Home | History | Annotate | Line # | Download | only in vax
      1  1.36     ragge /*	$NetBSD: ka43.c,v 1.36 2017/05/22 16:46:15 ragge Exp $ */
      2   1.1     ragge /*
      3   1.1     ragge  * Copyright (c) 1996 Ludd, University of Lule}, Sweden.
      4   1.1     ragge  * All rights reserved.
      5   1.1     ragge  *
      6   1.1     ragge  * This code is derived from software contributed to Ludd by Bertram Barth.
      7   1.1     ragge  *
      8   1.1     ragge  * Redistribution and use in source and binary forms, with or without
      9   1.1     ragge  * modification, are permitted provided that the following conditions
     10   1.1     ragge  * are met:
     11   1.1     ragge  * 1. Redistributions of source code must retain the above copyright
     12   1.1     ragge  *    notice, this list of conditions and the following disclaimer.
     13   1.1     ragge  * 2. Redistributions in binary form must reproduce the above copyright
     14   1.1     ragge  *    notice, this list of conditions and the following disclaimer in the
     15   1.1     ragge  *    documentation and/or other materials provided with the distribution.
     16   1.1     ragge  *
     17   1.1     ragge  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     18   1.1     ragge  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     19   1.1     ragge  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20   1.1     ragge  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     21   1.1     ragge  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     22   1.1     ragge  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23   1.1     ragge  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24   1.1     ragge  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25   1.1     ragge  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     26   1.1     ragge  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27   1.1     ragge  */
     28  1.26     lukem 
     29  1.26     lukem #include <sys/cdefs.h>
     30  1.36     ragge __KERNEL_RCSID(0, "$NetBSD: ka43.c,v 1.36 2017/05/22 16:46:15 ragge Exp $");
     31   1.1     ragge 
     32   1.1     ragge #include <sys/param.h>
     33  1.35      matt #include <sys/systm.h>
     34  1.35      matt #include <sys/cpu.h>
     35   1.1     ragge #include <sys/device.h>
     36   1.1     ragge #include <sys/kernel.h>
     37   1.1     ragge 
     38   1.1     ragge #include <machine/sid.h>
     39   1.1     ragge #include <machine/nexus.h>
     40   1.6     ragge #include <machine/vsbus.h>
     41   1.1     ragge #include <machine/ka43.h>
     42   1.1     ragge #include <machine/clock.h>
     43   1.1     ragge 
     44  1.33      matt static	void ka43_conf(void);
     45  1.33      matt static	void ka43_steal_pages(void);
     46   1.9     ragge 
     47  1.33      matt static	int ka43_mchk(void *);
     48  1.33      matt static	void ka43_memerr(void);
     49  1.14     ragge #if 0
     50  1.33      matt static	void ka43_clear_errors(void);
     51  1.14     ragge #endif
     52  1.33      matt static	int ka43_cache_init(void);	/* "int mapen" as argument? */
     53  1.33      matt static	int ka43_cache_reset(void);
     54  1.33      matt static	int ka43_cache_enable(void);
     55  1.33      matt static	int ka43_cache_disable(void);
     56  1.33      matt static	int ka43_cache_invalidate(void);
     57  1.33      matt static  void ka43_halt(void);
     58  1.33      matt static  void ka43_reboot(int);
     59  1.33      matt static  void ka43_clrf(void);
     60  1.33      matt 
     61  1.33      matt static const char * const ka43_devs[] = { "cpu", "vsbus", NULL };
     62  1.33      matt 
     63  1.33      matt const struct cpu_dep ka43_calls = {
     64  1.33      matt 	.cpu_steal_pages = ka43_steal_pages,
     65  1.33      matt 	.cpu_mchk	= ka43_mchk,
     66  1.33      matt 	.cpu_memerr	= ka43_memerr,
     67  1.33      matt 	.cpu_conf	= ka43_conf,
     68  1.33      matt 	.cpu_gettime	= chip_gettime,
     69  1.33      matt 	.cpu_settime	= chip_settime,
     70  1.33      matt 	.cpu_vups	= 7,	/* 7.6 VUP */
     71  1.33      matt 	.cpu_scbsz	= 2,	/* SCB pages */
     72  1.33      matt 	.cpu_halt	= ka43_halt,
     73  1.33      matt 	.cpu_reboot	= ka43_reboot,
     74  1.33      matt 	.cpu_clrf	= ka43_clrf,
     75  1.33      matt 	.cpu_devs	= ka43_devs,
     76  1.33      matt 	.cpu_flags	= CPU_RAISEIPL,
     77   1.4     ragge };
     78   1.4     ragge 
     79   1.5     ragge /*
     80   1.5     ragge  * ka43_steal_pages() is called with MMU disabled, after that call MMU gets
     81   1.5     ragge  * enabled. Thus we initialize these four pointers with physical addresses,
     82   1.5     ragge  * but before leving ka43_steal_pages() we reset them to virtual addresses.
