Home | History | Annotate | Line # | Download | only in fpu
fpu_implode.c revision 1.7
      1 /*	$NetBSD: fpu_implode.c,v 1.7 2000/08/03 18:32:08 eeh Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  * All advertising materials mentioning features or use of this software
     12  * must display the following acknowledgement:
     13  *	This product includes software developed by the University of
     14  *	California, Lawrence Berkeley Laboratory.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. All advertising materials mentioning features or use of this software
     25  *    must display the following acknowledgement:
     26  *	This product includes software developed by the University of
     27  *	California, Berkeley and its contributors.
     28  * 4. Neither the name of the University nor the names of its contributors
     29  *    may be used to endorse or promote products derived from this software
     30  *    without specific prior written permission.
     31  *
     32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     42  * SUCH DAMAGE.
     43  *
     44  *	@(#)fpu_implode.c	8.1 (Berkeley) 6/11/93
     45  */
     46 
     47 /*
     48  * FPU subroutines: `implode' internal format numbers into the machine's
     49  * `packed binary' format.
     50  */
     51 
     52 #include <sys/types.h>
     53 #include <sys/systm.h>
     54 
     55 #include <machine/ieee.h>
     56 #include <machine/instr.h>
     57 #include <machine/reg.h>
     58 
     59 #include <sparc/fpu/fpu_arith.h>
     60 #include <sparc/fpu/fpu_emu.h>
     61 #include <sparc/fpu/fpu_extern.h>
     62 
     63 static int round __P((register struct fpemu *, register struct fpn *));
     64 static int toinf __P((struct fpemu *, int));
     65 
     66 /*
     67  * Round a number (algorithm from Motorola MC68882 manual, modified for
     68  * our internal format).  Set inexact exception if rounding is required.
     69  * Return true iff we rounded up.
     70  *
     71  * After rounding, we discard the guard and round bits by shifting right
     72  * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
     73  * This saves effort later.
     74  *
     75  * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
     76  * responsibility to fix this if necessary.
     77  */
     78 static int
     79 round(register struct fpemu *fe, register struct fpn *fp)
     80 {
     81 	register u_int m0, m1, m2, m3;
     82 	register int gr, s;
     83 
     84 	m0 = fp->fp_mant[0];
     85 	m1 = fp->fp_mant[1];
     86 	m2 = fp->fp_mant[2];
     87 	m3 = fp->fp_mant[3];
     88 	gr = m3 & 3;
     89 	s = fp->fp_sticky;
     90 
     91 	/* mant >>= FP_NG */
     92 	m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
     93 	m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
     94 	m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
     95 	m0 >>= FP_NG;
     96 
     97 	if ((gr | s) == 0)	/* result is exact: no rounding needed */
     98 		goto rounddown;
     99 
    100 	fe->fe_cx |= FSR_NX;	/* inexact */
    101 
    102 	/* Go to rounddown to round down; break to round up. */
    103 	switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
    104 
    105 	case FSR_RD_RN:
    106 	default:
    107 		/*
    108 		 * Round only if guard is set (gr & 2).  If guard is set,
    109 		 * but round & sticky both clear, then we want to round
    110 		 * but have a tie, so round to even, i.e., add 1 iff odd.
    111 		 */
    112 		if ((gr & 2) == 0)
    113 			goto rounddown;
    114 		if ((gr & 1) || fp->fp_sticky || (m3 & 1))
    115 			break;
    116 		goto rounddown;
    117 
    118 	case FSR_RD_RZ:
    119 		/* Round towards zero, i.e., down. */
    120 		goto rounddown;
    121 
    122 	case FSR_RD_RM:
    123 		/* Round towards -Inf: up if negative, down if positive. */
    124 		if (fp->fp_sign)
    125 			break;
    126 		goto rounddown;
    127 
    128 	case FSR_RD_RP:
    129 		/* Round towards +Inf: up if positive, down otherwise. */
    130 		if (!fp->fp_sign)
    131 			break;
    132 		goto rounddown;
    133 	}
    134 
    135 	/* Bump low bit of mantissa, with carry. */
    136 	FPU_ADDS(m3, m3, 1);
    137 	FPU_ADDCS(m2, m2, 0);
    138 	FPU_ADDCS(m1, m1, 0);
    139 	FPU_ADDC(m0, m0, 0);
    140 	fp->fp_mant[0] = m0;
    141 	fp->fp_mant[1] = m1;
    142 	fp->fp_mant[2] = m2;
    143 	fp->fp_mant[3] = m3;
    144 	return (1);
    145 
    146 rounddown:
    147 	fp->fp_mant[0] = m0;
    148 	fp->fp_mant[1] = m1;
    149 	fp->fp_mant[2] = m2;
    150 	fp->fp_mant[3] = m3;
    151 	return (0);
    152 }
    153 
    154 /*
    155  * For overflow: return true if overflow is to go to +/-Inf, according
    156  * to the sign of the overflowing result.  If false, overflow is to go
    157  * to the largest magnitude value instead.
