cpu.c revision 1.100 1 1.100 bouyer /* $NetBSD: cpu.c,v 1.100 2014/11/27 16:29:44 bouyer Exp $ */
2 1.2 bouyer /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp */
3 1.2 bouyer
4 1.2 bouyer /*-
5 1.2 bouyer * Copyright (c) 2000 The NetBSD Foundation, Inc.
6 1.19 joerg * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
7 1.2 bouyer * All rights reserved.
8 1.2 bouyer *
9 1.2 bouyer * This code is derived from software contributed to The NetBSD Foundation
10 1.2 bouyer * by RedBack Networks Inc.
11 1.2 bouyer *
12 1.2 bouyer * Author: Bill Sommerfeld
13 1.2 bouyer *
14 1.2 bouyer * Redistribution and use in source and binary forms, with or without
15 1.2 bouyer * modification, are permitted provided that the following conditions
16 1.2 bouyer * are met:
17 1.2 bouyer * 1. Redistributions of source code must retain the above copyright
18 1.2 bouyer * notice, this list of conditions and the following disclaimer.
19 1.2 bouyer * 2. Redistributions in binary form must reproduce the above copyright
20 1.2 bouyer * notice, this list of conditions and the following disclaimer in the
21 1.2 bouyer * documentation and/or other materials provided with the distribution.
22 1.2 bouyer *
23 1.2 bouyer * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 1.2 bouyer * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 1.2 bouyer * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 1.2 bouyer * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 1.2 bouyer * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.2 bouyer * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.2 bouyer * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.2 bouyer * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.2 bouyer * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.2 bouyer * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 1.2 bouyer * POSSIBILITY OF SUCH DAMAGE.
34 1.2 bouyer */
35 1.2 bouyer
36 1.2 bouyer /*
37 1.2 bouyer * Copyright (c) 1999 Stefan Grefen
38 1.2 bouyer *
39 1.2 bouyer * Redistribution and use in source and binary forms, with or without
40 1.2 bouyer * modification, are permitted provided that the following conditions
41 1.2 bouyer * are met:
42 1.2 bouyer * 1. Redistributions of source code must retain the above copyright
43 1.2 bouyer * notice, this list of conditions and the following disclaimer.
44 1.2 bouyer * 2. Redistributions in binary form must reproduce the above copyright
45 1.2 bouyer * notice, this list of conditions and the following disclaimer in the
46 1.2 bouyer * documentation and/or other materials provided with the distribution.
47 1.2 bouyer * 3. All advertising materials mentioning features or use of this software
48 1.2 bouyer * must display the following acknowledgement:
49 1.2 bouyer * This product includes software developed by the NetBSD
50 1.2 bouyer * Foundation, Inc. and its contributors.
51 1.2 bouyer * 4. Neither the name of The NetBSD Foundation nor the names of its
52 1.2 bouyer * contributors may be used to endorse or promote products derived
53 1.2 bouyer * from this software without specific prior written permission.
54 1.2 bouyer *
55 1.2 bouyer * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
56 1.2 bouyer * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.2 bouyer * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.2 bouyer * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
59 1.2 bouyer * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.2 bouyer * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.2 bouyer * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.2 bouyer * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.2 bouyer * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.2 bouyer * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.2 bouyer * SUCH DAMAGE.
66 1.2 bouyer */
67 1.2 bouyer
68 1.2 bouyer #include <sys/cdefs.h>
69 1.100 bouyer __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.100 2014/11/27 16:29:44 bouyer Exp $");
70 1.2 bouyer
71 1.2 bouyer #include "opt_ddb.h"
72 1.2 bouyer #include "opt_multiprocessor.h"
73 1.2 bouyer #include "opt_mpbios.h" /* for MPDEBUG */
74 1.2 bouyer #include "opt_mtrr.h"
75 1.2 bouyer #include "opt_xen.h"
76 1.2 bouyer
77 1.2 bouyer #include "lapic.h"
78 1.2 bouyer #include "ioapic.h"
79 1.2 bouyer
80 1.2 bouyer #include <sys/param.h>
81 1.2 bouyer #include <sys/proc.h>
82 1.2 bouyer #include <sys/systm.h>
83 1.2 bouyer #include <sys/device.h>
84 1.31 cegger #include <sys/kmem.h>
85 1.11 cegger #include <sys/cpu.h>
86 1.66 jruoho #include <sys/cpufreq.h>
87 1.11 cegger #include <sys/atomic.h>
88 1.32 cegger #include <sys/reboot.h>
89 1.62 cherry #include <sys/idle.h>
90 1.2 bouyer
91 1.51 uebayasi #include <uvm/uvm.h>
92 1.2 bouyer
93 1.2 bouyer #include <machine/cpufunc.h>
94 1.2 bouyer #include <machine/cpuvar.h>
95 1.2 bouyer #include <machine/pmap.h>
96 1.2 bouyer #include <machine/vmparam.h>
97 1.2 bouyer #include <machine/mpbiosvar.h>
98 1.2 bouyer #include <machine/pcb.h>
99 1.2 bouyer #include <machine/specialreg.h>
100 1.2 bouyer #include <machine/segments.h>
101 1.2 bouyer #include <machine/gdt.h>
102 1.2 bouyer #include <machine/mtrr.h>
103 1.2 bouyer #include <machine/pio.h>
104 1.2 bouyer
105 1.97 dsl #include <x86/fpu.h>
106 1.62 cherry
107 1.62 cherry #include <xen/xen.h>
108 1.71 cegger #include <xen/xen-public/vcpu.h>
109 1.2 bouyer #include <xen/vcpuvar.h>
110 1.2 bouyer
111 1.2 bouyer #if NLAPIC > 0
112 1.2 bouyer #include <machine/apicvar.h>
113 1.2 bouyer #include <machine/i82489reg.h>
114 1.2 bouyer #include <machine/i82489var.h>
115 1.2 bouyer #endif
116 1.2 bouyer
117 1.2 bouyer #include <dev/ic/mc146818reg.h>
118 1.2 bouyer #include <dev/isa/isareg.h>
119 1.2 bouyer
120 1.56 jruoho static int cpu_match(device_t, cfdata_t, void *);
121 1.56 jruoho static void cpu_attach(device_t, device_t, void *);
122 1.56 jruoho static void cpu_defer(device_t);
123 1.56 jruoho static int cpu_rescan(device_t, const char *, const int *);
124 1.56 jruoho static void cpu_childdetached(device_t, device_t);
125 1.56 jruoho static int vcpu_match(device_t, cfdata_t, void *);
126 1.56 jruoho static void vcpu_attach(device_t, device_t, void *);
127 1.56 jruoho static void cpu_attach_common(device_t, device_t, void *);
128 1.56 jruoho void cpu_offline_md(void);
129 1.2 bouyer
130 1.2 bouyer struct cpu_softc {
131 1.10 cegger device_t sc_dev; /* device tree glue */
132 1.2 bouyer struct cpu_info *sc_info; /* pointer to CPU info */
133 1.32 cegger bool sc_wasonline;
134 1.2 bouyer };
135 1.2 bouyer
136 1.62 cherry int mp_cpu_start(struct cpu_info *, vaddr_t);
137 1.2 bouyer void mp_cpu_start_cleanup(struct cpu_info *);
138 1.2 bouyer const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
139 1.2 bouyer mp_cpu_start_cleanup };
140 1.2 bouyer
141 1.53 jruoho CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
142 1.53 jruoho cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
143 1.53 jruoho
144 1.10 cegger CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
145 1.2 bouyer vcpu_match, vcpu_attach, NULL, NULL);
146 1.2 bouyer
147 1.2 bouyer /*
148 1.2 bouyer * Statically-allocated CPU info for the primary CPU (or the only
149 1.2 bouyer * CPU, on uniprocessors). The CPU info list is initialized to
150 1.2 bouyer * point at it.