     83   1.5     ragge  */
     84  1.16     ragge static	volatile struct	ka43_cpu   *ka43_cpu	= (void*)KA43_CPU_BASE;
     85  1.16     ragge static	volatile u_int	*ka43_creg = (void*)KA43_CH2_CREG;
     86  1.16     ragge static	volatile u_int	*ka43_ctag = (void*)KA43_CT2_BASE;
     87   1.1     ragge 
     88   1.5     ragge #define KA43_MC_RESTART	0x00008000	/* Restart possible*/
     89   1.5     ragge #define KA43_PSL_FPDONE	0x00010000	/* First Part Done */
     90   1.1     ragge 
     91   1.5     ragge struct ka43_mcframe {		/* Format of RigelMAX machine check frame: */
     92   1.5     ragge 	int	mc43_bcnt;	/* byte count, always 24 (0x18) */
     93   1.5     ragge 	int	mc43_code;	/* machine check type code and restart bit */
     94   1.5     ragge 	int	mc43_addr;	/* most recent (faulting?) virtual address */
     95   1.5     ragge 	int	mc43_viba;	/* contents of VIBA register */
     96   1.5     ragge 	int	mc43_sisr;	/* ICCS bit 6 and SISR bits 15:0 */
     97   1.5     ragge 	int	mc43_istate;	/* internal state */
     98   1.5     ragge 	int	mc43_sc;	/* shift count register */
     99   1.5     ragge 	int	mc43_pc;	/* trapped PC */
    100   1.5     ragge 	int	mc43_psl;	/* trapped PSL */
    101   1.5     ragge };
    102   1.1     ragge 
    103  1.33      matt static const char * const ka43_mctype[] = {
    104   1.5     ragge 	"no error (0)",			/* Code 0: No error */
    105   1.5     ragge 	"FPA: protocol error",		/* Code 1-5: FPA errors */
    106   1.5     ragge 	"FPA: illegal opcode",
    107   1.5     ragge 	"FPA: operand parity error",
    108   1.5     ragge 	"FPA: unknown status",
    109   1.5     ragge 	"FPA: result parity error",
    110   1.5     ragge 	"unused (6)",			/* Code 6-7: Unused */
    111   1.1     ragge 	"unused (7)",
    112   1.5     ragge 	"MMU error (TLB miss)",		/* Code 8-9: MMU errors */
    113   1.1     ragge 	"MMU error (TLB hit)",
    114   1.5     ragge 	"HW interrupt at unused IPL",	/* Code 10: Interrupt error */
    115   1.5     ragge 	"MOVCx impossible state",	/* Code 11-13: Microcode errors */
    116   1.1     ragge 	"undefined trap code (i-box)",
    117   1.1     ragge 	"undefined control store address",
    118   1.5     ragge 	"unused (14)",			/* Code 14-15: Unused */
    119   1.1     ragge 	"unused (15)",
    120   1.5     ragge 	"PC tag or data parity error",	/* Code 16: Cache error */
    121   1.5     ragge 	"data bus parity error",	/* Code 17: Read error */
    122   1.5     ragge 	"data bus error (NXM)",		/* Code 18: Write error */
    123   1.5     ragge 	"undefined data bus state",	/* Code 19: Bus error */
    124   1.1     ragge };
    125   1.5     ragge #define MC43_MAX	19
    126   1.5     ragge 
    127   1.5     ragge static int ka43_error_count = 0;
    128   1.1     ragge 
    129   1.1     ragge int
    130  1.33      matt ka43_mchk(void *addr)
    131   1.1     ragge {
    132  1.33      matt 	struct ka43_mcframe *mcf = (void*)addr;
    133   1.5     ragge 
    134   1.5     ragge 	mtpr(0x00, PR_MCESR);	/* Acknowledge the machine check */
    135   1.5     ragge 	printf("machine check %d (0x%x)\n", mcf->mc43_code, mcf->mc43_code);
    136   1.5     ragge 	printf("reason: %s\n", ka43_mctype[mcf->mc43_code & 0xff]);
    137   1.5     ragge 	if (++ka43_error_count > 10) {
    138   1.5     ragge 		printf("error_count exceeded: %d\n", ka43_error_count);
    139   1.5     ragge 		return (-1);
    140   1.5     ragge 	}
    141   1.1     ragge 
    142   1.5     ragge 	/*
    143   1.5     ragge 	 * If either the Restart flag is set or the First-Part-Done flag
    144  1.20     soren 	 * is set, and the TRAP2 (double error) bit is not set, then the
    145   1.5     ragge 	 * error is recoverable.
