fpu_implode.c revision 1.3 1 /* $NetBSD: fpu_implode.c,v 1.3 1996/03/14 19:41:59 christos Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93
45 */
46
47 /*
48 * FPU subroutines: `implode' internal format numbers into the machine's
49 * `packed binary' format.
50 */
51
52 #include <sys/types.h>
53 #include <sys/systm.h>
54
55 #include <machine/ieee.h>
56 #include <machine/instr.h>
57 #include <machine/reg.h>
58
59 #include <sparc/fpu/fpu_arith.h>
60 #include <sparc/fpu/fpu_emu.h>
61 #include <sparc/fpu/fpu_extern.h>
62
63 static int round __P((register struct fpemu *, register struct fpn *));
64 static int toinf __P((struct fpemu *, int));
65
66 /*
67 * Round a number (algorithm from Motorola MC68882 manual, modified for
68 * our internal format). Set inexact exception if rounding is required.
69 * Return true iff we rounded up.
70 *
71 * After rounding, we discard the guard and round bits by shifting right
72 * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
73 * This saves effort later.
74 *
75 * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
76 * responsibility to fix this if necessary.
77 */
78 static int
79 round(register struct fpemu *fe, register struct fpn *fp)
80 {
81 register u_int m0, m1, m2, m3;
82 register int gr, s;
83
84 m0 = fp->fp_mant[0];
85 m1 = fp->fp_mant[1];
86 m2 = fp->fp_mant[2];
87 m3 = fp->fp_mant[3];
88 gr = m3 & 3;
89 s = fp->fp_sticky;
90
91 /* mant >>= FP_NG */
92 m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
93 m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
94 m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
95 m0 >>= FP_NG;
96
97 if ((gr | s) == 0) /* result is exact: no rounding needed */
98 goto rounddown;
99
100 fe->fe_cx |= FSR_NX; /* inexact */
101
102 /* Go to rounddown to round down; break to round up. */
103 switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
104
105 case FSR_RD_RN:
106 default:
107 /*
108 * Round only if guard is set (gr & 2). If guard is set,
109 * but round & sticky both clear, then we want to round
110 * but have a tie, so round to even, i.e., add 1 iff odd.
111 */
112 if ((gr & 2) == 0)
113 goto rounddown;
114 if ((gr & 1) || fp->fp_sticky || (m3 & 1))
115 break;
116 goto rounddown;
117
118 case FSR_RD_RZ:
119 /* Round towards zero, i.e., down. */
120 goto rounddown;
121
122 case FSR_RD_RM:
123 /* Round towards -Inf: up if negative, down if positive. */
124 if (fp->fp_sign)
125 break;
126 goto rounddown;
127
128 case FSR_RD_RP:
129 /* Round towards +Inf: up if positive, down otherwise. */
130 if (!fp->fp_sign)
131 break;
132 goto rounddown;
133 }
134
135 /* Bump low bit of mantissa, with carry. */
136 #ifdef sparc /* ``cheating'' (left out FPU_DECL_CARRY; know this is faster) */
137 FPU_ADDS(m3, m3, 1);
138 FPU_ADDCS(m2, m2, 0);
139 FPU_ADDCS(m1, m1, 0);
140 FPU_ADDC(m0, m0, 0);
141 #else
142 if (++m3 == 0 && ++m2 == 0 && ++m1 == 0)
143 m0++;
144 #endif
145 fp->fp_mant[0] = m0;
146 fp->fp_mant[1] = m1;
147 fp->fp_mant[2] = m2;
148 fp->fp_mant[3] = m3;
149 return (1);
150
151 rounddown:
152 fp->fp_mant[0] = m0;
153 fp->fp_mant[1] = m1;
154 fp->fp_mant[2] = m2;
155 fp->fp_mant[3] = m3;
156 return (0);
157 }
158
159 /*
160 * For overflow: return true if overflow is to go to +/-Inf, according
161 * to the sign of the overflowing result. If false, overflow is to go
162 * to the largest magnitude value instead.
163 */
164 static int
165 toinf(struct fpemu *fe, int sign)
166 {
167 int inf;
168
169 /* look at rounding direction */
170 switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
171
172 default:
173 case FSR_RD_RN: /* the nearest value is always Inf */
174 inf = 1;
175 break;
176
177 case FSR_RD_RZ: /* toward 0 => never towards Inf */
178 inf = 0;
179 break;
180
181 case FSR_RD_RP: /* toward +Inf iff positive */
182 inf = sign == 0;
183 break;
184
185 case FSR_RD_RM: /* toward -Inf iff negative */
186 inf = sign;
187 break;
188 }
189 return (inf);
190 }
191
192 /*
193 * fpn -> int (int value returned as return value).
