Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.101
      1  1.101   msaitoh /*	$NetBSD: cpu.c,v 1.101 2014/12/08 15:22:47 msaitoh Exp $	*/
      2    1.2    bouyer /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp  */
      3    1.2    bouyer 
      4    1.2    bouyer /*-
      5    1.2    bouyer  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      6   1.19     joerg  * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
      7    1.2    bouyer  * All rights reserved.
      8    1.2    bouyer  *
      9    1.2    bouyer  * This code is derived from software contributed to The NetBSD Foundation
     10    1.2    bouyer  * by RedBack Networks Inc.
     11    1.2    bouyer  *
     12    1.2    bouyer  * Author: Bill Sommerfeld
     13    1.2    bouyer  *
     14    1.2    bouyer  * Redistribution and use in source and binary forms, with or without
     15    1.2    bouyer  * modification, are permitted provided that the following conditions
     16    1.2    bouyer  * are met:
     17    1.2    bouyer  * 1. Redistributions of source code must retain the above copyright
     18    1.2    bouyer  *    notice, this list of conditions and the following disclaimer.
     19    1.2    bouyer  * 2. Redistributions in binary form must reproduce the above copyright
     20    1.2    bouyer  *    notice, this list of conditions and the following disclaimer in the
     21    1.2    bouyer  *    documentation and/or other materials provided with the distribution.
     22    1.2    bouyer  *
     23    1.2    bouyer  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24    1.2    bouyer  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25    1.2    bouyer  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26    1.2    bouyer  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27    1.2    bouyer  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28    1.2    bouyer  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29    1.2    bouyer  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30    1.2    bouyer  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31    1.2    bouyer  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32    1.2    bouyer  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33    1.2    bouyer  * POSSIBILITY OF SUCH DAMAGE.
     34    1.2    bouyer  */
     35    1.2    bouyer 
     36    1.2    bouyer /*
     37    1.2    bouyer  * Copyright (c) 1999 Stefan Grefen
     38    1.2    bouyer  *
     39    1.2    bouyer  * Redistribution and use in source and binary forms, with or without
     40    1.2    bouyer  * modification, are permitted provided that the following conditions
     41    1.2    bouyer  * are met:
     42    1.2    bouyer  * 1. Redistributions of source code must retain the above copyright
     43    1.2    bouyer  *    notice, this list of conditions and the following disclaimer.
     44    1.2    bouyer  * 2. Redistributions in binary form must reproduce the above copyright
     45    1.2    bouyer  *    notice, this list of conditions and the following disclaimer in the
     46    1.2    bouyer  *    documentation and/or other materials provided with the distribution.
     47    1.2    bouyer  * 3. All advertising materials mentioning features or use of this software
     48    1.2    bouyer  *    must display the following acknowledgement:
     49    1.2    bouyer  *      This product includes software developed by the NetBSD
     50    1.2    bouyer  *      Foundation, Inc. and its contributors.
     51    1.2    bouyer  * 4. Neither the name of The NetBSD Foundation nor the names of its
     52    1.2    bouyer  *    contributors may be used to endorse or promote products derived
     53    1.2    bouyer  *    from this software without specific prior written permission.
     54    1.2    bouyer  *
     55    1.2    bouyer  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     56    1.2    bouyer  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57    1.2    bouyer  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58    1.2    bouyer  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     59    1.2    bouyer  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60    1.2    bouyer  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61    1.2    bouyer  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62    1.2    bouyer  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63    1.2    bouyer  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64    1.2    bouyer  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65    1.2    bouyer  * SUCH DAMAGE.