    146   1.5     ragge 	 */
    147   1.5     ragge 	if (mfpr(PR_PCSTS) & KA43_PCS_TRAP2) {
    148   1.5     ragge 		printf("TRAP2 (double error) in ka43_mchk.\n");
    149  1.25    provos 		panic("unrecoverable state in ka43_mchk.");
    150   1.5     ragge 		return (-1);
    151   1.5     ragge 	}
    152   1.5     ragge 	if ((mcf->mc43_code & KA43_MC_RESTART) ||
    153   1.5     ragge 	    (mcf->mc43_psl & KA43_PSL_FPDONE)) {
    154   1.5     ragge 		printf("ka43_mchk: recovering from machine-check.\n");
    155   1.5     ragge 		ka43_cache_reset();	/* reset caches */
    156   1.5     ragge 		return (0);		/* go on; */
    157   1.5     ragge 	}
    158   1.5     ragge 
    159   1.5     ragge 	/*
    160   1.5     ragge 	 * Unknown error state, panic/halt the machine!
    161   1.5     ragge 	 */
    162   1.5     ragge 	printf("ka43_mchk: unknown error state!\n");
    163   1.1     ragge 	return (-1);
    164   1.1     ragge }
    165   1.1     ragge 
    166   1.5     ragge void
    167  1.33      matt ka43_memerr(void)
    168   1.5     ragge {
    169  1.24        tv 	char sbuf[256];
    170  1.24        tv 
    171   1.5     ragge 	/*
    172   1.5     ragge 	 * Don\'t know what to do here. So just print some messages
    173   1.5     ragge 	 * and try to go on...
    174   1.5     ragge 	 */
    175  1.24        tv 
    176   1.5     ragge 	printf("memory error!\n");
    177  1.24        tv 
    178  1.34  christos 	snprintb(sbuf, sizeof(sbuf), KA43_PCSTS_BITS, mfpr(PR_PCSTS));
    179  1.24        tv 	printf("primary cache status: %s\n", sbuf);
    180  1.24        tv 
    181  1.34  christos 	snprintb(sbuf, sizeof(sbuf), KA43_SESR_BITS, *ka43_creg);
    182  1.24        tv 	printf("secondary cache status: %s\n", sbuf);
    183   1.5     ragge }
    184   1.5     ragge 
    185   1.1     ragge int
    186  1.33      matt ka43_cache_init(void)
    187   1.1     ragge {
    188   1.5     ragge 	return (ka43_cache_reset());
    189   1.5     ragge }
    190   1.1     ragge 
    191  1.14     ragge #if 0
    192   1.6     ragge void
    193  1.33      matt ka43_clear_errors(void)
    194   1.5     ragge {
    195   1.5     ragge 	int val = *ka43_creg;
    196   1.5     ragge 	val |= KA43_SESR_SERR | KA43_SESR_LERR | KA43_SESR_CERR;
    197   1.5     ragge 	*ka43_creg = val;
    198   1.1     ragge }
    199  1.14     ragge #endif
    200   1.1     ragge 
    201   1.5     ragge int
    202  1.33      matt ka43_cache_reset(void)
    203   1.1     ragge {
    204  1.24        tv 	char sbuf[256];
    205  1.24        tv 
    206   1.5     ragge 	/*
    207   1.5     ragge 	 * resetting primary and secondary caches is done in three steps:
    208   1.5     ragge 	 *	1. disable both caches
    209   1.5     ragge 	 *	2. manually clear secondary cache
    210   1.5     ragge 	 *	3. enable both caches
    211   1.5     ragge 	 */
    212   1.5     ragge 	ka43_cache_disable();
    213   1.5     ragge 	ka43_cache_invalidate();
    214   1.5     ragge 	ka43_cache_enable();
    215   1.5     ragge 
    216  1.34  christos 	snprintb(sbuf, sizeof(sbuf), KA43_PCSTS_BITS, mfpr(PR_PCSTS));
    217  1.24        tv 	printf("primary cache status: %s\n", sbuf);
    218  1.24        tv 
    219  1.34  christos 	snprintb(sbuf, sizeof(sbuf), KA43_SESR_BITS, *ka43_creg);
    220  1.24        tv 	printf("secondary cache status: %s\n", sbuf);
    221   1.1     ragge 
    222   1.1     ragge 	return (0);
