clock.c revision 1.3 1 1.3 gwr /* $NetBSD: clock.c,v 1.3 1997/01/23 22:30:15 gwr Exp $ */
2 1.1 gwr
3 1.1 gwr /*
4 1.1 gwr * Copyright (c) 1994 Gordon W. Ross
5 1.1 gwr * Copyright (c) 1993 Adam Glass
6 1.1 gwr * Copyright (c) 1988 University of Utah.
7 1.1 gwr * Copyright (c) 1982, 1990, 1993
8 1.1 gwr * The Regents of the University of California. All rights reserved.
9 1.1 gwr *
10 1.1 gwr * This code is derived from software contributed to Berkeley by
11 1.1 gwr * the Systems Programming Group of the University of Utah Computer
12 1.1 gwr * Science Department.
13 1.1 gwr *
14 1.1 gwr * Redistribution and use in source and binary forms, with or without
15 1.1 gwr * modification, are permitted provided that the following conditions
16 1.1 gwr * are met:
17 1.1 gwr * 1. Redistributions of source code must retain the above copyright
18 1.1 gwr * notice, this list of conditions and the following disclaimer.
19 1.1 gwr * 2. Redistributions in binary form must reproduce the above copyright
20 1.1 gwr * notice, this list of conditions and the following disclaimer in the
21 1.1 gwr * documentation and/or other materials provided with the distribution.
22 1.1 gwr * 3. All advertising materials mentioning features or use of this software
23 1.1 gwr * must display the following acknowledgement:
24 1.1 gwr * This product includes software developed by the University of
25 1.1 gwr * California, Berkeley and its contributors.
26 1.1 gwr * 4. Neither the name of the University nor the names of its contributors
27 1.1 gwr * may be used to endorse or promote products derived from this software
28 1.1 gwr * without specific prior written permission.
29 1.1 gwr *
30 1.1 gwr * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 1.1 gwr * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 1.1 gwr * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 1.1 gwr * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 1.1 gwr * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 1.1 gwr * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 1.1 gwr * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 1.1 gwr * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 1.1 gwr * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 1.1 gwr * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 1.1 gwr * SUCH DAMAGE.
41 1.1 gwr *
42 1.1 gwr * from: Utah Hdr: clock.c 1.18 91/01/21$
43 1.1 gwr * from: @(#)clock.c 8.2 (Berkeley) 1/12/94
44 1.1 gwr */
45 1.1 gwr
46 1.1 gwr /*
47 1.3 gwr * Machine-dependent clock routines for the Mostek48t02
48 1.1 gwr */
49 1.1 gwr
50 1.1 gwr #include <sys/param.h>
51 1.1 gwr #include <sys/systm.h>
52 1.1 gwr #include <sys/time.h>
53 1.1 gwr #include <sys/kernel.h>
54 1.1 gwr #include <sys/device.h>
55 1.1 gwr
56 1.1 gwr #include <machine/autoconf.h>
57 1.1 gwr #include <machine/cpu.h>
58 1.1 gwr #include <machine/mon.h>
59 1.1 gwr #include <machine/obio.h>
60 1.3 gwr #include <machine/machdep.h>
61 1.1 gwr
62 1.3 gwr #include <sun3/sun3/interreg.h>
63 1.3 gwr #include "mostek48t02.h"
64 1.1 gwr
65 1.1 gwr #define CLOCK_PRI 5
66 1.1 gwr
67 1.1 gwr void _isr_clock __P((void)); /* in locore.s */
68 1.1 gwr void clock_intr __P((struct clockframe));
69 1.1 gwr
70 1.1 gwr /* Note: this is used by locore.s:__isr_clock */
71 1.3 gwr static volatile void *clock_va;
72 1.1 gwr
73 1.1 gwr static int clock_match __P((struct device *, struct cfdata *, void *args));
74 1.1 gwr static void clock_attach __P((struct device *, struct device *, void *));
75 1.1 gwr
76 1.1 gwr struct cfattach clock_ca = {
77 1.1 gwr sizeof(struct device), clock_match, clock_attach
78 1.1 gwr };
79 1.1 gwr
80 1.1 gwr struct cfdriver clock_cd = {
81 1.1 gwr NULL, "clock", DV_DULL
82 1.1 gwr };
83 1.1 gwr
84 1.1 gwr /*
85 1.1 gwr * XXX - Need to determine which type of clock we have!
