fpu_implode.c revision 1.9 1 /* $NetBSD: fpu_implode.c,v 1.9 2001/12/04 00:05:05 darrenr Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93
45 */
46
47 /*
48 * FPU subroutines: `implode' internal format numbers into the machine's
49 * `packed binary' format.
50 */
51
52 #if defined(_KERNEL_OPT)
53 #include "opt_sparc_arch.h"
54 #endif
55
56 #include <sys/types.h>
57 #include <sys/systm.h>
58
59 #include <machine/ieee.h>
60 #include <machine/instr.h>
61 #include <machine/reg.h>
62
63 #include <sparc/fpu/fpu_arith.h>
64 #include <sparc/fpu/fpu_emu.h>
65 #include <sparc/fpu/fpu_extern.h>
66
67 static int round __P((register struct fpemu *, register struct fpn *));
68 static int toinf __P((struct fpemu *, int));
69
70 /*
71 * Round a number (algorithm from Motorola MC68882 manual, modified for
72 * our internal format). Set inexact exception if rounding is required.
73 * Return true iff we rounded up.
74 *
75 * After rounding, we discard the guard and round bits by shifting right
76 * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
77 * This saves effort later.
78 *
79 * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
80 * responsibility to fix this if necessary.
81 */
82 static int
83 round(register struct fpemu *fe, register struct fpn *fp)
84 {
85 register u_int m0, m1, m2, m3;
86 register int gr, s;
87
88 m0 = fp->fp_mant[0];
89 m1 = fp->fp_mant[1];
90 m2 = fp->fp_mant[2];
91 m3 = fp->fp_mant[3];
92 gr = m3 & 3;
93 s = fp->fp_sticky;
94
95 /* mant >>= FP_NG */
96 m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
97 m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
98 m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
99 m0 >>= FP_NG;
100
101 if ((gr | s) == 0) /* result is exact: no rounding needed */
102 goto rounddown;
103
104 fe->fe_cx |= FSR_NX; /* inexact */
105
106 /* Go to rounddown to round down; break to round up. */
107 switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
108
109 case FSR_RD_RN:
110 default:
111 /*
112 * Round only if guard is set (gr & 2). If guard is set,
113 * but round & sticky both clear, then we want to round
114 * but have a tie, so round to even, i.e., add 1 iff odd.
115 */
116 if ((gr & 2) == 0)
117 goto rounddown;
118 if ((gr & 1) || fp->fp_sticky || (m3 & 1))
119 break;
120 goto rounddown;
121
122 case FSR_RD_RZ:
123 /* Round towards zero, i.e., down. */
124 goto rounddown;
125
126 case FSR_RD_RM:
127 /* Round towards -Inf: up if negative, down if positive. */
128 if (fp->fp_sign)
129 break;
130 goto rounddown;
131
132 case FSR_RD_RP:
133 /* Round towards +Inf: up if positive, down otherwise. */
134 if (!fp->fp_sign)
135 break;
136 goto rounddown;
137 }
138
139 /* Bump low bit of mantissa, with carry. */
140 FPU_ADDS(m3, m3, 1);
141 FPU_ADDCS(m2, m2, 0);
142 FPU_ADDCS(m1, m1, 0);
143 FPU_ADDC(m0, m0, 0);
144 fp->fp_mant[0] = m0;
145 fp->fp_mant[1] = m1;
146 fp->fp_mant[2] = m2;
147 fp->fp_mant[3] = m3;
148 return (1);
149
150 rounddown:
151 fp->fp_mant[0] = m0;
152 fp->fp_mant[1] = m1;
153 fp->fp_mant[2] = m2;
154 fp->fp_mant[3] = m3;
155 return (0);
156 }
157
158 /*
159 * For overflow: return true if overflow is to go to +/-Inf, according
160 * to the sign of the overflowing result. If false, overflow is to go
161 * to the largest magnitude value instead.