151 1.2 bouyer */
152 1.2 bouyer #ifdef TRAPLOG
153 1.2 bouyer #include <machine/tlog.h>
154 1.2 bouyer struct tlog tlog_primary;
155 1.2 bouyer #endif
156 1.38 cegger struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
157 1.7 bouyer .ci_dev = 0,
158 1.2 bouyer .ci_self = &cpu_info_primary,
159 1.4 bouyer .ci_idepth = -1,
160 1.2 bouyer .ci_curlwp = &lwp0,
161 1.25 ad .ci_curldt = -1,
162 1.2 bouyer #ifdef TRAPLOG
163 1.2 bouyer .ci_tlog = &tlog_primary,
164 1.2 bouyer #endif
165 1.2 bouyer
166 1.2 bouyer };
167 1.38 cegger struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
168 1.7 bouyer .ci_dev = 0,
169 1.2 bouyer .ci_self = &phycpu_info_primary,
170 1.2 bouyer };
171 1.2 bouyer
172 1.2 bouyer struct cpu_info *cpu_info_list = &cpu_info_primary;
173 1.38 cegger struct cpu_info *phycpu_info_list = &phycpu_info_primary;
174 1.2 bouyer
175 1.43 jym uint32_t cpu_feature[5]; /* X86 CPUID feature bits
176 1.43 jym * [0] basic features %edx
177 1.43 jym * [1] basic features %ecx
178 1.43 jym * [2] extended features %edx
179 1.43 jym * [3] extended features %ecx
180 1.43 jym * [4] VIA padlock features
181 1.43 jym */
182 1.43 jym
183 1.11 cegger bool x86_mp_online;
184 1.11 cegger paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
185 1.2 bouyer
186 1.38 cegger #if defined(MULTIPROCESSOR)
187 1.2 bouyer void cpu_hatch(void *);
188 1.2 bouyer static void cpu_boot_secondary(struct cpu_info *ci);
189 1.2 bouyer static void cpu_start_secondary(struct cpu_info *ci);
190 1.38 cegger #endif /* MULTIPROCESSOR */
191 1.2 bouyer
192 1.56 jruoho static int
193 1.10 cegger cpu_match(device_t parent, cfdata_t match, void *aux)
194 1.2 bouyer {
195 1.2 bouyer
196 1.2 bouyer return 1;
197 1.2 bouyer }
198 1.2 bouyer
199 1.56 jruoho static void
200 1.10 cegger cpu_attach(device_t parent, device_t self, void *aux)
201 1.2 bouyer {
202 1.10 cegger struct cpu_softc *sc = device_private(self);
203 1.2 bouyer struct cpu_attach_args *caa = aux;
204 1.2 bouyer struct cpu_info *ci;
205 1.34 cegger uintptr_t ptr;
206 1.52 bouyer static int nphycpu = 0;
207 1.2 bouyer
208 1.10 cegger sc->sc_dev = self;
209 1.10 cegger
210 1.2 bouyer /*
211 1.2 bouyer * If we're an Application Processor, allocate a cpu_info
212 1.52 bouyer * If we're the first attached CPU use the primary cpu_info,
213 1.52 bouyer * otherwise allocate a new one
214 1.2 bouyer */
215 1.52 bouyer aprint_naive("\n");
216 1.52 bouyer aprint_normal("\n");
217 1.52 bouyer if (nphycpu > 0) {
218 1.52 bouyer struct cpu_info *tmp;
219 1.34 cegger ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
220 1.34 cegger KM_SLEEP);
221 1.42 jym ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
222 1.24 ad ci->ci_curldt = -1;
223 1.52 bouyer
224 1.52 bouyer tmp = phycpu_info_list;
225 1.52 bouyer while (tmp->ci_next)
226 1.52 bouyer tmp = tmp->ci_next;
227 1.52 bouyer
228 1.52 bouyer tmp->ci_next = ci;
229 1.2 bouyer } else {
230 1.2 bouyer ci = &phycpu_info_primary;
231 1.2 bouyer }
232 1.2 bouyer
233 1.2 bouyer ci->ci_self = ci;
234 1.2 bouyer sc->sc_info = ci;
235 1.2 bouyer
236 1.2 bouyer ci->ci_dev = self;
237 1.50 jruoho ci->ci_acpiid = caa->cpu_id;
238 1.23 ad ci->ci_cpuid = caa->cpu_number;
239 1.16 cegger ci->ci_vcpu = NULL;
240 1.52 bouyer ci->ci_index = nphycpu++;
241 1.2 bouyer
242 1.52 bouyer if (!pmf_device_register(self, NULL, NULL))
243 1.52 bouyer aprint_error_dev(self, "couldn't establish power handler\n");
244 1.34 cegger
245 1.56 jruoho (void)config_defer(self, cpu_defer);
246 1.56 jruoho }
247 1.56 jruoho
248 1.56 jruoho static void
249 1.56 jruoho cpu_defer(device_t self)
250 1.56 jruoho {
251 1.56 jruoho cpu_rescan(self, NULL, NULL);
252 1.2 bouyer }
253 1.2 bouyer
254 1.56 jruoho static int
255 1.53 jruoho cpu_rescan(device_t self, const char *ifattr, const int *locators)
256 1.53 jruoho {
257 1.53 jruoho struct cpu_softc *sc = device_private(self);
258 1.53 jruoho struct cpufeature_attach_args cfaa;
259 1.53 jruoho struct cpu_info *ci = sc->sc_info;
260 1.53 jruoho
261 1.53 jruoho memset(&cfaa, 0, sizeof(cfaa));
262 1.53 jruoho cfaa.ci = ci;
263 1.53 jruoho
264 1.53 jruoho if (ifattr_match(ifattr, "cpufeaturebus")) {
265 1.53 jruoho
266 1.53 jruoho if (ci->ci_frequency == NULL) {
267 1.55 jruoho cfaa.name = "frequency";
268 1.54 jruoho ci->ci_frequency = config_found_ia(self,
269 1.54 jruoho "cpufeaturebus", &cfaa, NULL);
270 1.54 jruoho }
271 1.53 jruoho }
272 1.53 jruoho
273 1.53 jruoho return 0;
274 1.53 jruoho }
275 1.53 jruoho
276 1.56 jruoho static void
277 1.53 jruoho cpu_childdetached(device_t self, device_t child)
278 1.53 jruoho {
279 1.53 jruoho struct cpu_softc *sc = device_private(self);
280 1.53 jruoho struct cpu_info *ci = sc->sc_info;
281 1.53 jruoho
282 1.53 jruoho if (ci->ci_frequency == child)
283 1.53 jruoho ci->ci_frequency = NULL;
284 1.53 jruoho }
285 1.53 jruoho
286 1.56 jruoho static int
287 1.10 cegger vcpu_match(device_t parent, cfdata_t match, void *aux)
288 1.2 bouyer {
289 1.2 bouyer struct vcpu_attach_args *vcaa = aux;
290 1.62 cherry struct vcpu_runstate_info vcr;
291 1.62 cherry int error;
292 1.62 cherry
293 1.62 cherry if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
294 1.62 cherry error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
295 1.62 cherry vcaa->vcaa_caa.cpu_number,
296 1.62 cherry &vcr);
297 1.62 cherry switch (error) {
298 1.62 cherry case 0:
299 1.62 cherry return 1;
300 1.62 cherry case -ENOENT:
301 1.62 cherry return 0;
302 1.62 cherry default:
303 1.62 cherry panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
304 1.62 cherry }
305 1.62 cherry }
306 1.2 bouyer
307 1.2 bouyer return 0;
308 1.2 bouyer }
309 1.2 bouyer
310 1.56 jruoho static void
311 1.10 cegger vcpu_attach(device_t parent, device_t self, void *aux)
312 1.2 bouyer {
313 1.2 bouyer struct vcpu_attach_args *vcaa = aux;
314 1.2 bouyer
315 1.62 cherry KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
316 1.62 cherry vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
317 1.2 bouyer cpu_attach_common(parent, self, &vcaa->vcaa_caa);
318 1.65 jym
319 1.65 jym if (!pmf_device_register(self, NULL, NULL))
320 1.65 jym aprint_error_dev(self, "couldn't establish power handler\n");
321 1.2 bouyer }
322 1.2 bouyer
323 1.62 cherry static int
324 1.62 cherry vcpu_is_up(struct cpu_info *ci)
325 1.62 cherry {
326 1.62 cherry KASSERT(ci != NULL);
327 1.62 cherry return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
328 1.62 cherry }
329 1.62 cherry
330 1.2 bouyer static void
331 1.2 bouyer cpu_vm_init(struct cpu_info *ci)
332 1.2 bouyer {
333 1.2 bouyer int ncolors = 2, i;
334 1.2 bouyer
335 1.2 bouyer for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
336 1.2 bouyer struct x86_cache_info *cai;
337 1.2 bouyer int tcolors;
338 1.2 bouyer
339 1.2 bouyer cai = &ci->ci_cinfo[i];
340 1.2 bouyer
341 1.2 bouyer tcolors = atop(cai->cai_totalsize);
342 1.2 bouyer switch(cai->cai_associativity) {
343 1.2 bouyer case 0xff:
344 1.2 bouyer tcolors = 1; /* fully associative */
345 1.2 bouyer break;
346 1.2 bouyer case 0:
347 1.2 bouyer case 1:
348 1.2 bouyer break;
349 1.2 bouyer default:
350 1.2 bouyer tcolors /= cai->cai_associativity;
351 1.2 bouyer }
352 1.2 bouyer ncolors = max(ncolors, tcolors);
353 1.2 bouyer }
354 1.2 bouyer
355 1.2 bouyer /*
356 1.67 mrg * Knowing the size of the largest cache on this CPU, potentially
357 1.67 mrg * re-color our pages.