86 1.1 gwr */
87 1.1 gwr static int
88 1.1 gwr clock_match(parent, cf, args)
89 1.1 gwr struct device *parent;
90 1.1 gwr struct cfdata *cf;
91 1.1 gwr void *args;
92 1.1 gwr {
93 1.1 gwr struct confargs *ca = args;
94 1.1 gwr
95 1.1 gwr /* This driver only supports one unit. */
96 1.1 gwr if (cf->cf_unit != 0)
97 1.1 gwr return (0);
98 1.1 gwr
99 1.1 gwr /* Validate the given address. */
100 1.1 gwr if (ca->ca_paddr != OBIO_CLOCK2)
101 1.1 gwr return (0);
102 1.1 gwr
103 1.1 gwr /* Default interrupt priority. */
104 1.1 gwr if (ca->ca_intpri == -1)
105 1.1 gwr ca->ca_intpri = CLOCK_PRI;
106 1.1 gwr
107 1.1 gwr return (1);
108 1.1 gwr }
109 1.1 gwr
110 1.1 gwr static void
111 1.1 gwr clock_attach(parent, self, args)
112 1.1 gwr struct device *parent;
113 1.1 gwr struct device *self;
114 1.1 gwr void *args;
115 1.1 gwr {
116 1.1 gwr
117 1.1 gwr printf("\n");
118 1.1 gwr
119 1.1 gwr /*
120 1.1 gwr * Can not hook up the ISR until cpu_initclocks()
121 1.1 gwr * because hardclock is not ready until then.
122 1.1 gwr * For now, the handler is _isr_autovec(), which
123 1.1 gwr * will complain if it gets clock interrupts.
124 1.1 gwr */
125 1.1 gwr }
126 1.1 gwr
127 1.1 gwr /*
128 1.1 gwr * Set and/or clear the desired clock bits in the interrupt
129 1.1 gwr * register. We have to be extremely careful that we do it
130 1.1 gwr * in such a manner that we don't get ourselves lost.
131 1.1 gwr */
132 1.1 gwr void
133 1.1 gwr set_clk_mode(on, off, enable)
134 1.1 gwr u_char on, off;
135 1.1 gwr int enable;
136 1.1 gwr {
137 1.1 gwr register u_char interreg;
138 1.1 gwr register int s;
139 1.1 gwr
140 1.1 gwr s = getsr();
141 1.1 gwr if ((s & PSL_IPL) < PSL_IPL7)
142 1.1 gwr panic("set_clk_mode: ipl");
143 1.1 gwr
144 1.3 gwr if (!clock_va)
145 1.1 gwr panic("set_clk_mode: map");
146 1.1 gwr
147 1.1 gwr /*
148 1.1 gwr * make sure that we are only playing w/
149 1.1 gwr * clock interrupt register bits
150 1.1 gwr */
151 1.1 gwr on &= (IREG_CLOCK_ENAB_7 | IREG_CLOCK_ENAB_5);
152 1.1 gwr off &= (IREG_CLOCK_ENAB_7 | IREG_CLOCK_ENAB_5);
153 1.1 gwr
154 1.1 gwr /*
155 1.1 gwr * Get a copy of current interrupt register,
156 1.1 gwr * turning off any undesired bits (aka `off')
157 1.1 gwr */
158 1.1 gwr interreg = *interrupt_reg & ~(off | IREG_ALL_ENAB);
159 1.1 gwr *interrupt_reg &= ~IREG_ALL_ENAB;
160 1.1 gwr
161 1.1 gwr /*
162 1.1 gwr * Next we turns off the CLK5 and CLK7 bits to clear
163 1.1 gwr * the flip-flops, then we disable clock interrupts.
164 1.1 gwr * Now we can read the clock's interrupt register
165 1.1 gwr * to clear any pending signals there.
166 1.1 gwr */
167 1.1 gwr *interrupt_reg &= ~(IREG_CLOCK_ENAB_7 | IREG_CLOCK_ENAB_5);
168 1.3 gwr
169 1.3 gwr /* XXX - hit the clock? */
170 1.1 gwr
171 1.1 gwr /*
172 1.1 gwr * Now we set all the desired bits
173 1.1 gwr * in the interrupt register, then
174 1.1 gwr * we turn the clock back on and
175 1.1 gwr * finally we can enable all interrupts.