     66    1.2    bouyer  */
     67    1.2    bouyer 
     68    1.2    bouyer #include <sys/cdefs.h>
     69  1.101   msaitoh __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.101 2014/12/08 15:22:47 msaitoh Exp $");
     70    1.2    bouyer 
     71    1.2    bouyer #include "opt_ddb.h"
     72    1.2    bouyer #include "opt_multiprocessor.h"
     73    1.2    bouyer #include "opt_mpbios.h"		/* for MPDEBUG */
     74    1.2    bouyer #include "opt_mtrr.h"
     75    1.2    bouyer #include "opt_xen.h"
     76    1.2    bouyer 
     77    1.2    bouyer #include "lapic.h"
     78    1.2    bouyer #include "ioapic.h"
     79    1.2    bouyer 
     80    1.2    bouyer #include <sys/param.h>
     81    1.2    bouyer #include <sys/proc.h>
     82    1.2    bouyer #include <sys/systm.h>
     83    1.2    bouyer #include <sys/device.h>
     84   1.31    cegger #include <sys/kmem.h>
     85   1.11    cegger #include <sys/cpu.h>
     86   1.66    jruoho #include <sys/cpufreq.h>
     87   1.11    cegger #include <sys/atomic.h>
     88   1.32    cegger #include <sys/reboot.h>
     89   1.62    cherry #include <sys/idle.h>
     90    1.2    bouyer 
     91   1.51  uebayasi #include <uvm/uvm.h>
     92    1.2    bouyer 
     93    1.2    bouyer #include <machine/cpufunc.h>
     94    1.2    bouyer #include <machine/cpuvar.h>
     95    1.2    bouyer #include <machine/pmap.h>
     96    1.2    bouyer #include <machine/vmparam.h>
     97    1.2    bouyer #include <machine/mpbiosvar.h>
     98    1.2    bouyer #include <machine/pcb.h>
     99    1.2    bouyer #include <machine/specialreg.h>
    100    1.2    bouyer #include <machine/segments.h>
    101    1.2    bouyer #include <machine/gdt.h>
    102    1.2    bouyer #include <machine/mtrr.h>
    103    1.2    bouyer #include <machine/pio.h>
    104    1.2    bouyer 
    105   1.97       dsl #include <x86/fpu.h>
    106   1.62    cherry 
    107   1.62    cherry #include <xen/xen.h>
    108   1.71    cegger #include <xen/xen-public/vcpu.h>
    109    1.2    bouyer #include <xen/vcpuvar.h>
    110    1.2    bouyer 
    111    1.2    bouyer #if NLAPIC > 0
    112    1.2    bouyer #include <machine/apicvar.h>
    113    1.2    bouyer #include <machine/i82489reg.h>
    114    1.2    bouyer #include <machine/i82489var.h>
    115    1.2    bouyer #endif
    116    1.2    bouyer 
    117    1.2    bouyer #include <dev/ic/mc146818reg.h>
    118    1.2    bouyer #include <dev/isa/isareg.h>
    119    1.2    bouyer 
    120   1.56    jruoho static int	cpu_match(device_t, cfdata_t, void *);
    121   1.56    jruoho static void	cpu_attach(device_t, device_t, void *);
    122   1.56    jruoho static void	cpu_defer(device_t);
    123   1.56    jruoho static int	cpu_rescan(device_t, const char *, const int *);
    124   1.56    jruoho static void	cpu_childdetached(device_t, device_t);
    125   1.56    jruoho static int	vcpu_match(device_t, cfdata_t, void *);
    126   1.56    jruoho static void	vcpu_attach(device_t, device_t, void *);
    127   1.56    jruoho static void	cpu_attach_common(device_t, device_t, void *);
    128   1.56    jruoho void		cpu_offline_md(void);
    129    1.2    bouyer 
    130    1.2    bouyer struct cpu_softc {
    131   1.10    cegger 	device_t sc_dev;		/* device tree glue */
    132    1.2    bouyer 	struct cpu_info *sc_info;	/* pointer to CPU info */
    133   1.32    cegger 	bool sc_wasonline;
    134    1.2    bouyer };
    135    1.2    bouyer 
    136   1.62    cherry int mp_cpu_start(struct cpu_info *, vaddr_t);
    137    1.2    bouyer void mp_cpu_start_cleanup(struct cpu_info *);
    138    1.2    bouyer const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    139    1.2    bouyer 				      mp_cpu_start_cleanup };
    140    1.2    bouyer 
    141   1.53    jruoho CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    142   1.53    jruoho     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    143   1.53    jruoho 
    144   1.10    cegger CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
    145    1.2    bouyer     vcpu_match, vcpu_attach, NULL, NULL);
    146    1.2    bouyer 
    147    1.2    bouyer /*
    148    1.2    bouyer  * Statically-allocated CPU info for the primary CPU (or the only
    149    1.2    bouyer  * CPU, on uniprocessors).  The CPU info list is initialized to
    150    1.2    bouyer  * point at it.