358 1.2 bouyer */
359 1.28 bouyer aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
360 1.2 bouyer uvm_page_recolor(ncolors);
361 1.91 rmind pmap_tlb_cpu_init(ci);
362 1.2 bouyer }
363 1.2 bouyer
364 1.56 jruoho static void
365 1.11 cegger cpu_attach_common(device_t parent, device_t self, void *aux)
366 1.2 bouyer {
367 1.10 cegger struct cpu_softc *sc = device_private(self);
368 1.2 bouyer struct cpu_attach_args *caa = aux;
369 1.2 bouyer struct cpu_info *ci;
370 1.12 cegger uintptr_t ptr;
371 1.2 bouyer int cpunum = caa->cpu_number;
372 1.38 cegger static bool again = false;
373 1.2 bouyer
374 1.10 cegger sc->sc_dev = self;
375 1.10 cegger
376 1.2 bouyer /*
377 1.2 bouyer * If we're an Application Processor, allocate a cpu_info
378 1.2 bouyer * structure, otherwise use the primary's.
379 1.2 bouyer */
380 1.2 bouyer if (caa->cpu_role == CPU_ROLE_AP) {
381 1.12 cegger aprint_naive(": Application Processor\n");
382 1.31 cegger ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
383 1.31 cegger KM_SLEEP);
384 1.42 jym ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
385 1.12 cegger memset(ci, 0, sizeof(*ci));
386 1.2 bouyer #ifdef TRAPLOG
387 1.31 cegger ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
388 1.2 bouyer #endif
389 1.2 bouyer } else {
390 1.12 cegger aprint_naive(": %s Processor\n",
391 1.12 cegger caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
392 1.2 bouyer ci = &cpu_info_primary;
393 1.2 bouyer }
394 1.2 bouyer
395 1.2 bouyer ci->ci_self = ci;
396 1.2 bouyer sc->sc_info = ci;
397 1.2 bouyer ci->ci_dev = self;
398 1.23 ad ci->ci_cpuid = cpunum;
399 1.16 cegger
400 1.16 cegger KASSERT(HYPERVISOR_shared_info != NULL);
401 1.89 bouyer KASSERT(cpunum < XEN_LEGACY_MAX_VCPUS);
402 1.16 cegger ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
403 1.16 cegger
404 1.62 cherry KASSERT(ci->ci_func == 0);
405 1.2 bouyer ci->ci_func = caa->cpu_func;
406 1.2 bouyer
407 1.38 cegger /* Must be called before mi_cpu_attach(). */
408 1.38 cegger cpu_vm_init(ci);
409 1.38 cegger
410 1.2 bouyer if (caa->cpu_role == CPU_ROLE_AP) {
411 1.2 bouyer int error;
412 1.2 bouyer
413 1.2 bouyer error = mi_cpu_attach(ci);
414 1.62 cherry
415 1.62 cherry KASSERT(ci->ci_data.cpu_idlelwp != NULL);
416 1.2 bouyer if (error != 0) {
417 1.2 bouyer aprint_normal("\n");
418 1.38 cegger aprint_error_dev(self,
419 1.38 cegger "mi_cpu_attach failed with %d\n", error);
420 1.2 bouyer return;
421 1.2 bouyer }
422 1.62 cherry
423 1.2 bouyer } else {
424 1.2 bouyer KASSERT(ci->ci_data.cpu_idlelwp != NULL);
425 1.2 bouyer }
426 1.2 bouyer
427 1.89 bouyer KASSERT(ci->ci_cpuid == ci->ci_index);
428 1.100 bouyer #ifdef __x86_64__
429 1.100 bouyer /* No user PGD mapped for this CPU yet */
430 1.100 bouyer ci->ci_xen_current_user_pgd = 0;
431 1.100 bouyer #endif
432 1.100 bouyer #if defined(__x86_64__) || defined(PAE)
433 1.100 bouyer mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
434 1.100 bouyer #endif
435 1.2 bouyer pmap_reference(pmap_kernel());
436 1.2 bouyer ci->ci_pmap = pmap_kernel();
437 1.2 bouyer ci->ci_tlbstate = TLBSTATE_STALE;
438 1.2 bouyer
439 1.38 cegger /*
440 1.38 cegger * Boot processor may not be attached first, but the below
441 1.38 cegger * must be done to allow booting other processors.