162 */
163 static int
164 toinf(struct fpemu *fe, int sign)
165 {
166 int inf;
167
168 /* look at rounding direction */
169 switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
170
171 default:
172 case FSR_RD_RN: /* the nearest value is always Inf */
173 inf = 1;
174 break;
175
176 case FSR_RD_RZ: /* toward 0 => never towards Inf */
177 inf = 0;
178 break;
179
180 case FSR_RD_RP: /* toward +Inf iff positive */
181 inf = sign == 0;
182 break;
183
184 case FSR_RD_RM: /* toward -Inf iff negative */
185 inf = sign;
186 break;
187 }
188 return (inf);
189 }
190
191 /*
192 * fpn -> int (int value returned as return value).
193 *
194 * N.B.: this conversion always rounds towards zero (this is a peculiarity
195 * of the SPARC instruction set).
196 */
197 u_int
198 fpu_ftoi(fe, fp)
199 struct fpemu *fe;
200 register struct fpn *fp;
201 {
202 register u_int i;
203 register int sign, exp;
204
205 sign = fp->fp_sign;
206 switch (fp->fp_class) {
207
208 case FPC_ZERO:
209 return (0);
210
211 case FPC_NUM:
212 /*
213 * If exp >= 2^32, overflow. Otherwise shift value right
214 * into last mantissa word (this will not exceed 0xffffffff),
215 * shifting any guard and round bits out into the sticky
216 * bit. Then ``round'' towards zero, i.e., just set an
217 * inexact exception if sticky is set (see round()).
218 * If the result is > 0x80000000, or is positive and equals
219 * 0x80000000, overflow; otherwise the last fraction word
220 * is the result.
221 */
222 if ((exp = fp->fp_exp) >= 32)
223 break;
224 /* NB: the following includes exp < 0 cases */
225 if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
226 fe->fe_cx |= FSR_NX;
227 i = fp->fp_mant[3];
228 if (i >= ((u_int)0x80000000 + sign))
229 break;
230 return (sign ? -i : i);
231
232 default: /* Inf, qNaN, sNaN */
233 break;
234 }
235 /* overflow: replace any inexact exception with invalid */
236 fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;
237 return (0x7fffffff + sign);
238 }
239
240 #ifdef SUN4U
241 /*
242 * fpn -> extended int (high bits of int value returned as return value).
243 *
244 * N.B.: this conversion always rounds towards zero (this is a peculiarity
245 * of the SPARC instruction set).
246 */
247 u_int
248 fpu_ftox(fe, fp, res)
249 struct fpemu *fe;
250 register struct fpn *fp;
251 u_int *res;
252 {
253 register u_int64_t i;
254 register int sign, exp;
255
256 sign = fp->fp_sign;
257 switch (fp->fp_class) {
258
259 case FPC_ZERO:
260 res[1] = 0;
261 return (0);
262
263 case FPC_NUM:
264 /*
265 * If exp >= 2^64, overflow. Otherwise shift value right
266 * into last mantissa word (this will not exceed 0xffffffffffffffff),
267 * shifting any guard and round bits out into the sticky
268 * bit. Then ``round'' towards zero, i.e., just set an
269 * inexact exception if sticky is set (see round()).
270 * If the result is > 0x8000000000000000, or is positive and equals
271 * 0x8000000000000000, overflow; otherwise the last fraction word
272 * is the result.
273 */
274 if ((exp = fp->fp_exp) >= 64)
275 break;
276 /* NB: the following includes exp < 0 cases */
277 if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
278 fe->fe_cx |= FSR_NX;
279 i = ((u_int64_t)fp->fp_mant[2]<<32)|fp->fp_mant[3];
280 if (i >= ((u_int64_t)0x8000000000000000LL + sign))
281 break;
282 return (sign ? -i : i);
283
284 default: /* Inf, qNaN, sNaN */
285 break;
286 }
287 /* overflow: replace any inexact exception with invalid */
288 fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;
289 return (0x7fffffffffffffffLL + sign);
290 }
291 #endif /* SUN4U */
292
293 /*
294 * fpn -> single (32 bit single returned as return value).