    151    1.2    bouyer  */
    152    1.2    bouyer #ifdef TRAPLOG
    153    1.2    bouyer #include <machine/tlog.h>
    154    1.2    bouyer struct tlog tlog_primary;
    155    1.2    bouyer #endif
    156   1.38    cegger struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    157    1.7    bouyer 	.ci_dev = 0,
    158    1.2    bouyer 	.ci_self = &cpu_info_primary,
    159    1.4    bouyer 	.ci_idepth = -1,
    160    1.2    bouyer 	.ci_curlwp = &lwp0,
    161   1.25        ad 	.ci_curldt = -1,
    162    1.2    bouyer #ifdef TRAPLOG
    163    1.2    bouyer 	.ci_tlog = &tlog_primary,
    164    1.2    bouyer #endif
    165    1.2    bouyer 
    166    1.2    bouyer };
    167   1.38    cegger struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    168    1.7    bouyer 	.ci_dev = 0,
    169    1.2    bouyer 	.ci_self = &phycpu_info_primary,
    170    1.2    bouyer };
    171    1.2    bouyer 
    172    1.2    bouyer struct cpu_info *cpu_info_list = &cpu_info_primary;
    173   1.38    cegger struct cpu_info *phycpu_info_list = &phycpu_info_primary;
    174    1.2    bouyer 
    175   1.43       jym uint32_t cpu_feature[5]; /* X86 CPUID feature bits
    176   1.43       jym 			  *	[0] basic features %edx
    177   1.43       jym 			  *	[1] basic features %ecx
    178   1.43       jym 			  *	[2] extended features %edx
    179   1.43       jym 			  *	[3] extended features %ecx
    180   1.43       jym 			  *	[4] VIA padlock features
    181   1.43       jym 			  */
    182   1.43       jym 
    183   1.11    cegger bool x86_mp_online;
    184   1.11    cegger paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    185    1.2    bouyer 
    186   1.38    cegger #if defined(MULTIPROCESSOR)
    187    1.2    bouyer void    	cpu_hatch(void *);
    188    1.2    bouyer static void    	cpu_boot_secondary(struct cpu_info *ci);
    189    1.2    bouyer static void    	cpu_start_secondary(struct cpu_info *ci);
    190   1.38    cegger #endif	/* MULTIPROCESSOR */
    191    1.2    bouyer 
    192   1.56    jruoho static int
    193   1.10    cegger cpu_match(device_t parent, cfdata_t match, void *aux)
    194    1.2    bouyer {
    195    1.2    bouyer 
    196    1.2    bouyer 	return 1;
    197    1.2    bouyer }
    198    1.2    bouyer 
    199   1.56    jruoho static void
    200   1.10    cegger cpu_attach(device_t parent, device_t self, void *aux)
    201    1.2    bouyer {
    202   1.10    cegger 	struct cpu_softc *sc = device_private(self);
    203    1.2    bouyer 	struct cpu_attach_args *caa = aux;
    204    1.2    bouyer 	struct cpu_info *ci;
    205   1.34    cegger 	uintptr_t ptr;
    206   1.52    bouyer 	static int nphycpu = 0;
    207    1.2    bouyer 
    208   1.10    cegger 	sc->sc_dev = self;
    209   1.10    cegger 
    210    1.2    bouyer 	/*
    211    1.2    bouyer 	 * If we're an Application Processor, allocate a cpu_info
    212   1.52    bouyer 	 * If we're the first attached CPU use the primary cpu_info,
    213   1.52    bouyer 	 * otherwise allocate a new one
    214    1.2    bouyer 	 */
    215   1.52    bouyer 	aprint_naive("\n");
    216   1.52    bouyer 	aprint_normal("\n");
    217   1.52    bouyer 	if (nphycpu > 0) {
    218   1.52    bouyer 		struct cpu_info *tmp;
    219   1.34    cegger 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    220   1.34    cegger 		    KM_SLEEP);
    221   1.42       jym 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    222   1.24        ad 		ci->ci_curldt = -1;
    223   1.52    bouyer 
    224   1.52    bouyer 		tmp = phycpu_info_list;
    225   1.52    bouyer 		while (tmp->ci_next)
    226   1.52    bouyer 			tmp = tmp->ci_next;
    227   1.52    bouyer 
    228   1.52    bouyer 		tmp->ci_next = ci;
    229    1.2    bouyer 	} else {
    230    1.2    bouyer 		ci = &phycpu_info_primary;
    231    1.2    bouyer 	}
    232    1.2    bouyer 
    233    1.2    bouyer 	ci->ci_self = ci;
    234    1.2    bouyer 	sc->sc_info = ci;
    235    1.2    bouyer 
    236    1.2    bouyer 	ci->ci_dev = self;
    237   1.50    jruoho 	ci->ci_acpiid = caa->cpu_id;
    238   1.23        ad 	ci->ci_cpuid = caa->cpu_number;
    239   1.16    cegger 	ci->ci_vcpu = NULL;
    240   1.52    bouyer 	ci->ci_index = nphycpu++;
    241    1.2    bouyer 
    242   1.52    bouyer 	if (!pmf_device_register(self, NULL, NULL))
    243   1.52    bouyer 		aprint_error_dev(self, "couldn't establish power handler\n");
    244   1.34    cegger 
    245   1.56    jruoho 	(void)config_defer(self, cpu_defer);
    246   1.56    jruoho }
    247   1.56    jruoho 
    248   1.56    jruoho static void
    249   1.56    jruoho cpu_defer(device_t self)
    250   1.56    jruoho {
    251   1.56    jruoho 	cpu_rescan(self, NULL, NULL);
    252    1.2    bouyer }
    253    1.2    bouyer 