442 1.38 cegger */
443 1.38 cegger if (!again) {
444 1.38 cegger atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
445 1.38 cegger /* Basic init. */
446 1.38 cegger cpu_intr_init(ci);
447 1.38 cegger cpu_get_tsc_freq(ci);
448 1.38 cegger cpu_init(ci);
449 1.78 cherry pmap_cpu_init_late(ci);
450 1.62 cherry
451 1.99 snj /* Every processor needs to init its own ipi h/w (similar to lapic) */
452 1.62 cherry xen_ipi_init();
453 1.62 cherry
454 1.38 cegger /* Make sure DELAY() is initialized. */
455 1.38 cegger DELAY(1);
456 1.38 cegger again = true;
457 1.38 cegger }
458 1.38 cegger
459 1.2 bouyer /* further PCB init done later. */
460 1.2 bouyer
461 1.2 bouyer switch (caa->cpu_role) {
462 1.2 bouyer case CPU_ROLE_SP:
463 1.38 cegger atomic_or_32(&ci->ci_flags, CPUF_SP);
464 1.21 ad cpu_identify(ci);
465 1.38 cegger x86_cpu_idle_init();
466 1.62 cherry
467 1.2 bouyer break;
468 1.2 bouyer
469 1.2 bouyer case CPU_ROLE_BP:
470 1.38 cegger atomic_or_32(&ci->ci_flags, CPUF_BSP);
471 1.21 ad cpu_identify(ci);
472 1.38 cegger x86_cpu_idle_init();
473 1.62 cherry
474 1.2 bouyer break;
475 1.2 bouyer
476 1.2 bouyer case CPU_ROLE_AP:
477 1.62 cherry atomic_or_32(&ci->ci_flags, CPUF_AP);
478 1.62 cherry
479 1.2 bouyer /*
480 1.2 bouyer * report on an AP
481 1.2 bouyer */
482 1.2 bouyer
483 1.2 bouyer #if defined(MULTIPROCESSOR)
484 1.62 cherry /* interrupt handler stack */
485 1.2 bouyer cpu_intr_init(ci);
486 1.62 cherry
487 1.62 cherry /* Setup per-cpu memory for gdt */
488 1.2 bouyer gdt_alloc_cpu(ci);
489 1.62 cherry
490 1.62 cherry pmap_cpu_init_late(ci);
491 1.2 bouyer cpu_start_secondary(ci);
492 1.62 cherry
493 1.2 bouyer if (ci->ci_flags & CPUF_PRESENT) {
494 1.30 cegger struct cpu_info *tmp;
495 1.30 cegger
496 1.62 cherry cpu_identify(ci);
497 1.30 cegger tmp = cpu_info_list;
498 1.30 cegger while (tmp->ci_next)
499 1.30 cegger tmp = tmp->ci_next;
500 1.30 cegger
501 1.30 cegger tmp->ci_next = ci;
502 1.2 bouyer }
503 1.2 bouyer #else
504 1.62 cherry aprint_error(": not started\n");
505 1.2 bouyer #endif
506 1.2 bouyer break;
507 1.2 bouyer
508 1.2 bouyer default:
509 1.12 cegger aprint_normal("\n");
510 1.2 bouyer panic("unknown processor type??\n");
511 1.2 bouyer }
512 1.2 bouyer
513 1.62 cherry #ifdef MPVERBOSE
514 1.2 bouyer if (mp_verbose) {
515 1.2 bouyer struct lwp *l = ci->ci_data.cpu_idlelwp;
516 1.37 rmind struct pcb *pcb = lwp_getpcb(l);
517 1.2 bouyer
518 1.38 cegger aprint_verbose_dev(self,
519 1.38 cegger "idle lwp at %p, idle sp at 0x%p\n",
520 1.12 cegger l,
521 1.12 cegger #ifdef i386
522 1.37 rmind (void *)pcb->pcb_esp
523 1.62 cherry #else /* i386 */
524 1.37 rmind (void *)pcb->pcb_rsp
525 1.62 cherry #endif /* i386 */
526 1.12 cegger );
527 1.12 cegger
528 1.2 bouyer }
529 1.62 cherry #endif /* MPVERBOSE */
530 1.2 bouyer }
531 1.2 bouyer
532 1.2 bouyer /*
533 1.2 bouyer * Initialize the processor appropriately.
534 1.2 bouyer */
535 1.2 bouyer
536 1.2 bouyer void
537 1.10 cegger cpu_init(struct cpu_info *ci)
538 1.2 bouyer {
539 1.2 bouyer
540 1.2 bouyer /*
541 1.2 bouyer * If we have FXSAVE/FXRESTOR, use them.
542 1.2 bouyer */
543 1.43 jym if (cpu_feature[0] & CPUID_FXSR) {
544 1.2 bouyer lcr4(rcr4() | CR4_OSFXSR);
545 1.2 bouyer
546 1.2 bouyer /*
547 1.2 bouyer * If we have SSE/SSE2, enable XMM exceptions.
548 1.2 bouyer */
549 1.43 jym if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
550 1.2 bouyer lcr4(rcr4() | CR4_OSXMMEXCPT);
551 1.2 bouyer }
552 1.2 bouyer
553 1.11 cegger atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
554 1.2 bouyer }
555 1.2 bouyer
556 1.2 bouyer
557 1.2 bouyer #ifdef MULTIPROCESSOR
558 1.62 cherry
559 1.2 bouyer void
560 1.10 cegger cpu_boot_secondary_processors(void)
561 1.2 bouyer {
562 1.2 bouyer struct cpu_info *ci;
563 1.2 bouyer u_long i;
564 1.38 cegger for (i = 0; i < maxcpus; i++) {
565 1.38 cegger ci = cpu_lookup(i);
566 1.2 bouyer if (ci == NULL)
567 1.2 bouyer continue;
568 1.2 bouyer if (ci->ci_data.cpu_idlelwp == NULL)
569 1.2 bouyer continue;
570 1.2 bouyer if ((ci->ci_flags & CPUF_PRESENT) == 0)
571 1.2 bouyer continue;
572 1.2 bouyer if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
573 1.2 bouyer continue;
574 1.2 bouyer cpu_boot_secondary(ci);
575 1.2 bouyer }
576 1.11 cegger
577 1.11 cegger x86_mp_online = true;
578 1.2 bouyer }
579 1.2 bouyer
580 1.2 bouyer static void
581 1.2 bouyer cpu_init_idle_lwp(struct cpu_info *ci)
582 1.2 bouyer {
583 1.2 bouyer struct lwp *l = ci->ci_data.cpu_idlelwp;
584 1.37 rmind struct pcb *pcb = lwp_getpcb(l);
585 1.2 bouyer
586 1.2 bouyer pcb->pcb_cr0 = rcr0();
587 1.2 bouyer }
588 1.2 bouyer
589 1.2 bouyer void
590 1.10 cegger cpu_init_idle_lwps(void)
591 1.2 bouyer {
592 1.2 bouyer struct cpu_info *ci;
593 1.2 bouyer u_long i;
594 1.2 bouyer
595 1.38 cegger for (i = 0; i < maxcpus; i++) {
596 1.38 cegger ci = cpu_lookup(i);
597 1.2 bouyer if (ci == NULL)
598 1.2 bouyer continue;
599 1.2 bouyer if (ci->ci_data.cpu_idlelwp == NULL)
600 1.2 bouyer continue;
601 1.2 bouyer if ((ci->ci_flags & CPUF_PRESENT) == 0)
602 1.2 bouyer continue;
603 1.2 bouyer cpu_init_idle_lwp(ci);
604 1.2 bouyer }
605 1.2 bouyer }
606 1.2 bouyer
607 1.62 cherry static void
608 1.10 cegger cpu_start_secondary(struct cpu_info *ci)
609 1.2 bouyer {
610 1.2 bouyer int i;
611 1.2 bouyer
612 1.11 cegger aprint_debug_dev(ci->ci_dev, "starting\n");
613 1.2 bouyer
614 1.2 bouyer ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
615 1.62 cherry
616 1.62 cherry if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
617 1.11 cegger return;
618 1.62 cherry }
619 1.2 bouyer
620 1.2 bouyer /*
621 1.2 bouyer * wait for it to become ready
622 1.2 bouyer */
623 1.11 cegger for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
624 1.2 bouyer delay(10);
625 1.2 bouyer }
626 1.11 cegger if ((ci->ci_flags & CPUF_PRESENT) == 0) {
627 1.9 cegger aprint_error_dev(ci->ci_dev, "failed to become ready\n");
628 1.2 bouyer #if defined(MPDEBUG) && defined(DDB)
629 1.2 bouyer printf("dropping into debugger; continue from here to resume boot\n");
630 1.2 bouyer Debugger();
631 1.2 bouyer #endif
632 1.2 bouyer }
633 1.2 bouyer
634 1.2 bouyer CPU_START_CLEANUP(ci);
635 1.2 bouyer }
636 1.2 bouyer
637 1.2 bouyer void
638 1.10 cegger cpu_boot_secondary(struct cpu_info *ci)
639 1.2 bouyer {
640 1.2 bouyer int i;
641 1.11 cegger atomic_or_32(&ci->ci_flags, CPUF_GO);
642 1.11 cegger for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
643 1.2 bouyer delay(10);
644 1.2 bouyer }
645 1.11 cegger if ((ci->ci_flags & CPUF_RUNNING) == 0) {
646 1.11 cegger aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
647 1.2 bouyer #if defined(MPDEBUG) && defined(DDB)
648 1.2 bouyer printf("dropping into debugger; continue from here to resume boot\n");
649 1.2 bouyer Debugger();
650 1.2 bouyer #endif
651 1.2 bouyer }
652 1.2 bouyer }
653 1.2 bouyer
654 1.2 bouyer /*
655 1.62 cherry * APs end up here immediately after initialisation and VCPUOP_up in
656 1.62 cherry * mp_cpu_start().
