ka43.c revision 1.36 1 1.36 ragge /* $NetBSD: ka43.c,v 1.36 2017/05/22 16:46:15 ragge Exp $ */
2 1.1 ragge /*
3 1.1 ragge * Copyright (c) 1996 Ludd, University of Lule}, Sweden.
4 1.1 ragge * All rights reserved.
5 1.1 ragge *
6 1.1 ragge * This code is derived from software contributed to Ludd by Bertram Barth.
7 1.1 ragge *
8 1.1 ragge * Redistribution and use in source and binary forms, with or without
9 1.1 ragge * modification, are permitted provided that the following conditions
10 1.1 ragge * are met:
11 1.1 ragge * 1. Redistributions of source code must retain the above copyright
12 1.1 ragge * notice, this list of conditions and the following disclaimer.
13 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 ragge * notice, this list of conditions and the following disclaimer in the
15 1.1 ragge * documentation and/or other materials provided with the distribution.
16 1.1 ragge *
17 1.1 ragge * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 1.1 ragge * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 1.1 ragge * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 1.1 ragge * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 1.1 ragge * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 1.1 ragge * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 1.1 ragge * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 1.1 ragge * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 1.1 ragge * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 1.1 ragge * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 1.1 ragge */
28 1.26 lukem
29 1.26 lukem #include <sys/cdefs.h>
30 1.36 ragge __KERNEL_RCSID(0, "$NetBSD: ka43.c,v 1.36 2017/05/22 16:46:15 ragge Exp $");
31 1.1 ragge
32 1.1 ragge #include <sys/param.h>
33 1.35 matt #include <sys/systm.h>
34 1.35 matt #include <sys/cpu.h>
35 1.1 ragge #include <sys/device.h>
36 1.1 ragge #include <sys/kernel.h>
37 1.1 ragge
38 1.1 ragge #include <machine/sid.h>
39 1.1 ragge #include <machine/nexus.h>
40 1.6 ragge #include <machine/vsbus.h>
41 1.1 ragge #include <machine/ka43.h>
42 1.1 ragge #include <machine/clock.h>
43 1.1 ragge
44 1.33 matt static void ka43_conf(void);
45 1.33 matt static void ka43_steal_pages(void);
46 1.9 ragge
47 1.33 matt static int ka43_mchk(void *);
48 1.33 matt static void ka43_memerr(void);
49 1.14 ragge #if 0
50 1.33 matt static void ka43_clear_errors(void);
51 1.14 ragge #endif
52 1.33 matt static int ka43_cache_init(void); /* "int mapen" as argument? */
53 1.33 matt static int ka43_cache_reset(void);
54 1.33 matt static int ka43_cache_enable(void);
55 1.33 matt static int ka43_cache_disable(void);
56 1.33 matt static int ka43_cache_invalidate(void);
57 1.33 matt static void ka43_halt(void);
58 1.33 matt static void ka43_reboot(int);
59 1.33 matt static void ka43_clrf(void);
60 1.33 matt
61 1.33 matt static const char * const ka43_devs[] = { "cpu", "vsbus", NULL };
62 1.33 matt
63 1.33 matt const struct cpu_dep ka43_calls = {
64 1.33 matt .cpu_steal_pages = ka43_steal_pages,
65 1.33 matt .cpu_mchk = ka43_mchk,
66 1.33 matt .cpu_memerr = ka43_memerr,
67 1.33 matt .cpu_conf = ka43_conf,
68 1.33 matt .cpu_gettime = chip_gettime,
69 1.33 matt .cpu_settime = chip_settime,
70 1.33 matt .cpu_vups = 7, /* 7.6 VUP */
71 1.33 matt .cpu_scbsz = 2, /* SCB pages */
72 1.33 matt .cpu_halt = ka43_halt,
73 1.33 matt .cpu_reboot = ka43_reboot,
74 1.33 matt .cpu_clrf = ka43_clrf,
75 1.33 matt .cpu_devs = ka43_devs,
76 1.33 matt .cpu_flags = CPU_RAISEIPL,
77 1.4 ragge };
78 1.4 ragge
79 1.5 ragge /*
80 1.5 ragge * ka43_steal_pages() is called with MMU disabled, after that call MMU gets
81 1.5 ragge * enabled. Thus we initialize these four pointers with physical addresses,
82 1.5 ragge * but before leving ka43_steal_pages() we reset them to virtual addresses.