194 *
195 * N.B.: this conversion always rounds towards zero (this is a peculiarity
196 * of the SPARC instruction set).
197 */
198 u_int
199 fpu_ftoi(fe, fp)
200 struct fpemu *fe;
201 register struct fpn *fp;
202 {
203 register u_int i;
204 register int sign, exp;
205
206 sign = fp->fp_sign;
207 switch (fp->fp_class) {
208
209 case FPC_ZERO:
210 return (0);
211
212 case FPC_NUM:
213 /*
214 * If exp >= 2^32, overflow. Otherwise shift value right
215 * into last mantissa word (this will not exceed 0xffffffff),
216 * shifting any guard and round bits out into the sticky
217 * bit. Then ``round'' towards zero, i.e., just set an
218 * inexact exception if sticky is set (see round()).
219 * If the result is > 0x80000000, or is positive and equals
220 * 0x80000000, overflow; otherwise the last fraction word
221 * is the result.
222 */
223 if ((exp = fp->fp_exp) >= 32)
224 break;
225 /* NB: the following includes exp < 0 cases */
226 if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
227 fe->fe_cx |= FSR_NX;
228 i = fp->fp_mant[3];
229 if (i >= ((u_int)0x80000000 + sign))
230 break;
231 return (sign ? -i : i);
232
233 default: /* Inf, qNaN, sNaN */
234 break;
235 }
236 /* overflow: replace any inexact exception with invalid */
237 fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;
238 return (0x7fffffff + sign);
239 }
240
241 /*
242 * fpn -> single (32 bit single returned as return value).
243 * We assume <= 29 bits in a single-precision fraction (1.f part).
244 */
245 u_int
246 fpu_ftos(fe, fp)
247 struct fpemu *fe;
248 register struct fpn *fp;
249 {
250 register u_int sign = fp->fp_sign << 31;
251 register int exp;
252
253 #define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */
254 #define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */
255
256 /* Take care of non-numbers first. */
257 if (ISNAN(fp)) {
258 /*
259 * Preserve upper bits of NaN, per SPARC V8 appendix N.
260 * Note that fp->fp_mant[0] has the quiet bit set,
261 * even if it is classified as a signalling NaN.
262 */
263 (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
264 exp = SNG_EXP_INFNAN;
265 goto done;
266 }
267 if (ISINF(fp))
268 return (sign | SNG_EXP(SNG_EXP_INFNAN));
269 if (ISZERO(fp))
270 return (sign);
271
272 /*
273 * Normals (including subnormals). Drop all the fraction bits
274 * (including the explicit ``implied'' 1 bit) down into the
275 * single-precision range. If the number is subnormal, move
276 * the ``implied'' 1 into the explicit range as well, and shift
277 * right to introduce leading zeroes. Rounding then acts
278 * differently for normals and subnormals: the largest subnormal
279 * may round to the smallest normal (1.0 x 2^minexp), or may
280 * remain subnormal. In the latter case, signal an underflow
281 * if the result was inexact or if underflow traps are enabled.
282 *
283 * Rounding a normal, on the other hand, always produces another
284 * normal (although either way the result might be too big for
285 * single precision, and cause an overflow). If rounding a
286 * normal produces 2.0 in the fraction, we need not adjust that
287 * fraction at all, since both 1.0 and 2.0 are zero under the
288 * fraction mask.
289 *
290 * Note that the guard and round bits vanish from the number after
291 * rounding.
292 */
293 if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) { /* subnormal */
294 /* -NG for g,r; -SNG_FRACBITS-exp for fraction */
295 (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
296 if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
297 return (sign | SNG_EXP(1) | 0);
298 if ((fe->fe_cx & FSR_NX) ||
299 (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
300 fe->fe_cx |= FSR_UF;
301 return (sign | SNG_EXP(0) | fp->fp_mant[3]);
302 }
303 /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
304 (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
305 #ifdef DIAGNOSTIC
306 if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
307 panic("fpu_ftos");
308 #endif
309 if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
310 exp++;
311 if (exp >= SNG_EXP_INFNAN) {
312 /* overflow to inf or to max single */
313 fe->fe_cx |= FSR_OF | FSR_NX;
314 if (toinf(fe, sign))
315 return (sign | SNG_EXP(SNG_EXP_INFNAN));
316 return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
317 }
318 done:
319 /* phew, made it */
320 return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
321 }
322
323 /*
324 * fpn -> double (32 bit high-order result returned; 32-bit low order result
325 * left in res[1]). Assumes <= 61 bits in double precision fraction.
