Home | History | Annotate | Line # | Download | only in fpu
fpu_implode.c revision 1.9
      1 /*	$NetBSD: fpu_implode.c,v 1.9 2001/12/04 00:05:05 darrenr Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  * All advertising materials mentioning features or use of this software
     12  * must display the following acknowledgement:
     13  *	This product includes software developed by the University of
     14  *	California, Lawrence Berkeley Laboratory.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. All advertising materials mentioning features or use of this software
     25  *    must display the following acknowledgement:
     26  *	This product includes software developed by the University of
     27  *	California, Berkeley and its contributors.
     28  * 4. Neither the name of the University nor the names of its contributors
     29  *    may be used to endorse or promote products derived from this software
     30  *    without specific prior written permission.
     31  *
     32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     42  * SUCH DAMAGE.
     43  *
     44  *	@(#)fpu_implode.c	8.1 (Berkeley) 6/11/93
     45  */
     46 
     47 /*
     48  * FPU subroutines: `implode' internal format numbers into the machine's
     49  * `packed binary' format.
     50  */
     51 
     52 #if defined(_KERNEL_OPT)
     53 #include "opt_sparc_arch.h"
     54 #endif
     55 
     56 #include <sys/types.h>
     57 #include <sys/systm.h>
     58 
     59 #include <machine/ieee.h>
     60 #include <machine/instr.h>
     61 #include <machine/reg.h>
     62 
     63 #include <sparc/fpu/fpu_arith.h>
     64 #include <sparc/fpu/fpu_emu.h>
     65 #include <sparc/fpu/fpu_extern.h>
     66 
     67 static int round __P((register struct fpemu *, register struct fpn *));
     68 static int toinf __P((struct fpemu *, int));
     69 
     70 /*
     71  * Round a number (algorithm from Motorola MC68882 manual, modified for
     72  * our internal format).  Set inexact exception if rounding is required.
     73  * Return true iff we rounded up.
     74  *
     75  * After rounding, we discard the guard and round bits by shifting right
     76  * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
     77  * This saves effort later.
     78  *
     79  * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
     80  * responsibility to fix this if necessary.
     81  */
     82 static int
     83 round(register struct fpemu *fe, register struct fpn *fp)
     84 {
     85 	register u_int m0, m1, m2, m3;
     86 	register int gr, s;
     87 
     88 	m0 = fp->fp_mant[0];
     89 	m1 = fp->fp_mant[1];
     90 	m2 = fp->fp_mant[2];
     91 	m3 = fp->fp_mant[3];
     92 	gr = m3 & 3;
     93 	s = fp->fp_sticky;
     94 
     95 	/* mant >>= FP_NG */
     96 	m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
     97 	m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
     98 	m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
     99 	m0 >>= FP_NG;
    100 
    101 	if ((gr | s) == 0)	/* result is exact: no rounding needed */
    102 		goto rounddown;
    103 
    104 	fe->fe_cx |= FSR_NX;	/* inexact */
    105 
    106 	/* Go to rounddown to round down; break to round up. */
    107 	switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
    108 
    109 	case FSR_RD_RN:
    110 	default:
    111 		/*
    112 		 * Round only if guard is set (gr & 2).  If guard is set,
    113 		 * but round & sticky both clear, then we want to round
    114 		 * but have a tie, so round to even, i.e., add 1 iff odd.
