goto done;
361 }
362 (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
363 if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
364 exp++;
365 if (exp >= DBL_EXP_INFNAN) {
366 fe->fe_cx |= FSR_OF | FSR_NX;
367 if (toinf(fe, sign)) {
368 res[1] = 0;
369 return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
370 }
371 res[1] = ~0;
372 return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
373 }
374 done:
375 res[1] = fp->fp_mant[3];
376 return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
377 }
378
379 /*
380 * fpn -> extended (32 bit high-order result returned; low-order fraction
381 * words left in res[1]..res[3]). Like ftod, which is like ftos ... but
382 * our internal format *is* extended precision, plus 2 bits for guard/round,
383 * so we can avoid a small bit of work.
384 */
385 u_int
386 fpu_ftox(fe, fp, res)
387 struct fpemu *fe;
388 register struct fpn *fp;
389 u_int *res;
390 {
391 register u_int sign = fp->fp_sign << 31;
392 register int exp;
393
394 #define EXT_EXP(e) ((e) << (EXT_FRACBITS & 31))
395 #define EXT_MASK (EXT_EXP(1) - 1)
396
397 if (ISNAN(fp)) {
398 (void) fpu_shr(fp, 2); /* since we are not rounding */
399 exp = EXT_EXP_INFNAN;
400 goto done;
401 }
402 if (ISINF(fp)) {
403 sign |= EXT_EXP(EXT_EXP_INFNAN);
404 goto zero;
405 }
406 if (ISZERO(fp)) {
407 zero: res[1] = res[2] = res[3] = 0;
408 return (sign);
409 }
410
411 if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) {
412 (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
413 if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(1)) {
414 res[1] = res[2] = res[3] = 0;
415 return (sign | EXT_EXP(1) | 0);
416 }
417 if ((fe->fe_cx & FSR_NX) ||
418 (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
419 fe->fe_cx |= FSR_UF;
420 exp = 0;
421 goto done;
422 }
423 /* Since internal == extended, no need to shift here. */
424 if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(2))
425 exp++;
426 if (exp >= EXT_EXP_INFNAN) {
427 fe->fe_cx |= FSR_OF | FSR_NX;
428 if (toinf(fe, sign)) {
429 res[1] = res[2] = res[3] = 0;
430 return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
431 }
432 res[1] = res[2] = res[3] = ~0;
433 return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
434 }
435 done:
436 res[1] = fp->fp_mant[1];
437 res[2] = fp->fp_mant[2];
438 res[3] = fp->fp_mant[3];
439 return (sign | EXT_EXP(exp) | (fp->fp_mant[0] & EXT_MASK));
440 }
441
442 /*
443 * Implode an fpn, writing the result into the given space.
444 */
445 void
446 fpu_implode(fe, fp, type, space)
447 struct fpemu *fe;
448 register struct fpn *fp;
449 int type;
450 register u_int *space;
451 {
452
453 switch (type) {
454
455 case FTYPE_INT:
456 space[0] = fpu_ftoi(fe, fp);
457 break;
458
459 case FTYPE_SNG:
460 space[0] = fpu_ftos(fe, fp);
461 break;
462
463 case FTYPE_DBL:
464 space[0] = fpu_ftod(fe, fp, space);
465 break;
466
467 case FTYPE_EXT:
468 /* funky rounding precision options ?? */
469 space[0] = fpu_ftox(fe, fp, space);
470 break;
471
472 default:
473 panic("fpu_implode");
474 }
475 }
476