    254   1.56    jruoho static int
    255   1.53    jruoho cpu_rescan(device_t self, const char *ifattr, const int *locators)
    256   1.53    jruoho {
    257   1.53    jruoho 	struct cpu_softc *sc = device_private(self);
    258   1.53    jruoho 	struct cpufeature_attach_args cfaa;
    259   1.53    jruoho 	struct cpu_info *ci = sc->sc_info;
    260   1.53    jruoho 
    261   1.53    jruoho 	memset(&cfaa, 0, sizeof(cfaa));
    262   1.53    jruoho 	cfaa.ci = ci;
    263   1.53    jruoho 
    264   1.53    jruoho 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    265   1.53    jruoho 
    266   1.53    jruoho 		if (ci->ci_frequency == NULL) {
    267   1.55    jruoho 			cfaa.name = "frequency";
    268   1.54    jruoho 			ci->ci_frequency = config_found_ia(self,
    269   1.54    jruoho 			    "cpufeaturebus", &cfaa, NULL);
    270   1.54    jruoho 		}
    271   1.53    jruoho 	}
    272   1.53    jruoho 
    273   1.53    jruoho 	return 0;
    274   1.53    jruoho }
    275   1.53    jruoho 
    276   1.56    jruoho static void
    277   1.53    jruoho cpu_childdetached(device_t self, device_t child)
    278   1.53    jruoho {
    279   1.53    jruoho 	struct cpu_softc *sc = device_private(self);
    280   1.53    jruoho 	struct cpu_info *ci = sc->sc_info;
    281   1.53    jruoho 
    282   1.53    jruoho 	if (ci->ci_frequency == child)
    283   1.53    jruoho 		ci->ci_frequency = NULL;
    284   1.53    jruoho }
    285   1.53    jruoho 
    286   1.56    jruoho static int
    287   1.10    cegger vcpu_match(device_t parent, cfdata_t match, void *aux)
    288    1.2    bouyer {
    289    1.2    bouyer 	struct vcpu_attach_args *vcaa = aux;
    290   1.62    cherry 	struct vcpu_runstate_info vcr;
    291   1.62    cherry 	int error;
    292   1.62    cherry 
    293   1.62    cherry 	if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
    294   1.62    cherry 		error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
    295   1.62    cherry 					   vcaa->vcaa_caa.cpu_number,
    296   1.62    cherry 					   &vcr);
    297   1.62    cherry 		switch (error) {
    298   1.62    cherry 		case 0:
    299   1.62    cherry 			return 1;
    300   1.62    cherry 		case -ENOENT:
    301   1.62    cherry 			return 0;
    302   1.62    cherry 		default:
    303   1.62    cherry 			panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
    304   1.62    cherry 		}
    305   1.62    cherry 	}
    306    1.2    bouyer 
    307    1.2    bouyer 	return 0;
    308    1.2    bouyer }
    309    1.2    bouyer 
    310   1.56    jruoho static void
    311   1.10    cegger vcpu_attach(device_t parent, device_t self, void *aux)
    312    1.2    bouyer {
    313    1.2    bouyer 	struct vcpu_attach_args *vcaa = aux;
    314    1.2    bouyer 
    315   1.62    cherry 	KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
    316   1.62    cherry 	vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
    317    1.2    bouyer 	cpu_attach_common(parent, self, &vcaa->vcaa_caa);
    318   1.65       jym 
    319   1.65       jym 	if (!pmf_device_register(self, NULL, NULL))
    320   1.65       jym 		aprint_error_dev(self, "couldn't establish power handler\n");
    321    1.2    bouyer }
    322    1.2    bouyer 
    323   1.62    cherry static int
    324   1.62    cherry vcpu_is_up(struct cpu_info *ci)
    325   1.62    cherry {
    326   1.62    cherry 	KASSERT(ci != NULL);
    327   1.62    cherry 	return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
    328   1.62    cherry }
    329   1.62    cherry 
    330    1.2    bouyer static void
    331    1.2    bouyer cpu_vm_init(struct cpu_info *ci)
    332    1.2    bouyer {
    333    1.2    bouyer 	int ncolors = 2, i;
    334    1.2    bouyer 
    335    1.2    bouyer 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    336    1.2    bouyer 		struct x86_cache_info *cai;
    337    1.2    bouyer 		int tcolors;
    338    1.2    bouyer 
    339    1.2    bouyer 		cai = &ci->ci_cinfo[i];
    340    1.2    bouyer 
    341    1.2    bouyer 		tcolors = atop(cai->cai_totalsize);
    342    1.2    bouyer 		switch(cai->cai_associativity) {
    343    1.2    bouyer 		case 0xff:
    344    1.2    bouyer 			tcolors = 1; /* fully associative */
    345    1.2    bouyer 			break;
    346    1.2    bouyer 		case 0:
    347    1.2    bouyer 		case 1:
    348    1.2    bouyer 			break;
    349    1.2    bouyer 		default:
    350    1.2    bouyer 			tcolors /= cai->cai_associativity;
    351    1.2    bouyer 		}
    352    1.2    bouyer 		ncolors = max(ncolors, tcolors);
    353    1.2    bouyer 	}
    354    1.2    bouyer 
    355    1.2    bouyer 	/*
    356   1.67       mrg 	 * Knowing the size of the largest cache on this CPU, potentially
    357   1.67       mrg 	 * re-color our pages.