295 * We assume <= 29 bits in a single-precision fraction (1.f part).
296 */
297 u_int
298 fpu_ftos(fe, fp)
299 struct fpemu *fe;
300 register struct fpn *fp;
301 {
302 register u_int sign = fp->fp_sign << 31;
303 register int exp;
304
305 #define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */
306 #define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */
307
308 /* Take care of non-numbers first. */
309 if (ISNAN(fp)) {
310 /*
311 * Preserve upper bits of NaN, per SPARC V8 appendix N.
312 * Note that fp->fp_mant[0] has the quiet bit set,
313 * even if it is classified as a signalling NaN.
314 */
315 (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
316 exp = SNG_EXP_INFNAN;
317 goto done;
318 }
319 if (ISINF(fp))
320 return (sign | SNG_EXP(SNG_EXP_INFNAN));
321 if (ISZERO(fp))
322 return (sign);
323
324 /*
325 * Normals (including subnormals). Drop all the fraction bits
326 * (including the explicit ``implied'' 1 bit) down into the
327 * single-precision range. If the number is subnormal, move
328 * the ``implied'' 1 into the explicit range as well, and shift
329 * right to introduce leading zeroes. Rounding then acts
330 * differently for normals and subnormals: the largest subnormal
331 * may round to the smallest normal (1.0 x 2^minexp), or may
332 * remain subnormal. In the latter case, signal an underflow
333 * if the result was inexact or if underflow traps are enabled.
334 *
335 * Rounding a normal, on the other hand, always produces another
336 * normal (although either way the result might be too big for
337 * single precision, and cause an overflow). If rounding a
338 * normal produces 2.0 in the fraction, we need not adjust that
339 * fraction at all, since both 1.0 and 2.0 are zero under the
340 * fraction mask.
341 *
342 * Note that the guard and round bits vanish from the number after
343 * rounding.
344 */
345 if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) { /* subnormal */
346 /* -NG for g,r; -SNG_FRACBITS-exp for fraction */
347 (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
348 if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
349 return (sign | SNG_EXP(1) | 0);
350 if ((fe->fe_cx & FSR_NX) ||
351 (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
352 fe->fe_cx |= FSR_UF;
353 return (sign | SNG_EXP(0) | fp->fp_mant[3]);
354 }
355 /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
356 (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
357 #ifdef DIAGNOSTIC
358 if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
359 panic("fpu_ftos");
360 #endif
361 if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
362 exp++;
363 if (exp >= SNG_EXP_INFNAN) {
364 /* overflow to inf or to max single */
365 fe->fe_cx |= FSR_OF | FSR_NX;
366 if (toinf(fe, sign))
367 return (sign | SNG_EXP(SNG_EXP_INFNAN));
368 return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
369 }
370 done:
371 /* phew, made it */
372 return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
373 }
374
375 /*
376 * fpn -> double (32 bit high-order result returned; 32-bit low order result
377 * left in res[1]). Assumes <= 61 bits in double precision fraction.
378 *
379 * This code mimics fpu_ftos; see it for comments.
380 */
381 u_int
382 fpu_ftod(fe, fp, res)
383 struct fpemu *fe;
384 register struct fpn *fp;
385 u_int *res;
386 {
387 register u_int sign = fp->fp_sign << 31;
388 register int exp;
389
390 #define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31))
391 #define DBL_MASK (DBL_EXP(1) - 1)
392
393 if (ISNAN(fp)) {
394 (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
395 exp = DBL_EXP_INFNAN;
396 goto done;
397 }
398 if (ISINF(fp)) {
399 sign |= DBL_EXP(DBL_EXP_INFNAN);
400 goto zero;
401 }
402 if (ISZERO(fp)) {
403 zero: res[1] = 0;
404 return (sign);
405 }
406
407 if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
408 (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
409 if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
410 res[1] = 0;
411 return (sign | DBL_EXP(1) | 0);
412 }
413 if ((fe->fe_cx & FSR_NX) ||
414 (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
415 fe->fe_cx |= FSR_UF;
416 exp = 0;
417 goto done;
418 }
419 (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
420 if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
421 exp++;
422 if (exp >= DBL_EXP_INFNAN) {
423 fe->fe_cx |= FSR_OF | FSR_NX;
424 if (toinf(fe, sign)) {
425 res[1] = 0;
426 return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
427 }
428 res[1] = ~0;
429 return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
430 }
431 done:
432 res[1] = fp->fp_mant[3];
433 return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
434 }
435
436 /*
437 * fpn -> extended (32 bit high-order result returned; low-order fraction
438 * words left in res[1]..res[3]). Like ftod, which is like ftos ... but
439 * our internal format *is* extended precision, plus 2 bits for guard/round,
440 * so we can avoid a small bit of work.