657 1.62 cherry * At this point, we are running in the idle pcb/idle stack of the new
658 1.62 cherry * CPU. This function jumps to the idle loop and starts looking for
659 1.62 cherry * work.
660 1.2 bouyer */
661 1.62 cherry extern void x86_64_tls_switch(struct lwp *);
662 1.2 bouyer void
663 1.2 bouyer cpu_hatch(void *v)
664 1.2 bouyer {
665 1.2 bouyer struct cpu_info *ci = (struct cpu_info *)v;
666 1.37 rmind struct pcb *pcb;
667 1.11 cegger int s, i;
668 1.11 cegger
669 1.62 cherry /* Setup TLS and kernel GS/FS */
670 1.62 cherry cpu_init_msrs(ci, true);
671 1.62 cherry cpu_init_idt();
672 1.62 cherry gdt_init_cpu(ci);
673 1.62 cherry
674 1.21 ad cpu_probe(ci);
675 1.11 cegger
676 1.62 cherry atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
677 1.2 bouyer
678 1.11 cegger while ((ci->ci_flags & CPUF_GO) == 0) {
679 1.11 cegger /* Don't use delay, boot CPU may be patching the text. */
680 1.11 cegger for (i = 10000; i != 0; i--)
681 1.11 cegger x86_pause();
682 1.11 cegger }
683 1.2 bouyer
684 1.11 cegger /* Because the text may have been patched in x86_patch(). */
685 1.11 cegger x86_flush();
686 1.58 rmind tlbflushg();
687 1.2 bouyer
688 1.11 cegger KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
689 1.2 bouyer
690 1.37 rmind pcb = lwp_getpcb(curlwp);
691 1.85 cherry pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
692 1.37 rmind pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
693 1.37 rmind
694 1.62 cherry xen_ipi_init();
695 1.62 cherry
696 1.62 cherry xen_initclocks();
697 1.62 cherry
698 1.62 cherry #ifdef __x86_64__
699 1.12 cegger fpuinit(ci);
700 1.12 cegger #endif
701 1.2 bouyer
702 1.2 bouyer lldt(GSEL(GLDT_SEL, SEL_KPL));
703 1.2 bouyer
704 1.2 bouyer cpu_init(ci);
705 1.11 cegger cpu_get_tsc_freq(ci);
706 1.2 bouyer
707 1.2 bouyer s = splhigh();
708 1.11 cegger x86_enable_intr();
709 1.11 cegger splx(s);
710 1.2 bouyer
711 1.62 cherry aprint_debug_dev(ci->ci_dev, "running\n");
712 1.62 cherry
713 1.62 cherry cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
714 1.62 cherry
715 1.91 rmind idle_loop(NULL);
716 1.91 rmind KASSERT(false);
717 1.2 bouyer }
718 1.2 bouyer
719 1.2 bouyer #if defined(DDB)
720 1.2 bouyer
721 1.2 bouyer #include <ddb/db_output.h>
722 1.2 bouyer #include <machine/db_machdep.h>
723 1.2 bouyer
724 1.2 bouyer /*
725 1.2 bouyer * Dump CPU information from ddb.
726 1.2 bouyer */
727 1.2 bouyer void
728 1.2 bouyer cpu_debug_dump(void)
729 1.2 bouyer {
730 1.2 bouyer struct cpu_info *ci;
731 1.2 bouyer CPU_INFO_ITERATOR cii;
732 1.2 bouyer
733 1.95 christos db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
734 1.2 bouyer for (CPU_INFO_FOREACH(cii, ci)) {
735 1.95 christos db_printf("%p %s %ld %x %x %10p %10p\n",
736 1.2 bouyer ci,
737 1.9 cegger ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
738 1.12 cegger (long)ci->ci_cpuid,
739 1.2 bouyer ci->ci_flags, ci->ci_ipis,
740 1.95 christos ci->ci_curlwp,
741 1.95 christos ci->ci_fpcurlwp);
742 1.2 bouyer }
743 1.2 bouyer }
744 1.38 cegger #endif /* DDB */
745 1.2 bouyer
746 1.62 cherry #endif /* MULTIPROCESSOR */
747 1.62 cherry
748 1.62 cherry extern void hypervisor_callback(void);
749 1.62 cherry extern void failsafe_callback(void);
750 1.62 cherry #ifdef __x86_64__
751 1.62 cherry typedef void (vector)(void);
752 1.62 cherry extern vector Xsyscall, Xsyscall32;
753 1.62 cherry #endif
754 1.62 cherry
755 1.62 cherry /*
756 1.62 cherry * Setup the "trampoline". On Xen, we setup nearly all cpu context
757 1.62 cherry * outside a trampoline, so we prototype and call targetip like so:
758 1.62 cherry * void targetip(struct cpu_info *);
759 1.62 cherry */
760 1.62 cherry
761 1.2 bouyer static void
762 1.62 cherry gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
763 1.2 bouyer {
764 1.62 cherry int i;
765 1.62 cherry for (i = 0; i < roundup(entries, PAGE_SIZE) >> PAGE_SHIFT; i++) {
766 1.62 cherry
767 1.62 cherry frames[i] = ((paddr_t) xpmap_ptetomach(
768 1.62 cherry (pt_entry_t *) (base + (i << PAGE_SHIFT))))
769 1.62 cherry >> PAGE_SHIFT;
770 1.62 cherry
771 1.62 cherry /* Mark Read-only */
772 1.62 cherry pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
773 1.62 cherry PG_RW);
774 1.62 cherry }
775 1.62 cherry }
776 1.62 cherry
777 1.62 cherry #ifdef __x86_64__
778 1.85 cherry extern char *ldtstore;
779 1.62 cherry
780 1.62 cherry static void
781 1.62 cherry xen_init_amd64_vcpuctxt(struct cpu_info *ci,
782 1.62 cherry struct vcpu_guest_context *initctx,
783 1.62 cherry void targetrip(struct cpu_info *))
784 1.62 cherry {
785 1.62 cherry /* page frames to point at GDT */
786 1.62 cherry extern int gdt_size;
787 1.62 cherry paddr_t frames[16];
788 1.62 cherry psize_t gdt_ents;
789 1.62 cherry
790 1.62 cherry struct lwp *l;
791 1.62 cherry struct pcb *pcb;
792 1.62 cherry
793 1.62 cherry volatile struct vcpu_info *vci;
794 1.62 cherry
795 1.62 cherry KASSERT(ci != NULL);
796 1.62 cherry KASSERT(ci != &cpu_info_primary);
797 1.62 cherry KASSERT(initctx != NULL);
798 1.62 cherry KASSERT(targetrip != NULL);
799 1.62 cherry
800 1.62 cherry memset(initctx, 0, sizeof *initctx);
801 1.62 cherry
802 1.85 cherry gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
803 1.62 cherry KASSERT(gdt_ents <= 16);
804 1.62 cherry
805 1.62 cherry gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
806 1.62 cherry
807 1.62 cherry /* Initialise the vcpu context: We use idle_loop()'s pcb context. */
808 1.11 cegger
809 1.62 cherry l = ci->ci_data.cpu_idlelwp;
810 1.11 cegger
811 1.62 cherry KASSERT(l != NULL);
812 1.62 cherry pcb = lwp_getpcb(l);
813 1.62 cherry KASSERT(pcb != NULL);
814 1.11 cegger
815 1.62 cherry /* resume with interrupts off */
816 1.62 cherry vci = ci->ci_vcpu;
817 1.62 cherry vci->evtchn_upcall_mask = 1;
818 1.62 cherry xen_mb();
819 1.2 bouyer
820 1.62 cherry /* resume in kernel-mode */
821 1.62 cherry initctx->flags = VGCF_in_kernel | VGCF_online;
822 1.2 bouyer
823 1.62 cherry /* Stack and entry points:
824 1.62 cherry * We arrange for the stack frame for cpu_hatch() to
825 1.62 cherry * appear as a callee frame of lwp_trampoline(). Being a
826 1.62 cherry * leaf frame prevents trampling on any of the MD stack setup
827 1.62 cherry * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
828 1.62 cherry */
829 1.2 bouyer
830 1.62 cherry initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
831 1.62 cherry initctx->user_regs.rip = (vaddr_t) targetrip;
832 1.2 bouyer
833 1.62 cherry initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
834 1.11 cegger
835 1.62 cherry initctx->user_regs.rflags = pcb->pcb_flags;