83 1.5 ragge */
84 1.16 ragge static volatile struct ka43_cpu *ka43_cpu = (void*)KA43_CPU_BASE;
85 1.16 ragge static volatile u_int *ka43_creg = (void*)KA43_CH2_CREG;
86 1.16 ragge static volatile u_int *ka43_ctag = (void*)KA43_CT2_BASE;
87 1.1 ragge
88 1.5 ragge #define KA43_MC_RESTART 0x00008000 /* Restart possible*/
89 1.5 ragge #define KA43_PSL_FPDONE 0x00010000 /* First Part Done */
90 1.1 ragge
91 1.5 ragge struct ka43_mcframe { /* Format of RigelMAX machine check frame: */
92 1.5 ragge int mc43_bcnt; /* byte count, always 24 (0x18) */
93 1.5 ragge int mc43_code; /* machine check type code and restart bit */
94 1.5 ragge int mc43_addr; /* most recent (faulting?) virtual address */
95 1.5 ragge int mc43_viba; /* contents of VIBA register */
96 1.5 ragge int mc43_sisr; /* ICCS bit 6 and SISR bits 15:0 */
97 1.5 ragge int mc43_istate; /* internal state */
98 1.5 ragge int mc43_sc; /* shift count register */
99 1.5 ragge int mc43_pc; /* trapped PC */
100 1.5 ragge int mc43_psl; /* trapped PSL */
101 1.5 ragge };
102 1.1 ragge
103 1.33 matt static const char * const ka43_mctype[] = {
104 1.5 ragge "no error (0)", /* Code 0: No error */
105 1.5 ragge "FPA: protocol error", /* Code 1-5: FPA errors */
106 1.5 ragge "FPA: illegal opcode",
107 1.5 ragge "FPA: operand parity error",
108 1.5 ragge "FPA: unknown status",
109 1.5 ragge "FPA: result parity error",
110 1.5 ragge "unused (6)", /* Code 6-7: Unused */
111 1.1 ragge "unused (7)",
112 1.5 ragge "MMU error (TLB miss)", /* Code 8-9: MMU errors */
113 1.1 ragge "MMU error (TLB hit)",
114 1.5 ragge "HW interrupt at unused IPL", /* Code 10: Interrupt error */
115 1.5 ragge "MOVCx impossible state", /* Code 11-13: Microcode errors */
116 1.1 ragge "undefined trap code (i-box)",
117 1.1 ragge "undefined control store address",
118 1.5 ragge "unused (14)", /* Code 14-15: Unused */
119 1.1 ragge "unused (15)",
120 1.5 ragge "PC tag or data parity error", /* Code 16: Cache error */
121 1.5 ragge "data bus parity error", /* Code 17: Read error */
122 1.5 ragge "data bus error (NXM)", /* Code 18: Write error */
123 1.5 ragge "undefined data bus state", /* Code 19: Bus error */
124 1.1 ragge };
125 1.5 ragge #define MC43_MAX 19
126 1.5 ragge
127 1.5 ragge static int ka43_error_count = 0;
128 1.1 ragge
129 1.1 ragge int
130 1.33 matt ka43_mchk(void *addr)
131 1.1 ragge {
132 1.33 matt struct ka43_mcframe *mcf = (void*)addr;
133 1.5 ragge
134 1.5 ragge mtpr(0x00, PR_MCESR); /* Acknowledge the machine check */
135 1.5 ragge printf("machine check %d (0x%x)\n", mcf->mc43_code, mcf->mc43_code);
136 1.5 ragge printf("reason: %s\n", ka43_mctype[mcf->mc43_code & 0xff]);
137 1.5 ragge if (++ka43_error_count > 10) {
138 1.5 ragge printf("error_count exceeded: %d\n", ka43_error_count);
139 1.5 ragge return (-1);
140 1.5 ragge }
141 1.1 ragge
142 1.5 ragge /*
143 1.5 ragge * If either the Restart flag is set or the First-Part-Done flag
144 1.20 soren * is set, and the TRAP2 (double error) bit is not set, then the
145 1.5 ragge * error is recoverable.