    358    1.2    bouyer 	 */
    359   1.28    bouyer 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    360    1.2    bouyer 	uvm_page_recolor(ncolors);
    361   1.91     rmind 	pmap_tlb_cpu_init(ci);
    362    1.2    bouyer }
    363    1.2    bouyer 
    364   1.56    jruoho static void
    365   1.11    cegger cpu_attach_common(device_t parent, device_t self, void *aux)
    366    1.2    bouyer {
    367   1.10    cegger 	struct cpu_softc *sc = device_private(self);
    368    1.2    bouyer 	struct cpu_attach_args *caa = aux;
    369    1.2    bouyer 	struct cpu_info *ci;
    370   1.12    cegger 	uintptr_t ptr;
    371    1.2    bouyer 	int cpunum = caa->cpu_number;
    372   1.38    cegger 	static bool again = false;
    373    1.2    bouyer 
    374   1.10    cegger 	sc->sc_dev = self;
    375   1.10    cegger 
    376    1.2    bouyer 	/*
    377    1.2    bouyer 	 * If we're an Application Processor, allocate a cpu_info
    378    1.2    bouyer 	 * structure, otherwise use the primary's.
    379    1.2    bouyer 	 */
    380    1.2    bouyer 	if (caa->cpu_role == CPU_ROLE_AP) {
    381   1.12    cegger 		aprint_naive(": Application Processor\n");
    382   1.31    cegger 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    383   1.31    cegger 		    KM_SLEEP);
    384   1.42       jym 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    385   1.12    cegger 		memset(ci, 0, sizeof(*ci));
    386    1.2    bouyer #ifdef TRAPLOG
    387   1.31    cegger 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
    388    1.2    bouyer #endif
    389    1.2    bouyer 	} else {
    390   1.12    cegger 		aprint_naive(": %s Processor\n",
    391   1.12    cegger 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    392    1.2    bouyer 		ci = &cpu_info_primary;
    393    1.2    bouyer 	}
    394    1.2    bouyer 
    395    1.2    bouyer 	ci->ci_self = ci;
    396    1.2    bouyer 	sc->sc_info = ci;
    397    1.2    bouyer 	ci->ci_dev = self;
    398   1.23        ad 	ci->ci_cpuid = cpunum;
    399   1.16    cegger 
    400   1.16    cegger 	KASSERT(HYPERVISOR_shared_info != NULL);
    401   1.89    bouyer 	KASSERT(cpunum < XEN_LEGACY_MAX_VCPUS);
    402   1.16    cegger 	ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
    403   1.16    cegger 
    404   1.62    cherry 	KASSERT(ci->ci_func == 0);
    405    1.2    bouyer 	ci->ci_func = caa->cpu_func;
    406  1.101   msaitoh 	aprint_normal("\n");
    407    1.2    bouyer 
    408   1.38    cegger 	/* Must be called before mi_cpu_attach(). */
    409   1.38    cegger 	cpu_vm_init(ci);
    410   1.38    cegger 
    411    1.2    bouyer 	if (caa->cpu_role == CPU_ROLE_AP) {
    412    1.2    bouyer 		int error;
    413    1.2    bouyer 
    414    1.2    bouyer 		error = mi_cpu_attach(ci);
    415   1.62    cherry 
    416   1.62    cherry 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    417    1.2    bouyer 		if (error != 0) {
    418   1.38    cegger 			aprint_error_dev(self,
    419   1.38    cegger 			    "mi_cpu_attach failed with %d\n", error);
    420    1.2    bouyer 			return;
    421    1.2    bouyer 		}
    422   1.62    cherry 
    423    1.2    bouyer 	} else {
    424    1.2    bouyer 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    425    1.2    bouyer 	}
    426    1.2    bouyer 
    427   1.89    bouyer 	KASSERT(ci->ci_cpuid == ci->ci_index);
    428  1.100    bouyer #ifdef __x86_64__
    429  1.100    bouyer 	/* No user PGD mapped for this CPU yet */
    430  1.100    bouyer 	ci->ci_xen_current_user_pgd = 0;
    431  1.100    bouyer #endif
    432  1.100    bouyer #if defined(__x86_64__) || defined(PAE)
    433  1.100    bouyer 	mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