    158  */
    159 static int
    160 toinf(struct fpemu *fe, int sign)
    161 {
    162 	int inf;
    163 
    164 	/* look at rounding direction */
    165 	switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
    166 
    167 	default:
    168 	case FSR_RD_RN:		/* the nearest value is always Inf */
    169 		inf = 1;
    170 		break;
    171 
    172 	case FSR_RD_RZ:		/* toward 0 => never towards Inf */
    173 		inf = 0;
    174 		break;
    175 
    176 	case FSR_RD_RP:		/* toward +Inf iff positive */
    177 		inf = sign == 0;
    178 		break;
    179 
    180 	case FSR_RD_RM:		/* toward -Inf iff negative */
    181 		inf = sign;
    182 		break;
    183 	}
    184 	return (inf);
    185 }
    186 
    187 /*
    188  * fpn -> int (int value returned as return value).
    189  *
    190  * N.B.: this conversion always rounds towards zero (this is a peculiarity
    191  * of the SPARC instruction set).
    192  */
    193 u_int
    194 fpu_ftoi(fe, fp)
    195 	struct fpemu *fe;
    196 	register struct fpn *fp;
    197 {
    198 	register u_int i;
    199 	register int sign, exp;
    200 
    201 	sign = fp->fp_sign;
    202 	switch (fp->fp_class) {
    203 
    204 	case FPC_ZERO:
    205 		return (0);
    206 
    207 	case FPC_NUM:
    208 		/*
    209 		 * If exp >= 2^32, overflow.  Otherwise shift value right
    210 		 * into last mantissa word (this will not exceed 0xffffffff),
    211 		 * shifting any guard and round bits out into the sticky
    212 		 * bit.  Then ``round'' towards zero, i.e., just set an
    213 		 * inexact exception if sticky is set (see round()).
    214 		 * If the result is > 0x80000000, or is positive and equals
    215 		 * 0x80000000, overflow; otherwise the last fraction word
    216 		 * is the result.
    217 		 */
    218 		if ((exp = fp->fp_exp) >= 32)
    219 			break;
    220 		/* NB: the following includes exp < 0 cases */
    221 		if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
    222 			fe->fe_cx |= FSR_NX;
    223 		i = fp->fp_mant[3];
    224 		if (i >= ((u_int)0x80000000 + sign))
    225 			break;
    226 		return (sign ? -i : i);
    227 
    228 	default:		/* Inf, qNaN, sNaN */
    229 		break;
    230 	}
    231 	/* overflow: replace any inexact exception with invalid */
    232 	fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;
    233 	return (0x7fffffff + sign);
    234 }
    235 
    236 #ifdef SUN4U
    237 /*
    238  * fpn -> extended int (high bits of int value returned as return value).
    239  *
    240  * N.B.: this conversion always rounds towards zero (this is a peculiarity
    241  * of the SPARC instruction set).
    242  */
    243 u_int
    244 fpu_ftox(fe, fp, res)
    245 	struct fpemu *fe;
    246 	register struct fpn *fp;
    247 	u_int *res;
    248 {
    249 	register u_int64_t i;
    250 	register int sign, exp;
    251 
    252 	sign = fp->fp_sign;
    253 	switch (fp->fp_class) {
    254 
    255 	case FPC_ZERO:
    256 		res[1] = 0;
    257 		return (0);
    258 
    259 	case FPC_NUM:
    260 		/*
    261 		 * If exp >= 2^64, overflow.  Otherwise shift value right
    262 		 * into last mantissa word (this will not exceed 0xffffffffffffffff),
    263 		 * shifting any guard and round bits out into the sticky
    264 		 * bit.  Then ``round'' towards zero, i.e., just set an
    265 		 * inexact exception if sticky is set (see round()).
    266 		 * If the result is > 0x8000000000000000, or is positive and equals
    267 		 * 0x8000000000000000, overflow; otherwise the last fraction word
    268 		 * is the result.
    269 		 */
    270 		if ((exp = fp->fp_exp) >= 64)
    271 			break;
    272 		/* NB: the following includes exp < 0 cases */
    273 		if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
    274 			fe->fe_cx |= FSR_NX;
    275 		i = ((u_int64_t)fp->fp_mant[2]<<32)|fp->fp_mant[3];
    276 		if (i >= ((u_int64_t)0x8000000000000000LL + sign))
    277 			break;
    278 		return (sign ? -i : i);
    279 
    280 	default:		/* Inf, qNaN, sNaN */
    281 		break;
    282 	}
    283 	/* overflow: replace any inexact exception with invalid */
    284 	fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;
    285 	return (0x7fffffffffffffffLL + sign);
    286 }
    287 #endif /* SUN4U */
    288 
    289 /*
    290  * fpn -> single (32 bit single returned as return value).