176 1.1 gwr */
177 1.1 gwr *interrupt_reg |= (interreg | on); /* enable flip-flops */
178 1.1 gwr
179 1.3 gwr /* XXX - hit the clock? */
180 1.1 gwr
181 1.1 gwr *interrupt_reg |= IREG_ALL_ENAB; /* enable interrupts */
182 1.1 gwr }
183 1.1 gwr
184 1.1 gwr /* Called very early by internal_configure. */
185 1.1 gwr void clock_init()
186 1.1 gwr {
187 1.3 gwr /* XXX - Yes, use the EEPROM address. Same H/W device. */
188 1.3 gwr clock_va = obio_find_mapping(OBIO_EEPROM, sizeof(struct clockreg));
189 1.1 gwr
190 1.1 gwr if (!clock_va)
191 1.1 gwr mon_panic("clock_init: clock_va\n");
192 1.1 gwr if (!interrupt_reg)
193 1.1 gwr mon_panic("clock_init: interrupt_reg\n");
194 1.1 gwr
195 1.1 gwr /* Turn off clock interrupts until cpu_initclocks() */
196 1.1 gwr /* isr_init() already set the interrupt reg to zero. */
197 1.1 gwr }
198 1.1 gwr
199 1.1 gwr /*
200 1.1 gwr * Set up the real-time clock (enable clock interrupts).
201 1.1 gwr * Leave stathz 0 since there is no secondary clock available.
202 1.1 gwr * Note that clock interrupts MUST STAY DISABLED until here.
203 1.1 gwr */
204 1.1 gwr void
205 1.1 gwr cpu_initclocks(void)
206 1.1 gwr {
207 1.1 gwr int s;
208 1.1 gwr
209 1.3 gwr if (!clock_va)
210 1.1 gwr panic("cpu_initclocks");
211 1.1 gwr s = splhigh();
212 1.1 gwr
213 1.1 gwr /* Install isr (in locore.s) that calls clock_intr(). */
214 1.1 gwr isr_add_custom(5, (void*)_isr_clock);
215 1.1 gwr
216 1.1 gwr /* Set the clock to interrupt 100 time per second. */
217 1.3 gwr /* XXX - Hard wired? */
218 1.1 gwr
219 1.1 gwr *interrupt_reg |= IREG_CLOCK_ENAB_5; /* enable clock */
220 1.3 gwr
221 1.3 gwr /* XXX enable the clock? */
222 1.3 gwr
223 1.1 gwr *interrupt_reg |= IREG_ALL_ENAB; /* enable interrupts */
224 1.1 gwr splx(s);
225 1.1 gwr }
226 1.1 gwr
227 1.1 gwr /*
228 1.1 gwr * This doesn't need to do anything, as we have only one timer and
229 1.1 gwr * profhz==stathz==hz.
230 1.1 gwr */
231 1.1 gwr void
232 1.1 gwr setstatclockrate(newhz)
233 1.1 gwr int newhz;
234 1.1 gwr {
235 1.1 gwr /* nothing */
236 1.1 gwr }
237 1.1 gwr
238 1.1 gwr /*
239 1.3 gwr * This is is called by the "custom" interrupt handler.
240 1.1 gwr */
241 1.1 gwr void
242 1.1 gwr clock_intr(cf)
243 1.1 gwr struct clockframe cf;
244 1.1 gwr {
245 1.3 gwr /* volatile struct clockreg *clk = clock_va; */
246 1.1 gwr
247 1.3 gwr #if 1 /* XXX - Needed? */
248 1.1 gwr /* Pulse the clock intr. enable low. */
249 1.1 gwr *interrupt_reg &= ~IREG_CLOCK_ENAB_5;
250 1.1 gwr *interrupt_reg |= IREG_CLOCK_ENAB_5;
251 1.3 gwr #endif
252 1.1 gwr
253 1.3 gwr /* XXX - Need to do anything? */
254 1.1 gwr hardclock(&cf);
255 1.1 gwr }
256 1.1 gwr
257 1.1 gwr /*
258 1.1 gwr * Return the best possible estimate of the time in the timeval
259 1.1 gwr * to which tvp points. We do this by returning the current time
260 1.1 gwr * plus the amount of time since the last clock interrupt.