    115 		 */
    116 		if ((gr & 2) == 0)
    117 			goto rounddown;
    118 		if ((gr & 1) || fp->fp_sticky || (m3 & 1))
    119 			break;
    120 		goto rounddown;
    121 
    122 	case FSR_RD_RZ:
    123 		/* Round towards zero, i.e., down. */
    124 		goto rounddown;
    125 
    126 	case FSR_RD_RM:
    127 		/* Round towards -Inf: up if negative, down if positive. */
    128 		if (fp->fp_sign)
    129 			break;
    130 		goto rounddown;
    131 
    132 	case FSR_RD_RP:
    133 		/* Round towards +Inf: up if positive, down otherwise. */
    134 		if (!fp->fp_sign)
    135 			break;
    136 		goto rounddown;
    137 	}
    138 
    139 	/* Bump low bit of mantissa, with carry. */
    140 	FPU_ADDS(m3, m3, 1);
    141 	FPU_ADDCS(m2, m2, 0);
    142 	FPU_ADDCS(m1, m1, 0);
    143 	FPU_ADDC(m0, m0, 0);
    144 	fp->fp_mant[0] = m0;
    145 	fp->fp_mant[1] = m1;
    146 	fp->fp_mant[2] = m2;
    147 	fp->fp_mant[3] = m3;
    148 	return (1);
    149 
    150 rounddown:
    151 	fp->fp_mant[0] = m0;
    152 	fp->fp_mant[1] = m1;
    153 	fp->fp_mant[2] = m2;
    154 	fp->fp_mant[3] = m3;
    155 	return (0);
    156 }
    157 
    158 /*
    159  * For overflow: return true if overflow is to go to +/-Inf, according
    160  * to the sign of the overflowing result.  If false, overflow is to go
    161  * to the largest magnitude value instead.
    162  */
    163 static int
    164 toinf(struct fpemu *fe, int sign)
    165 {
    166 	int inf;
    167 
    168 	/* look at rounding direction */
    169 	switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
    170 
    171 	default:
    172 	case FSR_RD_RN:		/* the nearest value is always Inf */
    173 		inf = 1;
    174 		break;
    175 
    176 	case FSR_RD_RZ:		/* toward 0 => never towards Inf */
    177 		inf = 0;
    178 		break;
    179 
    180 	case FSR_RD_RP:		/* toward +Inf iff positive */
    181 		inf = sign == 0;
    182 		break;
    183 
    184 	case FSR_RD_RM:		/* toward -Inf iff negative */
    185 		inf = sign;
    186 		break;
    187 	}
    188 	return (inf);
    189 }
    190 
    191 /*
    192  * fpn -> int (int value returned as return value).
    193  *
    194  * N.B.: this conversion always rounds towards zero (this is a peculiarity
    195  * of the SPARC instruction set).
    196  */
    197 u_int
    198 fpu_ftoi(fe, fp)
    199 	struct fpemu *fe;
    200 	register struct fpn *fp;
    201 {
    202 	register u_int i;
    203 	register int sign, exp;
    204 
    205 	sign = fp->fp_sign;
    206 	switch (fp->fp_class) {
    207 
    208 	case FPC_ZERO:
    209 		return (0);
    210 
    211 	case FPC_NUM:
    212 		/*
    213 		 * If exp >= 2^32, overflow.  Otherwise shift value right
    214 		 * into last mantissa word (this will not exceed 0xffffffff),
    215 		 * shifting any guard and round bits out into the sticky
    216 		 * bit.  Then ``round'' towards zero, i.e., just set an
    217 		 * inexact exception if sticky is set (see round()).
    218 		 * If the result is > 0x80000000, or is positive and equals
    219 		 * 0x80000000, overflow; otherwise the last fraction word
    220 		 * is the result.
    221 		 */
    222 		if ((exp = fp->fp_exp) >= 32)
    223 			break;
    224 		/* NB: the following includes exp < 0 cases */
    225 		if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
    226 			fe->fe_cx |= FSR_NX;
    227 		i = fp->fp_mant[3];
    228 		if (i >= ((u_int)0x80000000 + sign))
    229 			break;
    230 		return (sign ? -i : i);
    231 
    232 	default:		/* Inf, qNaN, sNaN */
    233 		break;
    234 	}
    235 	/* overflow: replace any inexact exception with invalid */
    236 	fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;
    237 	return (0x7fffffff + sign);
    238 }
    239 
    240 #ifdef SUN4U
    241 /*
    242  * fpn -> extended int (high bits of int value returned as return value).