836 1.62 cherry initctx->user_regs.rsp = pcb->pcb_rsp;
837 1.11 cegger
838 1.62 cherry /* Data segments */
839 1.62 cherry initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
840 1.62 cherry initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
841 1.62 cherry initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
842 1.62 cherry
843 1.62 cherry /* GDT */
844 1.62 cherry memcpy(initctx->gdt_frames, frames, sizeof frames);
845 1.62 cherry initctx->gdt_ents = gdt_ents;
846 1.62 cherry
847 1.62 cherry /* LDT */
848 1.62 cherry initctx->ldt_base = (unsigned long) ldtstore;
849 1.62 cherry initctx->ldt_ents = LDT_SIZE >> 3;
850 1.62 cherry
851 1.62 cherry /* Kernel context state */
852 1.62 cherry initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
853 1.62 cherry initctx->kernel_sp = pcb->pcb_rsp0;
854 1.62 cherry initctx->ctrlreg[0] = pcb->pcb_cr0;
855 1.62 cherry initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
856 1.85 cherry initctx->ctrlreg[2] = (vaddr_t) targetrip;
857 1.62 cherry /*
858 1.62 cherry * Use pmap_kernel() L4 PD directly, until we setup the
859 1.62 cherry * per-cpu L4 PD in pmap_cpu_init_late()
860 1.2 bouyer */
861 1.70 cherry initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
862 1.62 cherry initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
863 1.2 bouyer
864 1.62 cherry
865 1.62 cherry /* Xen callbacks */
866 1.62 cherry initctx->event_callback_eip = (unsigned long) hypervisor_callback;
867 1.62 cherry initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
868 1.62 cherry initctx->syscall_callback_eip = (unsigned long) Xsyscall;
869 1.62 cherry
870 1.62 cherry return;
871 1.2 bouyer }
872 1.62 cherry #else /* i386 */
873 1.62 cherry extern union descriptor *ldt;
874 1.62 cherry extern void Xsyscall(void);
875 1.62 cherry
876 1.11 cegger static void
877 1.62 cherry xen_init_i386_vcpuctxt(struct cpu_info *ci,
878 1.62 cherry struct vcpu_guest_context *initctx,
879 1.62 cherry void targeteip(struct cpu_info *))
880 1.62 cherry {
881 1.62 cherry /* page frames to point at GDT */
882 1.62 cherry extern int gdt_size;
883 1.62 cherry paddr_t frames[16];
884 1.62 cherry psize_t gdt_ents;
885 1.62 cherry
886 1.62 cherry struct lwp *l;
887 1.62 cherry struct pcb *pcb;
888 1.62 cherry
889 1.62 cherry volatile struct vcpu_info *vci;
890 1.62 cherry
891 1.62 cherry KASSERT(ci != NULL);
892 1.62 cherry KASSERT(ci != &cpu_info_primary);
893 1.62 cherry KASSERT(initctx != NULL);
894 1.62 cherry KASSERT(targeteip != NULL);
895 1.62 cherry
896 1.62 cherry memset(initctx, 0, sizeof *initctx);
897 1.11 cegger
898 1.85 cherry gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
899 1.62 cherry KASSERT(gdt_ents <= 16);
900 1.2 bouyer
901 1.62 cherry gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
902 1.2 bouyer
903 1.62 cherry /*
904 1.62 cherry * Initialise the vcpu context:
905 1.62 cherry * We use this cpu's idle_loop() pcb context.
906 1.11 cegger */
907 1.11 cegger
908 1.62 cherry l = ci->ci_data.cpu_idlelwp;
909 1.62 cherry
910 1.62 cherry KASSERT(l != NULL);
911 1.62 cherry pcb = lwp_getpcb(l);
912 1.62 cherry KASSERT(pcb != NULL);
913 1.62 cherry
914 1.62 cherry /* resume with interrupts off */
915 1.62 cherry vci = ci->ci_vcpu;
916 1.62 cherry vci->evtchn_upcall_mask = 1;
917 1.62 cherry xen_mb();
918 1.62 cherry
919 1.62 cherry /* resume in kernel-mode */
920 1.62 cherry initctx->flags = VGCF_in_kernel | VGCF_online;
921 1.62 cherry
922 1.62 cherry /* Stack frame setup for cpu_hatch():
923 1.62 cherry * We arrange for the stack frame for cpu_hatch() to
924 1.62 cherry * appear as a callee frame of lwp_trampoline(). Being a
925 1.62 cherry * leaf frame prevents trampling on any of the MD stack setup
926 1.62 cherry * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
927 1.2 bouyer */
928 1.2 bouyer
929 1.62 cherry initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
930 1.62 cherry arg1 */
931 1.62 cherry { /* targeteip(ci); */
932 1.62 cherry uint32_t *arg = (uint32_t *) initctx->user_regs.esp;
933 1.62 cherry arg[1] = (uint32_t) ci; /* arg1 */
934 1.62 cherry
935 1.62 cherry }
936 1.2 bouyer
937 1.62 cherry initctx->user_regs.eip = (vaddr_t) targeteip;
938 1.62 cherry initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
939 1.62 cherry initctx->user_regs.eflags |= pcb->pcb_iopl;
940 1.62 cherry
941 1.62 cherry /* Data segments */
942 1.62 cherry initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
943 1.62 cherry initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
944 1.62 cherry initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
945 1.62 cherry initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
946 1.62 cherry
947 1.62 cherry /* GDT */
948 1.62 cherry memcpy(initctx->gdt_frames, frames, sizeof frames);
949 1.62 cherry initctx->gdt_ents = gdt_ents;
950 1.62 cherry
951 1.62 cherry /* LDT */
952 1.62 cherry initctx->ldt_base = (unsigned long) ldt;
953 1.62 cherry initctx->ldt_ents = NLDT;
954 1.62 cherry
955 1.62 cherry /* Kernel context state */
956 1.62 cherry initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
957 1.62 cherry initctx->kernel_sp = pcb->pcb_esp0;
958 1.62 cherry initctx->ctrlreg[0] = pcb->pcb_cr0;
959 1.62 cherry initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
960 1.85 cherry initctx->ctrlreg[2] = (vaddr_t) targeteip;
961 1.70 cherry #ifdef PAE
962 1.70 cherry initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
963 1.70 cherry #else /* PAE */
964 1.70 cherry initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
965 1.70 cherry #endif /* PAE */
966 1.62 cherry initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;
967 1.2 bouyer
968 1.2 bouyer
969 1.62 cherry /* Xen callbacks */
970 1.62 cherry initctx->event_callback_eip = (unsigned long) hypervisor_callback;
971 1.62 cherry initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
972 1.62 cherry initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
973 1.62 cherry initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
974 1.45 rmind
975 1.62 cherry return;
976 1.62 cherry }
977 1.62 cherry #endif /* __x86_64__ */
978 1.45 rmind
979 1.62 cherry int
980 1.62 cherry mp_cpu_start(struct cpu_info *ci, vaddr_t target)
981 1.62 cherry {
982 1.62 cherry
983 1.62 cherry int hyperror;
984 1.62 cherry struct vcpu_guest_context vcpuctx;
985 1.2 bouyer
986 1.62 cherry KASSERT(ci != NULL);
987 1.62 cherry KASSERT(ci != &cpu_info_primary);
988 1.62 cherry KASSERT(ci->ci_flags & CPUF_AP);
989 1.62 cherry
990 1.62 cherry #ifdef __x86_64__
991 1.62 cherry xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