    223   1.5     ragge }
    224   1.5     ragge 
    225   1.5     ragge int
    226  1.33      matt ka43_cache_disable(void)
    227   1.5     ragge {
    228   1.6     ragge 	int val;
    229   1.1     ragge 
    230   1.1     ragge 	/*
    231   1.5     ragge 	 * first disable primary cache and clear error flags
    232   1.1     ragge 	 */
    233   1.5     ragge 	mtpr(KA43_PCS_REFRESH, PR_PCSTS);	/* disable primary cache */
    234   1.5     ragge 	val = mfpr(PR_PCSTS);
    235   1.5     ragge 	mtpr(val, PR_PCSTS);			/* clear error flags */
    236   1.5     ragge 
    237   1.1     ragge 	/*
    238   1.5     ragge 	 * now disable secondary cache and clear error flags
    239   1.1     ragge 	 */
    240   1.5     ragge 	val = *ka43_creg & ~KA43_SESR_CENB;	/* BICL !!! */
    241   1.5     ragge 	*ka43_creg = val;			/* disable secondary cache */
    242   1.5     ragge 	val = KA43_SESR_SERR | KA43_SESR_LERR | KA43_SESR_CERR;
    243   1.5     ragge 	*ka43_creg = val;			/* clear error flags */
    244   1.5     ragge 
    245   1.5     ragge 	return (0);
    246   1.5     ragge }
    247   1.5     ragge 
    248   1.5     ragge int
    249  1.33      matt ka43_cache_invalidate(void)
    250   1.5     ragge {
    251   1.5     ragge 	int i, val;
    252   1.5     ragge 
    253   1.5     ragge 	val = KA43_PCTAG_PARITY;	/* clear valid flag, set parity bit */
    254   1.5     ragge 	for (i = 0; i < 256; i++) {	/* 256 Quadword entries */
    255   1.5     ragge 		mtpr(i*8, PR_PCIDX);	/* write index of tag */
    256   1.5     ragge 		mtpr(val, PR_PCTAG);	/* write value into tag */
    257   1.5     ragge 	}
    258   1.5     ragge 	val = KA43_PCS_FLUSH | KA43_PCS_REFRESH;
    259   1.5     ragge 	mtpr(val, PR_PCSTS);		/* flush primary cache */
    260   1.5     ragge 
    261   1.5     ragge 	/*
    262   1.5     ragge 	 * Rigel\'s secondary cache doesn\'t implement a valid-flag.
    263   1.5     ragge 	 * Thus we initialize all entries with out-of-range/dummy
    264   1.5     ragge 	 * addresses which will never be referenced (ie. never hit).
    265   1.5     ragge 	 * After enabling cache we also access 128K of memory starting
    266   1.5     ragge 	 * at 0x00 so that secondary cache will be filled with these
    267   1.5     ragge 	 * valid addresses...
    268   1.5     ragge 	 */
    269   1.5     ragge 	val = 0xff;
    270   1.5     ragge 	/* if (memory > 28 MB) val = 0x55; */
    271   1.5     ragge 	for (i = 0; i < KA43_CT2_SIZE; i+= 4) {	/* Quadword entries ?? */
    272   1.5     ragge 		ka43_ctag[i/4] = val;		/* reset upper and lower */
    273   1.1     ragge 	}
    274   1.5     ragge 
    275   1.5     ragge 	return (0);
    276   1.1     ragge }
    277   1.1     ragge 
    278   1.5     ragge 
    279   1.5     ragge int
    280  1.33      matt ka43_cache_enable(void)
    281   1.1     ragge {
    282   1.5     ragge 	volatile char *membase = (void*)0x80000000;	/* physical 0x00 */
    283   1.5     ragge 	int i, val;
    284   1.5     ragge 
    285   1.5     ragge 	val = KA43_PCS_FLUSH | KA43_PCS_REFRESH;
    286   1.5     ragge 	mtpr(val, PR_PCSTS);		/* flush primary cache */
    287   1.1     ragge 
    288   1.1     ragge 	/*
    289   1.5     ragge 	 * now we enable secondary cache and access first 128K of memory
    290   1.5     ragge 	 * so that secondary cache gets really initialized and holds
    291   1.5     ragge 	 * valid addresses/data...