326 *
327 * This code mimics fpu_ftos; see it for comments.
328 */
329 u_int
330 fpu_ftod(fe, fp, res)
331 struct fpemu *fe;
332 register struct fpn *fp;
333 u_int *res;
334 {
335 register u_int sign = fp->fp_sign << 31;
336 register int exp;
337
338 #define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31))
339 #define DBL_MASK (DBL_EXP(1) - 1)
340
341 if (ISNAN(fp)) {
342 (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
343 exp = DBL_EXP_INFNAN;
344 goto done;
345 }
346 if (ISINF(fp)) {
347 sign |= DBL_EXP(DBL_EXP_INFNAN);
348 goto zero;
349 }
350 if (ISZERO(fp)) {
351 zero: res[1] = 0;
352 return (sign);
353 }
354
355 if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
356 (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
357 if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
358 res[1] = 0;
359 return (sign | DBL_EXP(1) | 0);
360 }
361 if ((fe->fe_cx & FSR_NX) ||
362 (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
363 fe->fe_cx |= FSR_UF;
364 exp = 0;
365 goto done;
366 }
367 (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
368 if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
369 exp++;
370 if (exp >= DBL_EXP_INFNAN) {
371 fe->fe_cx |= FSR_OF | FSR_NX;
372 if (toinf(fe, sign)) {
373 res[1] = 0;
374 return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
375 }
376 res[1] = ~0;
377 return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
378 }
379 done:
380 res[1] = fp->fp_mant[3];
381 return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
382 }
383
384 /*
385 * fpn -> extended (32 bit high-order result returned; low-order fraction
386 * words left in res[1]..res[3]). Like ftod, which is like ftos ... but
387 * our internal format *is* extended precision, plus 2 bits for guard/round,
388 * so we can avoid a small bit of work.
389 */
390 u_int
391 fpu_ftox(fe, fp, res)
392 struct fpemu *fe;
393 register struct fpn *fp;
394 u_int *res;
395 {
396 register u_int sign = fp->fp_sign << 31;
397 register int exp;
398
399 #define EXT_EXP(e) ((e) << (EXT_FRACBITS & 31))
400 #define EXT_MASK (EXT_EXP(1) - 1)
401
402 if (ISNAN(fp)) {
403 (void) fpu_shr(fp, 2); /* since we are not rounding */
404 exp = EXT_EXP_INFNAN;
405 goto done;
406 }
407 if (ISINF(fp)) {
408 sign |= EXT_EXP(EXT_EXP_INFNAN);
409 goto zero;
410 }
411 if (ISZERO(fp)) {
412 zero: res[1] = res[2] = res[3] = 0;
413 return (sign);
414 }
415
416 if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) {
417 (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
418 if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(1)) {
419 res[1] = res[2] = res[3] = 0;
420 return (sign | EXT_EXP(1) | 0);
421 }
422 if ((fe->fe_cx & FSR_NX) ||
423 (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
424 fe->fe_cx |= FSR_UF;
425 exp = 0;
426 goto done;
427 }
428 /* Since internal == extended, no need to shift here. */
429 if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(2))
430 exp++;
431 if (exp >= EXT_EXP_INFNAN) {
432 fe->fe_cx |= FSR_OF | FSR_NX;
433 if (toinf(fe, sign)) {
434 res[1] = res[2] = res[3] = 0;
435 return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
436 }
437 res[1] = res[2] = res[3] = ~0;
438 return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
439 }
440 done:
441 res[1] = fp->fp_mant[1];
442 res[2] = fp->fp_mant[2];
443 res[3] = fp->fp_mant[3];
444 return (sign | EXT_EXP(exp) | (fp->fp_mant[0] & EXT_MASK));
445 }
446
447 /*
448 * Implode an fpn, writing the result into the given space.
449 */
450 void
451 fpu_implode(fe, fp, type, space)
452 struct fpemu *fe;
453 register struct fpn *fp;
454 int type;
455 register u_int *space;
456 {
457
458 switch (type) {
459
460 case FTYPE_INT:
461 space[0] = fpu_ftoi(fe, fp);
462 break;
463
464 case FTYPE_SNG:
465 space[0] = fpu_ftos(fe, fp);
466 break;
467
468 case FTYPE_DBL:
469 space[0] = fpu_ftod(fe, fp, space);
470 break;
471
472 case FTYPE_EXT:
473 /* funky rounding precision options ?? */
474 space[0] = fpu_ftox(fe, fp, space);
475 break;
476
477 default:
478 panic("fpu_implode");
479 }
480 }
481