261 1.1 gwr *
262 1.1 gwr * Check that this time is no less than any previously-reported time,
263 1.1 gwr * which could happen around the time of a clock adjustment. Just for
264 1.1 gwr * fun, we guarantee that the time will be greater than the value
265 1.1 gwr * obtained by a previous call.
266 1.1 gwr */
267 1.1 gwr void
268 1.1 gwr microtime(tvp)
269 1.1 gwr register struct timeval *tvp;
270 1.1 gwr {
271 1.1 gwr int s = splhigh();
272 1.1 gwr static struct timeval lasttime;
273 1.1 gwr
274 1.1 gwr *tvp = time;
275 1.1 gwr tvp->tv_usec++; /* XXX */
276 1.1 gwr while (tvp->tv_usec > 1000000) {
277 1.1 gwr tvp->tv_sec++;
278 1.1 gwr tvp->tv_usec -= 1000000;
279 1.1 gwr }
280 1.1 gwr if (tvp->tv_sec == lasttime.tv_sec &&
281 1.1 gwr tvp->tv_usec <= lasttime.tv_usec &&
282 1.1 gwr (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000)
283 1.1 gwr {
284 1.1 gwr tvp->tv_sec++;
285 1.1 gwr tvp->tv_usec -= 1000000;
286 1.1 gwr }
287 1.1 gwr lasttime = *tvp;
288 1.1 gwr splx(s);
289 1.1 gwr }
290 1.1 gwr
291 1.1 gwr
292 1.1 gwr /*
293 1.1 gwr * Machine-dependent clock routines.
294 1.1 gwr *
295 1.1 gwr * Inittodr initializes the time of day hardware which provides
296 1.1 gwr * date functions.
297 1.1 gwr *
298 1.1 gwr * Resettodr restores the time of day hardware after a time change.
299 1.1 gwr */
300 1.1 gwr #define SECDAY 86400L
301 1.1 gwr #define SECYR (SECDAY * 365)
302 1.1 gwr
303 1.1 gwr static long clk_get_secs(void);
304 1.1 gwr static void clk_set_secs(long);
305 1.1 gwr
306 1.1 gwr /*
307 1.1 gwr * Initialize the time of day register, based on the time base
308 1.1 gwr * which is, e.g. from a filesystem.
309 1.1 gwr */
310 1.1 gwr void inittodr(fs_time)
311 1.1 gwr time_t fs_time;
312 1.1 gwr {
313 1.1 gwr long diff, clk_time;
314 1.1 gwr long long_ago = (5 * SECYR);
315 1.1 gwr int clk_bad = 0;
316 1.1 gwr
317 1.1 gwr /*
318 1.1 gwr * Sanity check time from file system.
319 1.1 gwr * If it is zero,assume filesystem time is just unknown
320 1.1 gwr * instead of preposterous. Don't bark.
321 1.1 gwr */
322 1.1 gwr if (fs_time < long_ago) {
323 1.1 gwr /*
324 1.1 gwr * If fs_time is zero, assume filesystem time is just
325 1.1 gwr * unknown instead of preposterous. Don't bark.
326 1.1 gwr */
327 1.1 gwr if (fs_time != 0)
328 1.1 gwr printf("WARNING: preposterous time in file system\n");
329 1.1 gwr /* 1991/07/01 12:00:00 */
330 1.1 gwr fs_time = 21*SECYR + 186*SECDAY + SECDAY/2;
331 1.1 gwr }
332 1.1 gwr
333 1.1 gwr clk_time = clk_get_secs();
334 1.1 gwr
335 1.1 gwr /* Sanity check time from clock. */
336 1.1 gwr if (clk_time < long_ago) {
337 1.1 gwr printf("WARNING: bad date in battery clock");
338 1.1 gwr clk_bad = 1;
339 1.1 gwr clk_time = fs_time;
340 1.1 gwr } else {
341 1.1 gwr /* Does the clock time jive with the file system? */
342 1.1 gwr diff = clk_time - fs_time;
343 1.1 gwr if (diff < 0)
344 1.1 gwr diff = -diff;
345 1.1 gwr if (diff >= (SECDAY*2)) {
346 1.1 gwr printf("WARNING: clock %s %d days",
347 1.1 gwr (clk_time < fs_time) ? "lost" : "gained",
348 1.1 gwr (int) (diff / SECDAY));
349 1.1 gwr clk_bad = 1;
350 1.1 gwr }
351 1.1 gwr }
352 1.1 gwr if (clk_bad)
353 1.1 gwr printf(" -- CHECK AND RESET THE DATE!\n");
354 1.1 gwr time.tv_sec = clk_time;
355 1.1 gwr }
356 1.1 gwr
357 1.1 gwr /*
358 1.1 gwr * Resettodr restores the time of day hardware after a time change.
