fpu_implode.c revision 1.7 1 /* $NetBSD: fpu_implode.c,v 1.7 2000/08/03 18:32:08 eeh Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93
45 */
46
47 /*
48 * FPU subroutines: `implode' internal format numbers into the machine's
49 * `packed binary' format.
50 */
51
52 #include <sys/types.h>
53 #include <sys/systm.h>
54
55 #include <machine/ieee.h>
56 #include <machine/instr.h>
57 #include <machine/reg.h>
58
59 #include <sparc/fpu/fpu_arith.h>
60 #include <sparc/fpu/fpu_emu.h>
61 #include <sparc/fpu/fpu_extern.h>
62
63 static int round __P((register struct fpemu *, register struct fpn *));
64 static int toinf __P((struct fpemu *, int));
65
66 /*
67 * Round a number (algorithm from Motorola MC68882 manual, modified for
68 * our internal format). Set inexact exception if rounding is required.
69 * Return true iff we rounded up.
70 *
71 * After rounding, we discard the guard and round bits by shifting right
72 * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
73 * This saves effort later.
74 *
75 * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
76 * responsibility to fix this if necessary.
77 */
78 static int
79 round(register struct fpemu *fe, register struct fpn *fp)
80 {
81 register u_int m0, m1, m2, m3;
82 register int gr, s;
83
84 m0 = fp->fp_mant[0];
85 m1 = fp->fp_mant[1];
86 m2 = fp->fp_mant[2];
87 m3 = fp->fp_mant[3];
88 gr = m3 & 3;
89 s = fp->fp_sticky;
90
91 /* mant >>= FP_NG */
92 m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
93 m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
94 m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
95 m0 >>= FP_NG;
96
97 if ((gr | s) == 0) /* result is exact: no rounding needed */
98 goto rounddown;
99
100 fe->fe_cx |= FSR_NX; /* inexact */
101
102 /* Go to rounddown to round down; break to round up. */
103 switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
104
105 case FSR_RD_RN:
106 default:
107 /*
108 * Round only if guard is set (gr & 2). If guard is set,
109 * but round & sticky both clear, then we want to round
110 * but have a tie, so round to even, i.e., add 1 iff odd.
111 */
112 if ((gr & 2) == 0)
113 goto rounddown;
114 if ((gr & 1) || fp->fp_sticky || (m3 & 1))
115 break;
116 goto rounddown;
117
118 case FSR_RD_RZ:
119 /* Round towards zero, i.e., down. */
120 goto rounddown;
121
122 case FSR_RD_RM:
123 /* Round towards -Inf: up if negative, down if positive. */
124 if (fp->fp_sign)
125 break;
126 goto rounddown;
127
128 case FSR_RD_RP:
129 /* Round towards +Inf: up if positive, down otherwise. */
130 if (!fp->fp_sign)
131 break;
132 goto rounddown;
133 }
134
135 /* Bump low bit of mantissa, with carry. */
136 FPU_ADDS(m3, m3, 1);
137 FPU_ADDCS(m2, m2, 0);
138 FPU_ADDCS(m1, m1, 0);
139 FPU_ADDC(m0, m0, 0);
140 fp->fp_mant[0] = m0;
141 fp->fp_mant[1] = m1;
142 fp->fp_mant[2] = m2;
143 fp->fp_mant[3] = m3;
144 return (1);
145
146 rounddown:
147 fp->fp_mant[0] = m0;
148 fp->fp_mant[1] = m1;
149 fp->fp_mant[2] = m2;
150 fp->fp_mant[3] = m3;
151 return (0);
152 }
153
154 /*
155 * For overflow: return true if overflow is to go to +/-Inf, according
156 * to the sign of the overflowing result. If false, overflow is to go
157 * to the largest magnitude value instead.