    292   1.1     ragge 	 */
    293   1.5     ragge 	*ka43_creg = KA43_SESR_CENB;	/* enable secondary cache */
    294   1.5     ragge 	for (i=0; i<128*1024; i++) {
    295   1.5     ragge 		val += membase[i];	/* some dummy operation... */
    296   1.1     ragge 	}
    297   1.1     ragge 
    298   1.5     ragge 	val = KA43_PCS_ENABLE | KA43_PCS_REFRESH;
    299   1.5     ragge 	mtpr(val, PR_PCSTS);		/* enable primary cache */
    300   1.5     ragge 
    301   1.5     ragge 	return (0);
    302   1.1     ragge }
    303   1.1     ragge 
    304   1.1     ragge void
    305  1.33      matt ka43_conf(void)
    306   1.1     ragge {
    307  1.33      matt 	curcpu()->ci_cpustr = "Rigel, 2KB L1 cache, 128KB L2 cache";
    308  1.33      matt 
    309  1.14     ragge 	ka43_cpu = (void *)vax_map_physmem(VS_REGS, 1);
    310  1.14     ragge 	ka43_creg = (void *)vax_map_physmem(KA43_CH2_CREG, 1);
    311  1.14     ragge 	ka43_ctag = (void *)vax_map_physmem(KA43_CT2_BASE,
    312  1.14     ragge 	    (KA43_CT2_SIZE/VAX_NBPG));
    313  1.14     ragge 
    314   1.5     ragge 	/*
    315   1.5     ragge 	 * ka43_conf() gets called with MMU enabled, now it's save to
    316   1.5     ragge 	 * init/reset the caches.
    317   1.5     ragge 	 */
    318   1.5     ragge 	ka43_cache_init();
    319  1.14     ragge 
    320  1.14     ragge         clk_adrshift = 1;       /* Addressed at long's... */
    321  1.14     ragge         clk_tweak = 2;          /* ...and shift two */
    322  1.14     ragge 	clk_page = (short *)vax_map_physmem(VS_CLOCK, 1);
    323   1.1     ragge }
    324   1.1     ragge 
    325   1.1     ragge 
    326   1.1     ragge /*
    327   1.5     ragge  * The interface for communication with the LANCE ethernet controller
    328   1.5     ragge  * is setup in the xxx_steal_pages() routine. We decrease highest
    329   1.5     ragge  * available address by 64K and use this area as communication buffer.
    330   1.1     ragge  */
    331   1.1     ragge 
    332   1.1     ragge void
    333  1.33      matt ka43_steal_pages(void)
    334   1.1     ragge {
    335  1.14     ragge 	int	val;
    336   1.1     ragge 
    337   1.1     ragge 
    338   1.5     ragge 	/*
    339   1.5     ragge 	 * if LANCE\'s io-buffer is above 16 MB, then the appropriate flag
    340   1.5     ragge 	 * in the parity control register has to be set (it works as an
    341   1.5     ragge 	 * additional address bit). In any case, don\'t enable CPEN and
    342   1.5     ragge 	 * DPEN in the PARCTL register, somewhow they are internally managed
    343   1.5     ragge 	 * by the RIGEL chip itself!?!
    344   1.5     ragge 	 */
    345   1.5     ragge 	val = ka43_cpu->parctl & 0x03;	/* read the old value */
    346   1.5     ragge 	ka43_cpu->parctl = val;		/* and write new value */
    347  1.14     ragge }
    348  1.14     ragge 
    349  1.33      matt void
    350  1.33      matt ka43_clrf(void)
    351  1.14     ragge {
    352  1.28     ragge         volatile struct ka43_clock *clk = (volatile void *)clk_page;
    353   1.1     ragge 
    354  1.14     ragge         /*
    355  1.14     ragge          * Clear restart and boot in progress flags in the CPMBX.
    356  1.27     ragge 	 * The cpmbx is split into two 4-bit fields.
    357  1.27     ragge 	 * One for the current restart/boot in progress flags, and
    358  1.27     ragge 	 * one for the permanent halt flag.
    359  1.27     ragge 	 * The restart/boot in progress flag is also used as the action request
    360  1.27     ragge 	 * for the CPU at a halt. /BQT
    361  1.14     ragge          */
    362  1.27     ragge         clk->req = 0;
    363  1.14     ragge }
    364  1.14     ragge 
    365  1.33      matt void
    366  1.33      matt ka43_halt(void)
    367  1.14     ragge {
    368  1.28     ragge 	volatile struct ka43_clock *clk = (volatile void *)clk_page;
    369  1.27     ragge 	clk->req = 3;		/* 3 is halt. */
    370  1.30     perry 	__asm("halt");
    371  1.14     ragge }
    372  1.14     ragge 
    373  1.33      matt void
    374  1.33      matt ka43_reboot(int arg)
    375  1.14     ragge {
    376  1.28     ragge 	volatile struct ka43_clock *clk = (volatile void *)clk_page;
    377  1.27     ragge 	clk->req = 2;		/* 2 is reboot. */
    378  1.30     perry 	__asm("halt");
    379   1.1     ragge }
    380