359 1.1 gwr */
360 1.1 gwr void resettodr()
361 1.1 gwr {
362 1.1 gwr clk_set_secs(time.tv_sec);
363 1.1 gwr }
364 1.1 gwr
365 1.3 gwr
366 1.3 gwr /*
368 1.3 gwr * XXX - Todo: take one of the implementations of
369 1.3 gwr * "POSIX time" to/from "YY/MM/DD/hh/mm/ss"
370 1.3 gwr * and put that in libkern (or somewhere).
371 1.3 gwr * Also put this stuct in some header...
372 1.3 gwr */
373 1.3 gwr struct date_time {
374 1.3 gwr u_char dt_year; /* since POSIX_BASE_YEAR (1970) */
375 1.3 gwr u_char dt_mon;
376 1.3 gwr u_char dt_day;
377 1.3 gwr u_char dt_hour;
378 1.3 gwr u_char dt_min;
379 1.3 gwr u_char dt_sec;
380 1.3 gwr u_char dt_csec; /* hundredths of a second */
381 1.3 gwr u_char dt_wday; /* Day of week (needed?) */
382 1.3 gwr };
383 1.3 gwr void gmt_to_dt __P((long gmt, struct date_time *dt));
384 1.3 gwr long dt_to_gmt __P((struct date_time *dt));
385 1.3 gwr /* Traditional UNIX base year */
386 1.1 gwr #define POSIX_BASE_YEAR 1970
387 1.3 gwr /*
388 1.1 gwr * XXX - End of stuff that should move to a header.
389 1.1 gwr */
390 1.1 gwr
391 1.1 gwr
392 1.3 gwr /*
393 1.3 gwr * Routines to copy state into and out of the clock.
394 1.1 gwr * The clock CSR has to be set for read or write.
395 1.3 gwr */
396 1.3 gwr
397 1.3 gwr static void
398 1.1 gwr clk_get_dt(struct date_time *dt)
399 1.3 gwr {
400 1.1 gwr volatile struct clockreg *cl = clock_va;
401 1.1 gwr int s;
402 1.1 gwr
403 1.3 gwr s = splhigh();
404 1.3 gwr /* enable read (stop time) */
405 1.1 gwr cl->cl_csr |= CLK_READ;
406 1.3 gwr
407 1.3 gwr /* Copy the info */
408 1.3 gwr dt->dt_sec = cl->cl_sec;
409 1.3 gwr dt->dt_min = cl->cl_min;
410 1.3 gwr dt->dt_hour = cl->cl_hour;
411 1.3 gwr dt->dt_wday = cl->cl_wday;
412 1.3 gwr dt->dt_day = cl->cl_mday;
413 1.3 gwr dt->dt_mon = cl->cl_month;
414 1.1 gwr dt->dt_year = cl->cl_year;
415 1.3 gwr
416 1.3 gwr /* Done reading (time wears on) */
417 1.1 gwr cl->cl_csr &= ~CLK_READ;
418 1.1 gwr splx(s);
419 1.1 gwr }
420 1.3 gwr
421 1.3 gwr static void
422 1.1 gwr clk_set_dt(struct date_time *dt)
423 1.3 gwr {
424 1.1 gwr volatile struct clockreg *cl = clock_va;
425 1.1 gwr int s;
426 1.1 gwr
427 1.3 gwr s = splhigh();
428 1.3 gwr /* enable write */
429 1.1 gwr cl->cl_csr |= CLK_WRITE;
430 1.3 gwr
431 1.3 gwr /* Copy the info */
432 1.3 gwr cl->cl_sec = dt->dt_sec;
433 1.3 gwr cl->cl_min = dt->dt_min;
434 1.3 gwr cl->cl_hour = dt->dt_hour;
435 1.3 gwr cl->cl_wday = dt->dt_wday;
436 1.3 gwr cl->cl_mday = dt->dt_day;
437 1.3 gwr cl->cl_month = dt->dt_mon;
438 1.1 gwr cl->cl_year = dt->dt_year;
439 1.3 gwr
440 1.3 gwr /* load them up */
441 1.1 gwr cl->cl_csr &= ~CLK_WRITE;
442 1.1 gwr splx(s);
443 1.1 gwr }
444 1.1 gwr
445 1.3 gwr
446 1.3 gwr /*
447 1.3 gwr * Now routines to get and set clock as POSIX time.