158 */
159 static int
160 toinf(struct fpemu *fe, int sign)
161 {
162 int inf;
163
164 /* look at rounding direction */
165 switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
166
167 default:
168 case FSR_RD_RN: /* the nearest value is always Inf */
169 inf = 1;
170 break;
171
172 case FSR_RD_RZ: /* toward 0 => never towards Inf */
173 inf = 0;
174 break;
175
176 case FSR_RD_RP: /* toward +Inf iff positive */
177 inf = sign == 0;
178 break;
179
180 case FSR_RD_RM: /* toward -Inf iff negative */
181 inf = sign;
182 break;
183 }
184 return (inf);
185 }
186
187 /*
188 * fpn -> int (int value returned as return value).
189 *
190 * N.B.: this conversion always rounds towards zero (this is a peculiarity
191 * of the SPARC instruction set).
192 */
193 u_int
194 fpu_ftoi(fe, fp)
195 struct fpemu *fe;
196 register struct fpn *fp;
197 {
198 register u_int i;
199 register int sign, exp;
200
201 sign = fp->fp_sign;
202 switch (fp->fp_class) {
203
204 case FPC_ZERO:
205 return (0);
206
207 case FPC_NUM:
208 /*
209 * If exp >= 2^32, overflow. Otherwise shift value right
210 * into last mantissa word (this will not exceed 0xffffffff),
211 * shifting any guard and round bits out into the sticky
212 * bit. Then ``round'' towards zero, i.e., just set an
213 * inexact exception if sticky is set (see round()).
214 * If the result is > 0x80000000, or is positive and equals
215 * 0x80000000, overflow; otherwise the last fraction word
216 * is the result.
217 */
218 if ((exp = fp->fp_exp) >= 32)
219 break;
220 /* NB: the following includes exp < 0 cases */
221 if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
222 fe->fe_cx |= FSR_NX;
223 i = fp->fp_mant[3];
224 if (i >= ((u_int)0x80000000 + sign))
225 break;
226 return (sign ? -i : i);
227
228 default: /* Inf, qNaN, sNaN */
229 break;
230 }
231 /* overflow: replace any inexact exception with invalid */
232 fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;
233 return (0x7fffffff + sign);
234 }
235
236 #ifdef SUN4U
237 /*
238 * fpn -> extended int (high bits of int value returned as return value).
239 *
240 * N.B.: this conversion always rounds towards zero (this is a peculiarity
241 * of the SPARC instruction set).
242 */
243 u_int
244 fpu_ftox(fe, fp, res)
245 struct fpemu *fe;
246 register struct fpn *fp;
247 u_int *res;
248 {
249 register u_int64_t i;
250 register int sign, exp;
251
252 sign = fp->fp_sign;
253 switch (fp->fp_class) {
254
255 case FPC_ZERO:
256 res[1] = 0;
257 return (0);
258
259 case FPC_NUM:
260 /*
261 * If exp >= 2^64, overflow. Otherwise shift value right
262 * into last mantissa word (this will not exceed 0xffffffffffffffff),
263 * shifting any guard and round bits out into the sticky
264 * bit. Then ``round'' towards zero, i.e., just set an
265 * inexact exception if sticky is set (see round()).
266 * If the result is > 0x8000000000000000, or is positive and equals
267 * 0x8000000000000000, overflow; otherwise the last fraction word
268 * is the result.
269 */
270 if ((exp = fp->fp_exp) >= 64)
271 break;
272 /* NB: the following includes exp < 0 cases */
273 if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
274 fe->fe_cx |= FSR_NX;
275 i = ((u_int64_t)fp->fp_mant[2]<<32)|fp->fp_mant[3];
276 if (i >= ((u_int64_t)0x8000000000000000LL + sign))
277 break;
278 return (sign ? -i : i);
279
280 default: /* Inf, qNaN, sNaN */
281 break;
282 }
283 /* overflow: replace any inexact exception with invalid */
284 fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;
285 return (0x7fffffffffffffffLL + sign);
286 }
287 #endif /* SUN4U */
288
289 /*
290 * fpn -> single (32 bit single returned as return value).