    291  * We assume <= 29 bits in a single-precision fraction (1.f part).
    292  */
    293 u_int
    294 fpu_ftos(fe, fp)
    295 	struct fpemu *fe;
    296 	register struct fpn *fp;
    297 {
    298 	register u_int sign = fp->fp_sign << 31;
    299 	register int exp;
    300 
    301 #define	SNG_EXP(e)	((e) << SNG_FRACBITS)	/* makes e an exponent */
    302 #define	SNG_MASK	(SNG_EXP(1) - 1)	/* mask for fraction */
    303 
    304 	/* Take care of non-numbers first. */
    305 	if (ISNAN(fp)) {
    306 		/*
    307 		 * Preserve upper bits of NaN, per SPARC V8 appendix N.
    308 		 * Note that fp->fp_mant[0] has the quiet bit set,
    309 		 * even if it is classified as a signalling NaN.
    310 		 */
    311 		(void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
    312 		exp = SNG_EXP_INFNAN;
    313 		goto done;
    314 	}
    315 	if (ISINF(fp))
    316 		return (sign | SNG_EXP(SNG_EXP_INFNAN));
    317 	if (ISZERO(fp))
    318 		return (sign);
    319 
    320 	/*
    321 	 * Normals (including subnormals).  Drop all the fraction bits
    322 	 * (including the explicit ``implied'' 1 bit) down into the
    323 	 * single-precision range.  If the number is subnormal, move
    324 	 * the ``implied'' 1 into the explicit range as well, and shift
    325 	 * right to introduce leading zeroes.  Rounding then acts
    326 	 * differently for normals and subnormals: the largest subnormal
    327 	 * may round to the smallest normal (1.0 x 2^minexp), or may
    328 	 * remain subnormal.  In the latter case, signal an underflow
    329 	 * if the result was inexact or if underflow traps are enabled.
    330 	 *
    331 	 * Rounding a normal, on the other hand, always produces another
    332 	 * normal (although either way the result might be too big for
    333 	 * single precision, and cause an overflow).  If rounding a
    334 	 * normal produces 2.0 in the fraction, we need not adjust that
    335 	 * fraction at all, since both 1.0 and 2.0 are zero under the
    336 	 * fraction mask.
    337 	 *
    338 	 * Note that the guard and round bits vanish from the number after
    339 	 * rounding.
    340 	 */
    341 	if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) {	/* subnormal */
    342 		/* -NG for g,r; -SNG_FRACBITS-exp for fraction */
    343 		(void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
    344 		if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
    345 			return (sign | SNG_EXP(1) | 0);
    346 		if ((fe->fe_cx & FSR_NX) ||
    347 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
    348 			fe->fe_cx |= FSR_UF;
    349 		return (sign | SNG_EXP(0) | fp->fp_mant[3]);
    350 	}
    351 	/* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
    352 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
    353 #ifdef DIAGNOSTIC
    354 	if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
    355 		panic("fpu_ftos");
    356 #endif
    357 	if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
    358 		exp++;
    359 	if (exp >= SNG_EXP_INFNAN) {
    360 		/* overflow to inf or to max single */
    361 		fe->fe_cx |= FSR_OF | FSR_NX;
    362 		if (toinf(fe, sign))
    363 			return (sign | SNG_EXP(SNG_EXP_INFNAN));
    364 		return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
    365 	}
    366 done:
    367 	/* phew, made it */
    368 	return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
    369 }
    370 
    371 /*
    372  * fpn -> double (32 bit high-order result returned; 32-bit low order result
    373  * left in res[1]).  Assumes <= 61 bits in double precision fraction.
    374  *
    375  * This code mimics fpu_ftos; see it for comments.