448 1.3 gwr * Our clock keeps "years since 1/1/1968", so we must
449 1.3 gwr * convert to/from "years since 1/1/1970" before the
450 1.3 gwr * common time conversion functions are used.
451 1.3 gwr */
452 1.3 gwr #define CLOCK_YEAR_ADJUST (POSIX_BASE_YEAR - 1968)
453 1.3 gwr static long
454 1.3 gwr clk_get_secs()
455 1.3 gwr {
456 1.3 gwr struct date_time dt;
457 1.3 gwr long gmt;
458 1.3 gwr
459 1.3 gwr clk_get_dt(&dt);
460 1.3 gwr dt.dt_year -= CLOCK_YEAR_ADJUST;
461 1.3 gwr gmt = dt_to_gmt(&dt);
462 1.3 gwr return (gmt);
463 1.3 gwr }
464 1.3 gwr static void
465 1.3 gwr clk_set_secs(secs)
466 1.3 gwr long secs;
467 1.3 gwr {
468 1.3 gwr struct date_time dt;
469 1.3 gwr long gmt;
470 1.3 gwr
471 1.3 gwr gmt = secs;
472 1.3 gwr gmt_to_dt(gmt, &dt);
473 1.3 gwr dt.dt_year += CLOCK_YEAR_ADJUST;
474 1.3 gwr clk_set_dt(&dt);
475 1.3 gwr }
476 1.3 gwr
477 1.1 gwr
478 1.3 gwr
479 1.3 gwr /*****************************************************************
481 1.1 gwr *
482 1.1 gwr * Generic routines to convert to or from a POSIX date
483 1.1 gwr * (seconds since 1/1/1970) and yr/mo/day/hr/min/sec
484 1.1 gwr *
485 1.1 gwr * These are organized this way mostly to so the code
486 1.3 gwr * can easily be tested in an independent user program.
487 1.3 gwr * (These are derived from the hp300 code.)
488 1.1 gwr *
489 1.3 gwr * XXX - Should move these to libkern or somewhere...
490 1.1 gwr */
491 1.1 gwr static inline int leapyear __P((int year));
492 1.1 gwr #define FEBRUARY 2
493 1.1 gwr #define days_in_year(a) (leapyear(a) ? 366 : 365)
494 1.3 gwr #define days_in_month(a) (month_days[(a) - 1])
495 1.3 gwr
496 1.3 gwr /*
497 1.3 gwr * Note: This array may be modified by gmt_to_dt(),
498 1.3 gwr * but these functions DO NOT need to be reentrant.