    243  *
    244  * N.B.: this conversion always rounds towards zero (this is a peculiarity
    245  * of the SPARC instruction set).
    246  */
    247 u_int
    248 fpu_ftox(fe, fp, res)
    249 	struct fpemu *fe;
    250 	register struct fpn *fp;
    251 	u_int *res;
    252 {
    253 	register u_int64_t i;
    254 	register int sign, exp;
    255 
    256 	sign = fp->fp_sign;
    257 	switch (fp->fp_class) {
    258 
    259 	case FPC_ZERO:
    260 		res[1] = 0;
    261 		return (0);
    262 
    263 	case FPC_NUM:
    264 		/*
    265 		 * If exp >= 2^64, overflow.  Otherwise shift value right
    266 		 * into last mantissa word (this will not exceed 0xffffffffffffffff),
    267 		 * shifting any guard and round bits out into the sticky
    268 		 * bit.  Then ``round'' towards zero, i.e., just set an
    269 		 * inexact exception if sticky is set (see round()).
    270 		 * If the result is > 0x8000000000000000, or is positive and equals
    271 		 * 0x8000000000000000, overflow; otherwise the last fraction word
    272 		 * is the result.
    273 		 */
    274 		if ((exp = fp->fp_exp) >= 64)
    275 			break;
    276 		/* NB: the following includes exp < 0 cases */
    277 		if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
    278 			fe->fe_cx |= FSR_NX;
    279 		i = ((u_int64_t)fp->fp_mant[2]<<32)|fp->fp_mant[3];
    280 		if (i >= ((u_int64_t)0x8000000000000000LL + sign))
    281 			break;
    282 		return (sign ? -i : i);
    283 
    284 	default:		/* Inf, qNaN, sNaN */
    285 		break;
    286 	}
    287 	/* overflow: replace any inexact exception with invalid */
    288 	fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;
    289 	return (0x7fffffffffffffffLL + sign);
    290 }
    291 #endif /* SUN4U */
    292 
    293 /*
    294  * fpn -> single (32 bit single returned as return value).
    295  * We assume <= 29 bits in a single-precision fraction (1.f part).
    296  */
    297 u_int
    298 fpu_ftos(fe, fp)
    299 	struct fpemu *fe;
    300 	register struct fpn *fp;
    301 {
    302 	register u_int sign = fp->fp_sign << 31;
    303 	register int exp;
    304 
    305 #define	SNG_EXP(e)	((e) << SNG_FRACBITS)	/* makes e an exponent */
    306 #define	SNG_MASK	(SNG_EXP(1) - 1)	/* mask for fraction */
    307 
    308 	/* Take care of non-numbers first. */
    309 	if (ISNAN(fp)) {
    310 		/*
    311 		 * Preserve upper bits of NaN, per SPARC V8 appendix N.
    312 		 * Note that fp->fp_mant[0] has the quiet bit set,
    313 		 * even if it is classified as a signalling NaN.
    314 		 */
    315 		(void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
    316 		exp = SNG_EXP_INFNAN;
    317 		goto done;
    318 	}
    319 	if (ISINF(fp))
    320 		return (sign | SNG_EXP(SNG_EXP_INFNAN));
    321 	if (ISZERO(fp))
    322 		return (sign);
    323 
    324 	/*
    325 	 * Normals (including subnormals).  Drop all the fraction bits
    326 	 * (including the explicit ``implied'' 1 bit) down into the
    327 	 * single-precision range.  If the number is subnormal, move
    328 	 * the ``implied'' 1 into the explicit range as well, and shift
    329 	 * right to introduce leading zeroes.  Rounding then acts
    330 	 * differently for normals and subnormals: the largest subnormal
    331 	 * may round to the smallest normal (1.0 x 2^minexp), or may
    332 	 * remain subnormal.  In the latter case, signal an underflow
    333 	 * if the result was inexact or if underflow traps are enabled.