    376  */
    377 u_int
    378 fpu_ftod(fe, fp, res)
    379 	struct fpemu *fe;
    380 	register struct fpn *fp;
    381 	u_int *res;
    382 {
    383 	register u_int sign = fp->fp_sign << 31;
    384 	register int exp;
    385 
    386 #define	DBL_EXP(e)	((e) << (DBL_FRACBITS & 31))
    387 #define	DBL_MASK	(DBL_EXP(1) - 1)
    388 
    389 	if (ISNAN(fp)) {
    390 		(void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
    391 		exp = DBL_EXP_INFNAN;
    392 		goto done;
    393 	}
    394 	if (ISINF(fp)) {
    395 		sign |= DBL_EXP(DBL_EXP_INFNAN);
    396 		goto zero;
    397 	}
    398 	if (ISZERO(fp)) {
    399 zero:		res[1] = 0;
    400 		return (sign);
    401 	}
    402 
    403 	if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
    404 		(void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
    405 		if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
    406 			res[1] = 0;
    407 			return (sign | DBL_EXP(1) | 0);
    408 		}
    409 		if ((fe->fe_cx & FSR_NX) ||
    410 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
    411 			fe->fe_cx |= FSR_UF;
    412 		exp = 0;
    413 		goto done;
    414 	}
    415 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
    416 	if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
    417 		exp++;
    418 	if (exp >= DBL_EXP_INFNAN) {
    419 		fe->fe_cx |= FSR_OF | FSR_NX;
    420 		if (toinf(fe, sign)) {
    421 			res[1] = 0;
    422 			return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
    423 		}
    424 		res[1] = ~0;
    425 		return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
    426 	}
    427 done:
    428 	res[1] = fp->fp_mant[3];
    429 	return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
    430 }
    431 
    432 /*
    433  * fpn -> extended (32 bit high-order result returned; low-order fraction
    434  * words left in res[1]..res[3]).  Like ftod, which is like ftos ... but
    435  * our internal format *is* extended precision, plus 2 bits for guard/round,
    436  * so we can avoid a small bit of work.
    437  */
    438 u_int
    439 fpu_ftoq(fe, fp, res)
    440 	struct fpemu *fe;
    441 	register struct fpn *fp;
    442 	u_int *res;
    443 {
    444 	register u_int sign = fp->fp_sign << 31;
    445 	register int exp;
    446 
    447 #define	EXT_EXP(e)	((e) << (EXT_FRACBITS & 31))
    448 #define	EXT_MASK	(EXT_EXP(1) - 1)
    449 
    450 	if (ISNAN(fp)) {
    451 		(void) fpu_shr(fp, 2);	/* since we are not rounding */
    452 		exp = EXT_EXP_INFNAN;
    453 		goto done;
    454 	}
    455 	if (ISINF(fp)) {
    456 		sign |= EXT_EXP(EXT_EXP_INFNAN);
    457 		goto zero;
    458 	}
    459 	if (ISZERO(fp)) {
    460 zero:		res[1] = res[2] = res[3] = 0;
    461 		return (sign);
    462 	}
    463 
    464 	if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) {
    465 		(void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
    466 		if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(1)) {
    467 			res[1] = res[2] = res[3] = 0;
    468 			return (sign | EXT_EXP(1) | 0);
    469 		}
    470 		if ((fe->fe_cx & FSR_NX) ||
    471 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
    472 			fe->fe_cx |= FSR_UF;
    473 		exp = 0;
    474 		goto done;
    475 	}
    476 	/* Since internal == extended, no need to shift here. */
    477 	if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(2))
    478 		exp++;
    479 	if (exp >= EXT_EXP_INFNAN) {
    480 		fe->fe_cx |= FSR_OF | FSR_NX;
    481 		if (toinf(fe, sign)) {
    482 			res[1] = res[2] = res[3] = 0;
    483 			return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
    484 		}
    485 		res[1] = res[2] = res[3] = ~0;
    486 		return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
    487 	}
    488 done:
    489 	res[1] = fp->fp_mant[1];
    490 	res[2] = fp->fp_mant[2];
    491 	res[3] = fp->fp_mant[3];
    492 	return (sign | EXT_EXP(exp) | (fp->fp_mant[0] & EXT_MASK));
    493 }
    494 
    495 /*
    496  * Implode an fpn, writing the result into the given space.
    497  */
    498 void
    499 fpu_implode(fe, fp, type, space)
    500 	struct fpemu *fe;
    501 	register struct fpn *fp;
    502 	int type;
    503 	register u_int *space;
    504 {
    505 
    506 	switch (type) {
    507 
    508 #ifdef SUN4U
    509 	case FTYPE_LNG:
    510 		space[0] = fpu_ftox(fe, fp, space);
    511 		break;
    512 #endif /* SUN4U */
    513 
    514 	case FTYPE_INT:
    515 		space[0] = fpu_ftoi(fe, fp);
    516 		break;
    517 
    518 	case FTYPE_SNG:
    519 		space[0] = fpu_ftos(fe, fp);
    520 		break;
    521 
    522 	case FTYPE_DBL:
    523 		space[0] = fpu_ftod(fe, fp, space);
    524 		break;
    525 
    526 	case FTYPE_EXT:
    527 		/* funky rounding precision options ?? */
    528 		space[0] = fpu_ftoq(fe, fp, space);
    529 		break;
    530 
    531 	default:
    532 		panic("fpu_implode");
    533 	}
    534 }
    535