992 1.62 cherry #else /* i386 */
993 1.62 cherry xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
994 1.62 cherry #endif /* __x86_64__ */
995 1.62 cherry
996 1.62 cherry /* Initialise the given vcpu to execute cpu_hatch(ci); */
997 1.62 cherry if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
998 1.62 cherry aprint_error(": context initialisation failed. errno = %d\n", hyperror);
999 1.62 cherry return hyperror;
1000 1.62 cherry }
1001 1.62 cherry
1002 1.62 cherry /* Start it up */
1003 1.62 cherry
1004 1.70 cherry /* First bring it down */
1005 1.62 cherry if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
1006 1.62 cherry aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
1007 1.62 cherry return hyperror;
1008 1.62 cherry }
1009 1.62 cherry
1010 1.62 cherry if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
1011 1.62 cherry aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
1012 1.62 cherry return hyperror;
1013 1.62 cherry }
1014 1.2 bouyer
1015 1.62 cherry if (!vcpu_is_up(ci)) {
1016 1.62 cherry aprint_error(": did not come up\n");
1017 1.62 cherry return -1;
1018 1.2 bouyer }
1019 1.62 cherry
1020 1.2 bouyer return 0;
1021 1.2 bouyer }
1022 1.2 bouyer
1023 1.2 bouyer void
1024 1.2 bouyer mp_cpu_start_cleanup(struct cpu_info *ci)
1025 1.2 bouyer {
1026 1.62 cherry if (vcpu_is_up(ci)) {
1027 1.62 cherry aprint_debug_dev(ci->ci_dev, "is started.\n");
1028 1.62 cherry }
1029 1.62 cherry else {
1030 1.62 cherry aprint_error_dev(ci->ci_dev, "did not start up.\n");
1031 1.62 cherry }
1032 1.62 cherry
1033 1.2 bouyer }
1034 1.2 bouyer
1035 1.2 bouyer void
1036 1.3 bouyer cpu_init_msrs(struct cpu_info *ci, bool full)
1037 1.2 bouyer {
1038 1.43 jym #ifdef __x86_64__
1039 1.3 bouyer if (full) {
1040 1.3 bouyer HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
1041 1.11 cegger HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
1042 1.3 bouyer HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
1043 1.3 bouyer }
1044 1.43 jym #endif /* __x86_64__ */
1045 1.44 jym
1046 1.44 jym if (cpu_feature[2] & CPUID_NOX)
1047 1.44 jym wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1048 1.62 cherry
1049 1.2 bouyer }
1050 1.2 bouyer
1051 1.95 christos void
1052 1.95 christos cpu_offline_md(void)
1053 1.95 christos {
1054 1.95 christos int s;
1055 1.95 christos
1056 1.95 christos s = splhigh();
1057 1.95 christos fpusave_cpu(true);
1058 1.95 christos splx(s);
1059 1.95 christos }
1060 1.95 christos
1061 1.2 bouyer void
1062 1.2 bouyer cpu_get_tsc_freq(struct cpu_info *ci)
1063 1.2 bouyer {
1064 1.62 cherry uint32_t vcpu_tversion;
1065 1.16 cegger const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1066 1.62 cherry
1067 1.62 cherry vcpu_tversion = tinfo->version;
1068 1.62 cherry while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
1069 1.62 cherry
1070 1.2 bouyer uint64_t freq = 1000000000ULL << 32;
1071 1.2 bouyer freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1072 1.2 bouyer if ( tinfo->tsc_shift < 0 )
1073 1.2 bouyer freq = freq << -tinfo->tsc_shift;
1074 1.2 bouyer else
1075 1.2 bouyer freq = freq >> tinfo->tsc_shift;
1076 1.20 ad ci->ci_data.cpu_cc_freq = freq;
1077 1.2 bouyer }
1078 1.19 joerg
1079 1.19 joerg void
1080 1.19 joerg x86_cpu_idle_xen(void)
1081 1.19 joerg {
1082 1.19 joerg struct cpu_info *ci = curcpu();
1083 1.62 cherry
1084 1.19 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1085 1.19 joerg
1086 1.19 joerg x86_disable_intr();
1087 1.19 joerg if (!__predict_false(ci->ci_want_resched)) {
1088 1.19 joerg idle_block();
1089 1.19 joerg } else {
1090 1.19 joerg x86_enable_intr();
1091 1.19 joerg }
1092 1.19 joerg }
1093 1.47 jym
1094 1.47 jym /*
1095 1.47 jym * Loads pmap for the current CPU.
1096 1.47 jym */
1097 1.47 jym void
1098 1.81 bouyer cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1099 1.47 jym {
1100 1.84 cherry KASSERT(pmap != pmap_kernel());
1101 1.91 rmind
1102 1.81 bouyer #if defined(__x86_64__) || defined(PAE)
1103 1.81 bouyer struct cpu_info *ci = curcpu();
1104 1.92 rmind cpuid_t cid = cpu_index(ci);
1105 1.81 bouyer
1106 1.81 bouyer mutex_enter(&ci->ci_kpm_mtx);
1107 1.93 jym /* make new pmap visible to xen_kpm_sync() */
1108 1.92 rmind kcpuset_atomic_set(pmap->pm_xen_ptp_cpus, cid);
1109 1.81 bouyer #endif
1110 1.47 jym #ifdef i386
1111 1.47 jym #ifdef PAE
1112 1.81 bouyer {
1113 1.81 bouyer int i;
1114 1.81 bouyer paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1115 1.81 bouyer /* don't update the kernel L3 slot */
1116 1.81 bouyer for (i = 0 ; i < PDP_SIZE - 1; i++) {
1117 1.81 bouyer xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1118 1.81 bouyer xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
1119 1.81 bouyer }
1120 1.81 bouyer tlbflush();
1121 1.47 jym }
1122 1.47 jym #else /* PAE */
1123 1.47 jym lcr3(pmap_pdirpa(pmap, 0));
1124 1.47 jym #endif /* PAE */
1125 1.47 jym #endif /* i386 */
1126 1.47 jym
1127 1.47 jym #ifdef __x86_64__
1128 1.81 bouyer {
1129 1.81 bouyer int i;
1130 1.81 bouyer pd_entry_t *new_pgd;
1131 1.81 bouyer paddr_t l4_pd_ma;
1132 1.81 bouyer
1133 1.81 bouyer l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
1134 1.47 jym
1135 1.81 bouyer /*
1136 1.81 bouyer * Map user space address in kernel space and load
1137 1.81 bouyer * user cr3
1138 1.81 bouyer */
1139 1.81 bouyer new_pgd = pmap->pm_pdir;
1140 1.81 bouyer KASSERT(pmap == ci->ci_pmap);
1141 1.70 cherry
1142 1.81 bouyer /* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
1143 1.81 bouyer for (i = 0; i < PDIR_SLOT_PTE; i++) {
1144 1.81 bouyer KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
1145 1.81 bouyer if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
1146 1.81 bouyer xpq_queue_pte_update(
1147 1.81 bouyer l4_pd_ma + i * sizeof(pd_entry_t),
1148 1.81 bouyer new_pgd[i]);
1149 1.81 bouyer }
1150 1.81 bouyer }
1151 1.70 cherry
1152 1.84 cherry xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1153 1.84 cherry ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1154 1.70 cherry
1155 1.81 bouyer tlbflush();
1156 1.70 cherry }
1157 1.70 cherry
1158 1.47 jym #endif /* __x86_64__ */
1159 1.81 bouyer #if defined(__x86_64__) || defined(PAE)
1160 1.93 jym /* old pmap no longer visible to xen_kpm_sync() */
1161 1.92 rmind if (oldpmap != pmap_kernel()) {
1162 1.92 rmind kcpuset_atomic_clear(oldpmap->pm_xen_ptp_cpus, cid);
1163 1.92 rmind }
1164 1.81 bouyer mutex_exit(&ci->ci_kpm_mtx);
1165 1.81 bouyer #endif
1166 1.47 jym }
1167 1.61 cherry
1168 1.70 cherry /*
1169 1.70 cherry * pmap_cpu_init_late: perform late per-CPU initialization.