146 1.5 ragge */
147 1.5 ragge if (mfpr(PR_PCSTS) & KA43_PCS_TRAP2) {
148 1.5 ragge printf("TRAP2 (double error) in ka43_mchk.\n");
149 1.25 provos panic("unrecoverable state in ka43_mchk.");
150 1.5 ragge return (-1);
151 1.5 ragge }
152 1.5 ragge if ((mcf->mc43_code & KA43_MC_RESTART) ||
153 1.5 ragge (mcf->mc43_psl & KA43_PSL_FPDONE)) {
154 1.5 ragge printf("ka43_mchk: recovering from machine-check.\n");
155 1.5 ragge ka43_cache_reset(); /* reset caches */
156 1.5 ragge return (0); /* go on; */
157 1.5 ragge }
158 1.5 ragge
159 1.5 ragge /*
160 1.5 ragge * Unknown error state, panic/halt the machine!
161 1.5 ragge */
162 1.5 ragge printf("ka43_mchk: unknown error state!\n");
163 1.1 ragge return (-1);
164 1.1 ragge }
165 1.1 ragge
166 1.5 ragge void
167 1.33 matt ka43_memerr(void)
168 1.5 ragge {
169 1.24 tv char sbuf[256];
170 1.24 tv
171 1.5 ragge /*
172 1.5 ragge * Don\'t know what to do here. So just print some messages
173 1.5 ragge * and try to go on...
174 1.5 ragge */
175 1.24 tv
176 1.5 ragge printf("memory error!\n");
177 1.24 tv
178 1.34 christos snprintb(sbuf, sizeof(sbuf), KA43_PCSTS_BITS, mfpr(PR_PCSTS));
179 1.24 tv printf("primary cache status: %s\n", sbuf);
180 1.24 tv
181 1.34 christos snprintb(sbuf, sizeof(sbuf), KA43_SESR_BITS, *ka43_creg);
182 1.24 tv printf("secondary cache status: %s\n", sbuf);
183 1.5 ragge }
184 1.5 ragge
185 1.1 ragge int
186 1.33 matt ka43_cache_init(void)
187 1.1 ragge {
188 1.5 ragge return (ka43_cache_reset());
189 1.5 ragge }
190 1.1 ragge
191 1.14 ragge #if 0
192 1.6 ragge void
193 1.33 matt ka43_clear_errors(void)
194 1.5 ragge {
195 1.5 ragge int val = *ka43_creg;
196 1.5 ragge val |= KA43_SESR_SERR | KA43_SESR_LERR | KA43_SESR_CERR;
197 1.5 ragge *ka43_creg = val;
198 1.1 ragge }
199 1.14 ragge #endif
200 1.1 ragge
201 1.5 ragge int
202 1.33 matt ka43_cache_reset(void)
203 1.1 ragge {
204 1.24 tv char sbuf[256];
205 1.24 tv
206 1.5 ragge /*
207 1.5 ragge * resetting primary and secondary caches is done in three steps:
208 1.5 ragge * 1. disable both caches
209 1.5 ragge * 2. manually clear secondary cache
210 1.5 ragge * 3. enable both caches
211 1.5 ragge */
212 1.5 ragge ka43_cache_disable();
213 1.5 ragge ka43_cache_invalidate();
214 1.5 ragge ka43_cache_enable();
215 1.5 ragge
216 1.34 christos snprintb(sbuf, sizeof(sbuf), KA43_PCSTS_BITS, mfpr(PR_PCSTS));
217 1.24 tv printf("primary cache status: %s\n", sbuf);
218 1.24 tv
219 1.34 christos snprintb(sbuf, sizeof(sbuf), KA43_SESR_BITS, *ka43_creg);
220 1.24 tv printf("secondary cache status: %s\n", sbuf);
221 1.1 ragge
222 1.1 ragge return (0);
223 1.5 ragge }
224 1.5 ragge