441 */
442 u_int
443 fpu_ftoq(fe, fp, res)
444 struct fpemu *fe;
445 register struct fpn *fp;
446 u_int *res;
447 {
448 register u_int sign = fp->fp_sign << 31;
449 register int exp;
450
451 #define EXT_EXP(e) ((e) << (EXT_FRACBITS & 31))
452 #define EXT_MASK (EXT_EXP(1) - 1)
453
454 if (ISNAN(fp)) {
455 (void) fpu_shr(fp, 2); /* since we are not rounding */
456 exp = EXT_EXP_INFNAN;
457 goto done;
458 }
459 if (ISINF(fp)) {
460 sign |= EXT_EXP(EXT_EXP_INFNAN);
461 goto zero;
462 }
463 if (ISZERO(fp)) {
464 zero: res[1] = res[2] = res[3] = 0;
465 return (sign);
466 }
467
468 if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) {
469 (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
470 if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(1)) {
471 res[1] = res[2] = res[3] = 0;
472 return (sign | EXT_EXP(1) | 0);
473 }
474 if ((fe->fe_cx & FSR_NX) ||
475 (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
476 fe->fe_cx |= FSR_UF;
477 exp = 0;
478 goto done;
479 }
480 /* Since internal == extended, no need to shift here. */
481 if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(2))
482 exp++;
483 if (exp >= EXT_EXP_INFNAN) {
484 fe->fe_cx |= FSR_OF | FSR_NX;
485 if (toinf(fe, sign)) {
486 res[1] = res[2] = res[3] = 0;
487 return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
488 }
489 res[1] = res[2] = res[3] = ~0;
490 return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
491 }
492 done:
493 res[1] = fp->fp_mant[1];
494 res[2] = fp->fp_mant[2];
495 res[3] = fp->fp_mant[3];
496 return (sign | EXT_EXP(exp) | (fp->fp_mant[0] & EXT_MASK));
497 }
498
499 /*
500 * Implode an fpn, writing the result into the given space.
501 */
502 void
503 fpu_implode(fe, fp, type, space)
504 struct fpemu *fe;
505 register struct fpn *fp;
506 int type;
507 register u_int *space;
508 {
509
510 switch (type) {
511
512 #ifdef SUN4U
513 case FTYPE_LNG:
514 space[0] = fpu_ftox(fe, fp, space);
515 break;
516 #endif /* SUN4U */
517
518 case FTYPE_INT:
519 space[0] = fpu_ftoi(fe, fp);
520 break;
521
522 case FTYPE_SNG:
523 space[0] = fpu_ftos(fe, fp);
524 break;
525
526 case FTYPE_DBL:
527 space[0] = fpu_ftod(fe, fp, space);
528 break;
529
530 case FTYPE_EXT:
531 /* funky rounding precision options ?? */
532 space[0] = fpu_ftoq(fe, fp, space);
533 break;
534
535 default:
536 panic("fpu_implode");
537 }
538 #ifdef SUN4U
539 DPRINTF(FPE_REG, ("fpu_implode: %x %x %x %x\n",
540 space[0], space[1], space[2], space[3]));
541 #else
542 DPRINTF(FPE_REG, ("fpu_implode: %x %x\n",
543 space[0], space[1]));
544 #endif
545 }
546