    334 	 *
    335 	 * Rounding a normal, on the other hand, always produces another
    336 	 * normal (although either way the result might be too big for
    337 	 * single precision, and cause an overflow).  If rounding a
    338 	 * normal produces 2.0 in the fraction, we need not adjust that
    339 	 * fraction at all, since both 1.0 and 2.0 are zero under the
    340 	 * fraction mask.
    341 	 *
    342 	 * Note that the guard and round bits vanish from the number after
    343 	 * rounding.
    344 	 */
    345 	if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) {	/* subnormal */
    346 		/* -NG for g,r; -SNG_FRACBITS-exp for fraction */
    347 		(void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
    348 		if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
    349 			return (sign | SNG_EXP(1) | 0);
    350 		if ((fe->fe_cx & FSR_NX) ||
    351 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
    352 			fe->fe_cx |= FSR_UF;
    353 		return (sign | SNG_EXP(0) | fp->fp_mant[3]);
    354 	}
    355 	/* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
    356 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
    357 #ifdef DIAGNOSTIC
    358 	if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
    359 		panic("fpu_ftos");
    360 #endif
    361 	if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
    362 		exp++;
    363 	if (exp >= SNG_EXP_INFNAN) {
    364 		/* overflow to inf or to max single */
    365 		fe->fe_cx |= FSR_OF | FSR_NX;
    366 		if (toinf(fe, sign))
    367 			return (sign | SNG_EXP(SNG_EXP_INFNAN));
    368 		return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
    369 	}
    370 done:
    371 	/* phew, made it */
    372 	return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
    373 }
    374 
    375 /*
    376  * fpn -> double (32 bit high-order result returned; 32-bit low order result
    377  * left in res[1]).  Assumes <= 61 bits in double precision fraction.
    378  *
    379  * This code mimics fpu_ftos; see it for comments.
    380  */
    381 u_int
    382 fpu_ftod(fe, fp, res)
    383 	struct fpemu *fe;
    384 	register struct fpn *fp;
    385 	u_int *res;
    386 {
    387 	register u_int sign = fp->fp_sign << 31;
    388 	register int exp;
    389 
    390 #define	DBL_EXP(e)	((e) << (DBL_FRACBITS & 31))
    391 #define	DBL_MASK	(DBL_EXP(1) - 1)
    392 
    393 	if (ISNAN(fp)) {
    394 		(void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
    395 		exp = DBL_EXP_INFNAN;
    396 		goto done;
    397 	}
    398 	if (ISINF(fp)) {
    399 		sign |= DBL_EXP(DBL_EXP_INFNAN);
    400 		goto zero;
    401 	}
    402 	if (ISZERO(fp)) {
    403 zero:		res[1] = 0;
    404 		return (sign);
    405 	}
    406 
    407 	if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
    408 		(void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
    409 		if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
    410 			res[1] = 0;
    411 			return (sign | DBL_EXP(1) | 0);
    412 		}
    413 		if ((fe->fe_cx & FSR_NX) ||
    414 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
    415 			fe->fe_cx |= FSR_UF;
    416 		exp = 0;
    417 		goto done;
    418 	}
    419 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
    420 	if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
    421 		exp++;
    422 	if (exp >= DBL_EXP_INFNAN) {
    423 		fe->fe_cx |= FSR_OF | FSR_NX;
    424 		if (toinf(fe, sign)) {
    425 			res[1] = 0;
    426 			return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
    427 		}
    428 		res[1] = ~0;
    429 		return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
    430 	}
    431 done:
    432 	res[1] = fp->fp_mant[3];
    433 	return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
    434 }
    435 
    436 /*
    437  * fpn -> extended (32 bit high-order result returned; low-order fraction
    438  * words left in res[1]..res[3]).  Like ftod, which is like ftos ... but
    439  * our internal format *is* extended precision, plus 2 bits for guard/round,
    440  * so we can avoid a small bit of work.