    434  1.100    bouyer #endif
    435    1.2    bouyer 	pmap_reference(pmap_kernel());
    436    1.2    bouyer 	ci->ci_pmap = pmap_kernel();
    437    1.2    bouyer 	ci->ci_tlbstate = TLBSTATE_STALE;
    438    1.2    bouyer 
    439   1.38    cegger 	/*
    440   1.38    cegger 	 * Boot processor may not be attached first, but the below
    441   1.38    cegger 	 * must be done to allow booting other processors.
    442   1.38    cegger 	 */
    443   1.38    cegger 	if (!again) {
    444   1.38    cegger 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    445   1.38    cegger 		/* Basic init. */
    446   1.38    cegger 		cpu_intr_init(ci);
    447   1.38    cegger 		cpu_get_tsc_freq(ci);
    448   1.38    cegger 		cpu_init(ci);
    449   1.78    cherry 		pmap_cpu_init_late(ci);
    450   1.62    cherry 
    451   1.99       snj 		/* Every processor needs to init its own ipi h/w (similar to lapic) */
    452   1.62    cherry 		xen_ipi_init();
    453   1.62    cherry 
    454   1.38    cegger 		/* Make sure DELAY() is initialized. */
    455   1.38    cegger 		DELAY(1);
    456   1.38    cegger 		again = true;
    457   1.38    cegger 	}
    458   1.38    cegger 
    459    1.2    bouyer 	/* further PCB init done later. */
    460    1.2    bouyer 
    461    1.2    bouyer 	switch (caa->cpu_role) {
    462    1.2    bouyer 	case CPU_ROLE_SP:
    463   1.38    cegger 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    464   1.21        ad 		cpu_identify(ci);
    465   1.38    cegger 		x86_cpu_idle_init();
    466   1.62    cherry 
    467    1.2    bouyer 		break;
    468    1.2    bouyer 
    469    1.2    bouyer 	case CPU_ROLE_BP:
    470   1.38    cegger 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    471   1.21        ad 		cpu_identify(ci);
    472   1.38    cegger 		x86_cpu_idle_init();
    473   1.62    cherry 
    474    1.2    bouyer 		break;
    475    1.2    bouyer 
    476    1.2    bouyer 	case CPU_ROLE_AP:
    477   1.62    cherry 		atomic_or_32(&ci->ci_flags, CPUF_AP);
    478   1.62    cherry 
    479    1.2    bouyer 		/*
    480    1.2    bouyer 		 * report on an AP
    481    1.2    bouyer 		 */
    482    1.2    bouyer 
    483    1.2    bouyer #if defined(MULTIPROCESSOR)
    484   1.62    cherry 		/* interrupt handler stack */
    485    1.2    bouyer 		cpu_intr_init(ci);
    486   1.62    cherry 
    487   1.62    cherry 		/* Setup per-cpu memory for gdt */
    488    1.2    bouyer 		gdt_alloc_cpu(ci);
    489   1.62    cherry 
    490   1.62    cherry 		pmap_cpu_init_late(ci);
    491    1.2    bouyer 		cpu_start_secondary(ci);
    492   1.62    cherry 
    493    1.2    bouyer 		if (ci->ci_flags & CPUF_PRESENT) {
    494   1.30    cegger 			struct cpu_info *tmp;
    495   1.30    cegger 
    496   1.62    cherry 			cpu_identify(ci);
    497   1.30    cegger 			tmp = cpu_info_list;
    498   1.30    cegger 			while (tmp->ci_next)
    499   1.30    cegger 				tmp = tmp->ci_next;
    500   1.30    cegger 
    501   1.30    cegger 			tmp->ci_next = ci;
    502    1.2    bouyer 		}
    503    1.2    bouyer #else
    504  1.101   msaitoh 		aprint_error_dev(ci->ci_dev, "not started\n");
    505    1.2    bouyer #endif
    506    1.2    bouyer 		break;
    507    1.2    bouyer 
    508    1.2    bouyer 	default:
    509    1.2    bouyer 		panic("unknown processor type??\n");
    510    1.2    bouyer 	}
    511    1.2    bouyer 
    512   1.62    cherry #ifdef MPVERBOSE
    513    1.2    bouyer 	if (mp_verbose) {
    514    1.2    bouyer 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    515   1.37     rmind 		struct pcb *pcb = lwp_getpcb(l);
    516    1.2    bouyer 
    517   1.38    cegger 		aprint_verbose_dev(self,