225 1.5 ragge int
226 1.33 matt ka43_cache_disable(void)
227 1.5 ragge {
228 1.6 ragge int val;
229 1.1 ragge
230 1.1 ragge /*
231 1.5 ragge * first disable primary cache and clear error flags
232 1.1 ragge */
233 1.5 ragge mtpr(KA43_PCS_REFRESH, PR_PCSTS); /* disable primary cache */
234 1.5 ragge val = mfpr(PR_PCSTS);
235 1.5 ragge mtpr(val, PR_PCSTS); /* clear error flags */
236 1.5 ragge
237 1.1 ragge /*
238 1.5 ragge * now disable secondary cache and clear error flags
239 1.1 ragge */
240 1.5 ragge val = *ka43_creg & ~KA43_SESR_CENB; /* BICL !!! */
241 1.5 ragge *ka43_creg = val; /* disable secondary cache */
242 1.5 ragge val = KA43_SESR_SERR | KA43_SESR_LERR | KA43_SESR_CERR;
243 1.5 ragge *ka43_creg = val; /* clear error flags */
244 1.5 ragge
245 1.5 ragge return (0);
246 1.5 ragge }
247 1.5 ragge
248 1.5 ragge int
249 1.33 matt ka43_cache_invalidate(void)
250 1.5 ragge {
251 1.5 ragge int i, val;
252 1.5 ragge
253 1.5 ragge val = KA43_PCTAG_PARITY; /* clear valid flag, set parity bit */
254 1.5 ragge for (i = 0; i < 256; i++) { /* 256 Quadword entries */
255 1.5 ragge mtpr(i*8, PR_PCIDX); /* write index of tag */
256 1.5 ragge mtpr(val, PR_PCTAG); /* write value into tag */
257 1.5 ragge }
258 1.5 ragge val = KA43_PCS_FLUSH | KA43_PCS_REFRESH;
259 1.5 ragge mtpr(val, PR_PCSTS); /* flush primary cache */
260 1.5 ragge
261 1.5 ragge /*
262 1.5 ragge * Rigel\'s secondary cache doesn\'t implement a valid-flag.
263 1.5 ragge * Thus we initialize all entries with out-of-range/dummy
264 1.5 ragge * addresses which will never be referenced (ie. never hit).
265 1.5 ragge * After enabling cache we also access 128K of memory starting
266 1.5 ragge * at 0x00 so that secondary cache will be filled with these
267 1.5 ragge * valid addresses...
268 1.5 ragge */
269 1.5 ragge val = 0xff;
270 1.5 ragge /* if (memory > 28 MB) val = 0x55; */
271 1.5 ragge for (i = 0; i < KA43_CT2_SIZE; i+= 4) { /* Quadword entries ?? */
272 1.5 ragge ka43_ctag[i/4] = val; /* reset upper and lower */
273 1.1 ragge }
274 1.5 ragge
275 1.5 ragge return (0);
276 1.1 ragge }
277 1.1 ragge
278 1.5 ragge
279 1.5 ragge int
280 1.33 matt ka43_cache_enable(void)
281 1.1 ragge {
282 1.5 ragge volatile char *membase = (void*)0x80000000; /* physical 0x00 */
283 1.5 ragge int i, val;
284 1.5 ragge
285 1.5 ragge val = KA43_PCS_FLUSH | KA43_PCS_REFRESH;
286 1.5 ragge mtpr(val, PR_PCSTS); /* flush primary cache */
287 1.1 ragge
288 1.1 ragge /*
289 1.5 ragge * now we enable secondary cache and access first 128K of memory
290 1.5 ragge * so that secondary cache gets really initialized and holds
291 1.5 ragge * valid addresses/data...