    441  */
    442 u_int
    443 fpu_ftoq(fe, fp, res)
    444 	struct fpemu *fe;
    445 	register struct fpn *fp;
    446 	u_int *res;
    447 {
    448 	register u_int sign = fp->fp_sign << 31;
    449 	register int exp;
    450 
    451 #define	EXT_EXP(e)	((e) << (EXT_FRACBITS & 31))
    452 #define	EXT_MASK	(EXT_EXP(1) - 1)
    453 
    454 	if (ISNAN(fp)) {
    455 		(void) fpu_shr(fp, 2);	/* since we are not rounding */
    456 		exp = EXT_EXP_INFNAN;
    457 		goto done;
    458 	}
    459 	if (ISINF(fp)) {
    460 		sign |= EXT_EXP(EXT_EXP_INFNAN);
    461 		goto zero;
    462 	}
    463 	if (ISZERO(fp)) {
    464 zero:		res[1] = res[2] = res[3] = 0;
    465 		return (sign);
    466 	}
    467 
    468 	if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) {
    469 		(void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
    470 		if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(1)) {
    471 			res[1] = res[2] = res[3] = 0;
    472 			return (sign | EXT_EXP(1) | 0);
    473 		}
    474 		if ((fe->fe_cx & FSR_NX) ||
    475 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
    476 			fe->fe_cx |= FSR_UF;
    477 		exp = 0;
    478 		goto done;
    479 	}
    480 	/* Since internal == extended, no need to shift here. */
    481 	if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(2))
    482 		exp++;
    483 	if (exp >= EXT_EXP_INFNAN) {
    484 		fe->fe_cx |= FSR_OF | FSR_NX;
    485 		if (toinf(fe, sign)) {
    486 			res[1] = res[2] = res[3] = 0;
    487 			return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
    488 		}
    489 		res[1] = res[2] = res[3] = ~0;
    490 		return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
    491 	}
    492 done:
    493 	res[1] = fp->fp_mant[1];
    494 	res[2] = fp->fp_mant[2];
    495 	res[3] = fp->fp_mant[3];
    496 	return (sign | EXT_EXP(exp) | (fp->fp_mant[0] & EXT_MASK));
    497 }
    498 
    499 /*
    500  * Implode an fpn, writing the result into the given space.
    501  */
    502 void
    503 fpu_implode(fe, fp, type, space)
    504 	struct fpemu *fe;
    505 	register struct fpn *fp;
    506 	int type;
    507 	register u_int *space;
    508 {
    509 
    510 	switch (type) {
    511 
    512 #ifdef SUN4U
    513 	case FTYPE_LNG:
    514 		space[0] = fpu_ftox(fe, fp, space);
    515 		break;
    516 #endif /* SUN4U */
    517 
    518 	case FTYPE_INT:
    519 		space[0] = fpu_ftoi(fe, fp);
    520 		break;
    521 
    522 	case FTYPE_SNG:
    523 		space[0] = fpu_ftos(fe, fp);
    524 		break;
    525 
    526 	case FTYPE_DBL:
    527 		space[0] = fpu_ftod(fe, fp, space);
    528 		break;
    529 
    530 	case FTYPE_EXT:
    531 		/* funky rounding precision options ?? */
    532 		space[0] = fpu_ftoq(fe, fp, space);
    533 		break;
    534 
    535 	default:
    536 		panic("fpu_implode");
    537 	}
    538 #ifdef SUN4U
    539 	DPRINTF(FPE_REG, ("fpu_implode: %x %x %x %x\n",
    540 		space[0], space[1], space[2], space[3]));
    541 #else
    542 	DPRINTF(FPE_REG, ("fpu_implode: %x %x\n",
    543 		space[0], space[1]));
    544 #endif
    545 }
    546