291 * We assume <= 29 bits in a single-precision fraction (1.f part).
292 */
293 u_int
294 fpu_ftos(fe, fp)
295 struct fpemu *fe;
296 register struct fpn *fp;
297 {
298 register u_int sign = fp->fp_sign << 31;
299 register int exp;
300
301 #define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */
302 #define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */
303
304 /* Take care of non-numbers first. */
305 if (ISNAN(fp)) {
306 /*
307 * Preserve upper bits of NaN, per SPARC V8 appendix N.
308 * Note that fp->fp_mant[0] has the quiet bit set,
309 * even if it is classified as a signalling NaN.
310 */
311 (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
312 exp = SNG_EXP_INFNAN;
313 goto done;
314 }
315 if (ISINF(fp))
316 return (sign | SNG_EXP(SNG_EXP_INFNAN));
317 if (ISZERO(fp))
318 return (sign);
319
320 /*
321 * Normals (including subnormals). Drop all the fraction bits
322 * (including the explicit ``implied'' 1 bit) down into the
323 * single-precision range. If the number is subnormal, move
324 * the ``implied'' 1 into the explicit range as well, and shift
325 * right to introduce leading zeroes. Rounding then acts
326 * differently for normals and subnormals: the largest subnormal
327 * may round to the smallest normal (1.0 x 2^minexp), or may
328 * remain subnormal. In the latter case, signal an underflow
329 * if the result was inexact or if underflow traps are enabled.
330 *
331 * Rounding a normal, on the other hand, always produces another
332 * normal (although either way the result might be too big for
333 * single precision, and cause an overflow). If rounding a
334 * normal produces 2.0 in the fraction, we need not adjust that
335 * fraction at all, since both 1.0 and 2.0 are zero under the
336 * fraction mask.
337 *
338 * Note that the guard and round bits vanish from the number after
339 * rounding.
340 */
341 if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) { /* subnormal */
342 /* -NG for g,r; -SNG_FRACBITS-exp for fraction */
343 (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
344 if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
345 return (sign | SNG_EXP(1) | 0);
346 if ((fe->fe_cx & FSR_NX) ||
347 (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
348 fe->fe_cx |= FSR_UF;
349 return (sign | SNG_EXP(0) | fp->fp_mant[3]);
350 }
351 /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
352 (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
353 #ifdef DIAGNOSTIC
354 if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
355 panic("fpu_ftos");
356 #endif
357 if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
358 exp++;
359 if (exp >= SNG_EXP_INFNAN) {
360 /* overflow to inf or to max single */
361 fe->fe_cx |= FSR_OF | FSR_NX;
362 if (toinf(fe, sign))
363 return (sign | SNG_EXP(SNG_EXP_INFNAN));
364 return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
365 }
366 done:
367 /* phew, made it */
368 return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
369 }
370
371 /*
372 * fpn -> double (32 bit high-order result returned; 32-bit low order result
373 * left in res[1]). Assumes <= 61 bits in double precision fraction.
374 *
375 * This code mimics fpu_ftos; see it for comments.