292 1.1 ragge */
293 1.5 ragge *ka43_creg = KA43_SESR_CENB; /* enable secondary cache */
294 1.5 ragge for (i=0; i<128*1024; i++) {
295 1.5 ragge val += membase[i]; /* some dummy operation... */
296 1.1 ragge }
297 1.1 ragge
298 1.5 ragge val = KA43_PCS_ENABLE | KA43_PCS_REFRESH;
299 1.5 ragge mtpr(val, PR_PCSTS); /* enable primary cache */
300 1.5 ragge
301 1.5 ragge return (0);
302 1.1 ragge }
303 1.1 ragge
304 1.1 ragge void
305 1.33 matt ka43_conf(void)
306 1.1 ragge {
307 1.33 matt curcpu()->ci_cpustr = "Rigel, 2KB L1 cache, 128KB L2 cache";
308 1.33 matt
309 1.14 ragge ka43_cpu = (void *)vax_map_physmem(VS_REGS, 1);
310 1.14 ragge ka43_creg = (void *)vax_map_physmem(KA43_CH2_CREG, 1);
311 1.14 ragge ka43_ctag = (void *)vax_map_physmem(KA43_CT2_BASE,
312 1.14 ragge (KA43_CT2_SIZE/VAX_NBPG));
313 1.14 ragge
314 1.5 ragge /*
315 1.5 ragge * ka43_conf() gets called with MMU enabled, now it's save to
316 1.5 ragge * init/reset the caches.
317 1.5 ragge */
318 1.5 ragge ka43_cache_init();
319 1.14 ragge
320 1.14 ragge clk_adrshift = 1; /* Addressed at long's... */
321 1.14 ragge clk_tweak = 2; /* ...and shift two */
322 1.14 ragge clk_page = (short *)vax_map_physmem(VS_CLOCK, 1);
323 1.1 ragge }
324 1.1 ragge
325 1.1 ragge
326 1.1 ragge /*
327 1.5 ragge * The interface for communication with the LANCE ethernet controller
328 1.5 ragge * is setup in the xxx_steal_pages() routine. We decrease highest
329 1.5 ragge * available address by 64K and use this area as communication buffer.
330 1.1 ragge */
331 1.1 ragge
332 1.1 ragge void
333 1.33 matt ka43_steal_pages(void)
334 1.1 ragge {
335 1.14 ragge int val;
336 1.1 ragge
337 1.1 ragge
338 1.5 ragge /*
339 1.5 ragge * if LANCE\'s io-buffer is above 16 MB, then the appropriate flag
340 1.5 ragge * in the parity control register has to be set (it works as an
341 1.5 ragge * additional address bit). In any case, don\'t enable CPEN and
342 1.5 ragge * DPEN in the PARCTL register, somewhow they are internally managed
343 1.5 ragge * by the RIGEL chip itself!?!
344 1.5 ragge */
345 1.5 ragge val = ka43_cpu->parctl & 0x03; /* read the old value */
346 1.5 ragge ka43_cpu->parctl = val; /* and write new value */
347 1.14 ragge }
348 1.14 ragge
349 1.33 matt void
350 1.33 matt ka43_clrf(void)
351 1.14 ragge {
352 1.28 ragge volatile struct ka43_clock *clk = (volatile void *)clk_page;
353 1.1 ragge
354 1.14 ragge /*
355 1.14 ragge * Clear restart and boot in progress flags in the CPMBX.
356 1.27 ragge * The cpmbx is split into two 4-bit fields.
357 1.27 ragge * One for the current restart/boot in progress flags, and
358 1.27 ragge * one for the permanent halt flag.
359 1.27 ragge * The restart/boot in progress flag is also used as the action request
360 1.27 ragge * for the CPU at a halt. /BQT
361 1.14 ragge */
362 1.27 ragge clk->req = 0;
363 1.14 ragge }
364 1.14 ragge
365 1.33 matt void
366 1.33 matt ka43_halt(void)
367 1.14 ragge {
368 1.28 ragge volatile struct ka43_clock *clk = (volatile void *)clk_page;
369 1.27 ragge clk->req = 3; /* 3 is halt. */
370 1.30 perry __asm("halt");
371 1.14 ragge }
372 1.14 ragge
373 1.33 matt void
374 1.33 matt ka43_reboot(int arg)
375 1.14 ragge {
376 1.28 ragge volatile struct ka43_clock *clk = (volatile void *)clk_page;
377 1.27 ragge clk->req = 2; /* 2 is reboot. */
378 1.30 perry __asm("halt");
379 1.1 ragge }
380