    518   1.38    cegger 		    "idle lwp at %p, idle sp at 0x%p\n",
    519   1.12    cegger 		    l,
    520   1.12    cegger #ifdef i386
    521   1.37     rmind 		    (void *)pcb->pcb_esp
    522   1.62    cherry #else /* i386 */
    523   1.37     rmind 		    (void *)pcb->pcb_rsp
    524   1.62    cherry #endif /* i386 */
    525   1.12    cegger 		);
    526   1.12    cegger 
    527    1.2    bouyer 	}
    528   1.62    cherry #endif /* MPVERBOSE */
    529    1.2    bouyer }
    530    1.2    bouyer 
    531    1.2    bouyer /*
    532    1.2    bouyer  * Initialize the processor appropriately.
    533    1.2    bouyer  */
    534    1.2    bouyer 
    535    1.2    bouyer void
    536   1.10    cegger cpu_init(struct cpu_info *ci)
    537    1.2    bouyer {
    538    1.2    bouyer 
    539    1.2    bouyer 	/*
    540    1.2    bouyer 	 * If we have FXSAVE/FXRESTOR, use them.
    541    1.2    bouyer 	 */
    542   1.43       jym 	if (cpu_feature[0] & CPUID_FXSR) {
    543    1.2    bouyer 		lcr4(rcr4() | CR4_OSFXSR);
    544    1.2    bouyer 
    545    1.2    bouyer 		/*
    546    1.2    bouyer 		 * If we have SSE/SSE2, enable XMM exceptions.
    547    1.2    bouyer 		 */
    548   1.43       jym 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    549    1.2    bouyer 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    550    1.2    bouyer 	}
    551    1.2    bouyer 
    552   1.11    cegger 	atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    553    1.2    bouyer }
    554    1.2    bouyer 
    555    1.2    bouyer 
    556    1.2    bouyer #ifdef MULTIPROCESSOR
    557   1.62    cherry 
    558    1.2    bouyer void
    559   1.10    cegger cpu_boot_secondary_processors(void)
    560    1.2    bouyer {
    561    1.2    bouyer 	struct cpu_info *ci;
    562    1.2    bouyer 	u_long i;
    563   1.38    cegger 	for (i = 0; i < maxcpus; i++) {
    564   1.38    cegger 		ci = cpu_lookup(i);
    565    1.2    bouyer 		if (ci == NULL)
    566    1.2    bouyer 			continue;
    567    1.2    bouyer 		if (ci->ci_data.cpu_idlelwp == NULL)
    568    1.2    bouyer 			continue;
    569    1.2    bouyer 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    570    1.2    bouyer 			continue;
    571    1.2    bouyer 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    572    1.2    bouyer 			continue;
    573    1.2    bouyer 		cpu_boot_secondary(ci);
    574    1.2    bouyer 	}
    575   1.11    cegger 
    576   1.11    cegger 	x86_mp_online = true;
    577    1.2    bouyer }
    578    1.2    bouyer 
    579    1.2    bouyer static void
    580    1.2    bouyer cpu_init_idle_lwp(struct cpu_info *ci)
    581    1.2    bouyer {
    582    1.2    bouyer 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    583   1.37     rmind 	struct pcb *pcb = lwp_getpcb(l);
    584    1.2    bouyer 
    585    1.2    bouyer 	pcb->pcb_cr0 = rcr0();
    586    1.2    bouyer }
    587    1.2    bouyer 
    588    1.2    bouyer void
    589   1.10    cegger cpu_init_idle_lwps(void)
    590    1.2    bouyer {
    591    1.2    bouyer 	struct cpu_info *ci;
    592    1.2    bouyer 	u_long i;
    593    1.2    bouyer 
    594   1.38    cegger 	for (i = 0; i < maxcpus; i++) {
    595   1.38    cegger 		ci = cpu_lookup(i);
    596    1.2    bouyer 		if (ci == NULL)
    597    1.2    bouyer 			continue;
    598    1.2    bouyer 		if (ci->ci_data.cpu_idlelwp == NULL)
    599    1.2    bouyer 			continue;
    600    1.2    bouyer 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    601    1.2    bouyer 			continue;
    602    1.2    bouyer 		cpu_init_idle_lwp(ci);
    603    1.2    bouyer 	}
    604    1.2    bouyer }
    605    1.2    bouyer 
    606   1.62    cherry static void