376 */
377 u_int
378 fpu_ftod(fe, fp, res)
379 struct fpemu *fe;
380 register struct fpn *fp;
381 u_int *res;
382 {
383 register u_int sign = fp->fp_sign << 31;
384 register int exp;
385
386 #define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31))
387 #define DBL_MASK (DBL_EXP(1) - 1)
388
389 if (ISNAN(fp)) {
390 (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
391 exp = DBL_EXP_INFNAN;
392 goto done;
393 }
394 if (ISINF(fp)) {
395 sign |= DBL_EXP(DBL_EXP_INFNAN);
396 goto zero;
397 }
398 if (ISZERO(fp)) {
399 zero: res[1] = 0;
400 return (sign);
401 }
402
403 if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
404 (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
405 if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
406 res[1] = 0;
407 return (sign | DBL_EXP(1) | 0);
408 }
409 if ((fe->fe_cx & FSR_NX) ||
410 (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
411 fe->fe_cx |= FSR_UF;
412 exp = 0;
413 goto done;
414 }
415 (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
416 if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
417 exp++;
418 if (exp >= DBL_EXP_INFNAN) {
419 fe->fe_cx |= FSR_OF | FSR_NX;
420 if (toinf(fe, sign)) {
421 res[1] = 0;
422 return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
423 }
424 res[1] = ~0;
425 return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
426 }
427 done:
428 res[1] = fp->fp_mant[3];
429 return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
430 }
431
432 /*
433 * fpn -> extended (32 bit high-order result returned; low-order fraction
434 * words left in res[1]..res[3]). Like ftod, which is like ftos ... but
435 * our internal format *is* extended precision, plus 2 bits for guard/round,
436 * so we can avoid a small bit of work.
437 */
438 u_int
439 fpu_ftoq(fe, fp, res)
440 struct fpemu *fe;
441 register struct fpn *fp;
442 u_int *res;
443 {
444 register u_int sign = fp->fp_sign << 31;
445 register int exp;
446
447 #define EXT_EXP(e) ((e) << (EXT_FRACBITS & 31))
448 #define EXT_MASK (EXT_EXP(1) - 1)
449
450 if (ISNAN(fp)) {
451 (void) fpu_shr(fp, 2); /* since we are not rounding */
452 exp = EXT_EXP_INFNAN;
453 goto done;
454 }
455 if (ISINF(fp)) {
456 sign |= EXT_EXP(EXT_EXP_INFNAN);
457 goto zero;
458 }
459 if (ISZERO(fp)) {
460 zero: res[1] = res[2] = res[3] = 0;
461 return (sign);
462 }
463
464 if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) {
465 (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
466 if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(1)) {
467 res[1] = res[2] = res[3] = 0;
468 return (sign | EXT_EXP(1) | 0);
469 }
470 if ((fe->fe_cx & FSR_NX) ||
471 (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
472 fe->fe_cx |= FSR_UF;
473 exp = 0;
474 goto done;
475 }
476 /* Since internal == extended, no need to shift here. */
477 if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(2))
478 exp++;
479 if (exp >= EXT_EXP_INFNAN) {
480 fe->fe_cx |= FSR_OF | FSR_NX;
481 if (toinf(fe, sign)) {
482 res[1] = res[2] = res[3] = 0;
483 return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
484 }
485 res[1] = res[2] = res[3] = ~0;
486 return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
487 }
488 done:
489 res[1] = fp->fp_mant[1];
490 res[2] = fp->fp_mant[2];
491 res[3] = fp->fp_mant[3];
492 return (sign | EXT_EXP(exp) | (fp->fp_mant[0] & EXT_MASK));
493 }
494
495 /*
496 * Implode an fpn, writing the result into the given space.
497 */
498 void
499 fpu_implode(fe, fp, type, space)
500 struct fpemu *fe;
501 register struct fpn *fp;
502 int type;
503 register u_int *space;
504 {
505
506 switch (type) {
507
508 #ifdef SUN4U
509 case FTYPE_LNG:
510 space[0] = fpu_ftox(fe, fp, space);
511 break;
512 #endif /* SUN4U */
513
514 case FTYPE_INT:
515 space[0] = fpu_ftoi(fe, fp);
516 break;
517
518 case FTYPE_SNG:
519 space[0] = fpu_ftos(fe, fp);
520 break;
521
522 case FTYPE_DBL:
523 space[0] = fpu_ftod(fe, fp, space);
524 break;
525
526 case FTYPE_EXT:
527 /* funky rounding precision options ?? */
528 space[0] = fpu_ftoq(fe, fp, space);
529 break;
530
531 default:
532 panic("fpu_implode");
533 }
534 }
535