499 1.3 gwr * If we ever DO need reentrance, we should just make
500 1.3 gwr * gmt_to_dt() copy this to a local before use. -gwr
501 1.1 gwr */
502 1.1 gwr static char month_days[12] = {
503 1.1 gwr 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
504 1.3 gwr };
505 1.3 gwr
506 1.3 gwr /* Use an inline to make the logic more obvious. */
507 1.3 gwr static inline int
508 1.3 gwr leapyear(year)
509 1.3 gwr int year;
510 1.3 gwr {
511 1.3 gwr int rv = 0;
512 1.3 gwr
513 1.3 gwr if ((year % 4) == 0) {
514 1.3 gwr rv = 1;
515 1.3 gwr if ((year % 100) == 0) {
516 1.3 gwr rv = 0;
517 1.3 gwr if ((year % 400) == 0)
518 1.3 gwr rv = 1;
519 1.3 gwr }
520 1.3 gwr }
521 1.3 gwr return rv;
522 1.3 gwr }
523 1.1 gwr
524 1.3 gwr void gmt_to_dt(long gmt, struct date_time *dt)
525 1.3 gwr {
526 1.1 gwr long secs;
527 1.3 gwr int i, days;
528 1.3 gwr
529 1.1 gwr days = gmt / SECDAY;
530 1.1 gwr secs = gmt % SECDAY;
531 1.1 gwr
532 1.1 gwr /* Hours, minutes, seconds are easy */
533 1.1 gwr dt->dt_hour = secs / 3600;
534 1.1 gwr secs = secs % 3600;
535 1.1 gwr dt->dt_min = secs / 60;
536 1.1 gwr secs = secs % 60;
537 1.1 gwr dt->dt_sec = secs;
538 1.3 gwr
539 1.1 gwr /* Day of week (Note: 1/1/1970 was a Thursday) */
540 1.3 gwr dt->dt_wday = (days + 4) % 7;
541 1.1 gwr
542 1.1 gwr /* Subtract out whole years... */
543 1.1 gwr i = POSIX_BASE_YEAR;
544 1.1 gwr while (days >= days_in_year(i)) {
545 1.1 gwr days -= days_in_year(i);
546 1.3 gwr i++;
547 1.1 gwr }
548 1.3 gwr dt->dt_year = i - POSIX_BASE_YEAR;
549 1.3 gwr
550 1.1 gwr /* Subtract out whole months... */
551 1.1 gwr /* XXX - Note temporary change to month_days */
552 1.1 gwr if (leapyear(i))
553 1.1 gwr days_in_month(FEBRUARY) = 29;
554 1.3 gwr for (i = 1; days >= days_in_month(i); i++)
555 1.1 gwr days -= days_in_month(i);
556 1.3 gwr /* XXX - Undo temporary change to month_days */
557 1.1 gwr days_in_month(FEBRUARY) = 28;
558 1.1 gwr dt->dt_mon = i;
559 1.1 gwr
560 1.1 gwr /* Days are what is left over (+1) from all that. */
561 1.1 gwr dt->dt_day = days + 1;
562 1.3 gwr }
563 1.1 gwr
564 1.3 gwr long dt_to_gmt(struct date_time *dt)
565 1.3 gwr {
566 1.1 gwr long gmt;
567 1.1 gwr int i, year;
568 1.1 gwr
569 1.1 gwr /*
570 1.1 gwr * Hours are different for some reason. Makes no sense really.
571 1.3 gwr */
572 1.1 gwr
573 1.1 gwr gmt = 0;
574 1.1 gwr
575 1.3 gwr if (dt->dt_hour >= 24) goto out;
576 1.1 gwr if (dt->dt_day > 31) goto out;
577 1.3 gwr if (dt->dt_mon > 12) goto out;
578 1.1 gwr
579 1.1 gwr year = dt->dt_year + POSIX_BASE_YEAR;
580 1.1 gwr
581 1.1 gwr /*
582 1.1 gwr * Compute days since start of time
583 1.1 gwr * First from years, then from months.
584 1.3 gwr */
585 1.3 gwr for (i = POSIX_BASE_YEAR; i < year; i++)
586 1.3 gwr gmt += days_in_year(i);
587 1.1 gwr if (leapyear(year) && dt->dt_mon > FEBRUARY)
588 1.1 gwr gmt++;
589 1.3 gwr
590 1.3 gwr /* Months */
591 1.3 gwr for (i = 1; i < dt->dt_mon; i++)
592 1.1 gwr gmt += days_in_month(i);
593 1.1 gwr gmt += (dt->dt_day - 1);
594 1.3 gwr
595 1.1 gwr /* Now do hours */
596 1.1 gwr gmt = gmt * 24 + dt->dt_hour;
597 1.3 gwr
598 1.1 gwr /* Now do minutes */
599 1.1 gwr gmt = gmt * 60 + dt->dt_min;
600 1.3 gwr
601 1.1 gwr /* Now do seconds */
602 1.1 gwr gmt = gmt * 60 + dt->dt_sec;
603 1.3 gwr
604 1.1 gwr out:
605 return gmt;
606 }
607