1170 1.70 cherry * Short note about percpu PDIR pages:
1171 1.70 cherry * Both the PAE and __x86_64__ architectures have per-cpu PDIR
1172 1.70 cherry * tables. This is to get around Xen's pagetable setup constraints for
1173 1.70 cherry * PAE (multiple L3[3]s cannot point to the same L2 - Xen
1174 1.70 cherry * will refuse to pin a table setup this way.) and for multiple cpus
1175 1.70 cherry * to map in different user pmaps on __x86_64__ (see: cpu_load_pmap())
1176 1.70 cherry *
1177 1.70 cherry * What this means for us is that the PDIR of the pmap_kernel() is
1178 1.70 cherry * considered to be a canonical "SHADOW" PDIR with the following
1179 1.70 cherry * properties:
1180 1.70 cherry * - Its recursive mapping points to itself
1181 1.90 jym * - per-cpu recursive mappings point to themselves on __x86_64__
1182 1.70 cherry * - per-cpu L4 pages' kernel entries are expected to be in sync with
1183 1.70 cherry * the shadow
1184 1.70 cherry */
1185 1.70 cherry
1186 1.70 cherry void
1187 1.70 cherry pmap_cpu_init_late(struct cpu_info *ci)
1188 1.70 cherry {
1189 1.70 cherry #if defined(PAE) || defined(__x86_64__)
1190 1.70 cherry /*
1191 1.70 cherry * The BP has already its own PD page allocated during early
1192 1.70 cherry * MD startup.
1193 1.70 cherry */
1194 1.70 cherry
1195 1.78 cherry #if defined(__x86_64__)
1196 1.78 cherry /* Setup per-cpu normal_pdes */
1197 1.78 cherry int i;
1198 1.78 cherry extern pd_entry_t * const normal_pdes[];
1199 1.78 cherry for (i = 0;i < PTP_LEVELS - 1;i++) {
1200 1.78 cherry ci->ci_normal_pdes[i] = normal_pdes[i];
1201 1.78 cherry }
1202 1.78 cherry #endif /* __x86_64__ */
1203 1.78 cherry
1204 1.70 cherry if (ci == &cpu_info_primary)
1205 1.70 cherry return;
1206 1.70 cherry
1207 1.70 cherry KASSERT(ci != NULL);
1208 1.70 cherry
1209 1.70 cherry #if defined(PAE)
1210 1.73 cherry cpu_alloc_l3_page(ci);
1211 1.70 cherry KASSERT(ci->ci_pae_l3_pdirpa != 0);
1212 1.70 cherry
1213 1.70 cherry /* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
1214 1.73 cherry int i;
1215 1.75 cherry for (i = 0 ; i < PDP_SIZE - 1; i++) {
1216 1.73 cherry ci->ci_pae_l3_pdir[i] =
1217 1.73 cherry xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PG_V;
1218 1.73 cherry }
1219 1.70 cherry #endif /* PAE */
1220 1.70 cherry
1221 1.70 cherry ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1222 1.70 cherry UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
1223 1.70 cherry
1224 1.70 cherry if (ci->ci_kpm_pdir == NULL) {
1225 1.70 cherry panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
1226 1.70 cherry __func__, cpu_index(ci));
1227 1.70 cherry }
1228 1.70 cherry ci->ci_kpm_pdirpa = vtophys((vaddr_t) ci->ci_kpm_pdir);
1229 1.70 cherry KASSERT(ci->ci_kpm_pdirpa != 0);
1230 1.70 cherry
1231 1.70 cherry #if defined(__x86_64__)
1232 1.70 cherry /*
1233 1.70 cherry * Copy over the pmap_kernel() shadow L4 entries
1234 1.70 cherry */
1235 1.70 cherry
1236 1.70 cherry memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
1237 1.70 cherry
1238 1.70 cherry /* Recursive kernel mapping */
1239 1.70 cherry ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
1240 1.70 cherry #elif defined(PAE)
1241 1.70 cherry /* Copy over the pmap_kernel() shadow L2 entries that map the kernel */
1242 1.70 cherry memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN, nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
1243 1.70 cherry #endif /* __x86_64__ else PAE */
1244 1.70 cherry
1245 1.70 cherry /* Xen wants R/O */
1246 1.83 bouyer pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
1247 1.83 bouyer (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
1248 1.83 bouyer pmap_update(pmap_kernel());
1249 1.70 cherry #if defined(PAE)
1250 1.70 cherry /* Initialise L3 entry 3. This mapping is shared across all
1251 1.70 cherry * pmaps and is static, ie; loading a new pmap will not update
1252 1.70 cherry * this entry.
1253 1.70 cherry */
1254 1.70 cherry
1255 1.70 cherry ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
1256 1.70 cherry
1257 1.70 cherry /* Mark L3 R/O (Xen wants this) */
1258 1.83 bouyer pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
1259 1.83 bouyer (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
1260 1.83 bouyer pmap_update(pmap_kernel());
1261 1.70 cherry
1262 1.70 cherry xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
1263 1.70 cherry
1264 1.70 cherry #elif defined(__x86_64__)
1265 1.70 cherry xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
1266 1.78 cherry #endif /* PAE , __x86_64__ */
1267 1.70 cherry #endif /* defined(PAE) || defined(__x86_64__) */
1268 1.70 cherry }
1269 1.70 cherry
1270 1.61 cherry /*
1271 1.61 cherry * Notify all other cpus to halt.
1272 1.61 cherry */
1273 1.61 cherry
1274 1.61 cherry void
1275 1.61 cherry cpu_broadcast_halt(void)
1276 1.61 cherry {
1277 1.61 cherry xen_broadcast_ipi(XEN_IPI_HALT);
1278 1.61 cherry }
1279 1.61 cherry
1280 1.61 cherry /*
1281 1.61 cherry * Send a dummy ipi to a cpu.
1282 1.61 cherry */
1283 1.61 cherry
1284 1.61 cherry void
1285 1.61 cherry cpu_kick(struct cpu_info *ci)
1286 1.61 cherry {
1287 1.64 dholland (void)xen_send_ipi(ci, XEN_IPI_KICK);
1288 1.61 cherry }
1289