    607   1.10    cegger cpu_start_secondary(struct cpu_info *ci)
    608    1.2    bouyer {
    609    1.2    bouyer 	int i;
    610    1.2    bouyer 
    611   1.11    cegger 	aprint_debug_dev(ci->ci_dev, "starting\n");
    612    1.2    bouyer 
    613    1.2    bouyer 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    614   1.62    cherry 
    615   1.62    cherry 	if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
    616   1.11    cegger 		return;
    617   1.62    cherry 	}
    618    1.2    bouyer 
    619    1.2    bouyer 	/*
    620    1.2    bouyer 	 * wait for it to become ready
    621    1.2    bouyer 	 */
    622   1.11    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    623    1.2    bouyer 		delay(10);
    624    1.2    bouyer 	}
    625   1.11    cegger 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    626    1.9    cegger 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    627    1.2    bouyer #if defined(MPDEBUG) && defined(DDB)
    628    1.2    bouyer 		printf("dropping into debugger; continue from here to resume boot\n");
    629    1.2    bouyer 		Debugger();
    630    1.2    bouyer #endif
    631    1.2    bouyer 	}
    632    1.2    bouyer 
    633    1.2    bouyer 	CPU_START_CLEANUP(ci);
    634    1.2    bouyer }
    635    1.2    bouyer 
    636    1.2    bouyer void
    637   1.10    cegger cpu_boot_secondary(struct cpu_info *ci)
    638    1.2    bouyer {
    639    1.2    bouyer 	int i;
    640   1.11    cegger 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    641   1.11    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    642    1.2    bouyer 		delay(10);
    643    1.2    bouyer 	}
    644   1.11    cegger 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    645   1.11    cegger 		aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
    646    1.2    bouyer #if defined(MPDEBUG) && defined(DDB)
    647    1.2    bouyer 		printf("dropping into debugger; continue from here to resume boot\n");
    648    1.2    bouyer 		Debugger();
    649    1.2    bouyer #endif
    650    1.2    bouyer 	}
    651    1.2    bouyer }
    652    1.2    bouyer 
    653    1.2    bouyer /*
    654   1.62    cherry  * APs end up here immediately after initialisation and VCPUOP_up in
    655   1.62    cherry  * mp_cpu_start().
    656   1.62    cherry  * At this point, we are running in the idle pcb/idle stack of the new
    657   1.62    cherry  * CPU.  This function jumps to the idle loop and starts looking for
    658   1.62    cherry  * work.
    659    1.2    bouyer  */
    660   1.62    cherry extern void x86_64_tls_switch(struct lwp *);
    661    1.2    bouyer void
    662    1.2    bouyer cpu_hatch(void *v)
    663    1.2    bouyer {
    664    1.2    bouyer 	struct cpu_info *ci = (struct cpu_info *)v;
    665   1.37     rmind 	struct pcb *pcb;
    666   1.11    cegger 	int s, i;
    667   1.11    cegger 
    668   1.62    cherry 	/* Setup TLS and kernel GS/FS */
    669   1.62    cherry 	cpu_init_msrs(ci, true);
    670   1.62    cherry 	cpu_init_idt();
    671   1.62    cherry 	gdt_init_cpu(ci);
    672   1.62    cherry 
    673   1.21        ad 	cpu_probe(ci);
    674   1.11    cegger 
    675   1.62    cherry 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    676    1.2    bouyer 
    677   1.11    cegger 	while ((ci->ci_flags & CPUF_GO) == 0) {
    678   1.11    cegger 		/* Don't use delay, boot CPU may be patching the text. */
    679   1.11    cegger 		for (i = 10000; i != 0; i--)
    680   1.11    cegger 			x86_pause();
    681   1.11    cegger 	}
    682    1.2    bouyer 
    683   1.11    cegger 	/* Because the text may have been patched in x86_patch(). */
    684   1.11    cegger 	x86_flush();
    685   1.58     rmind 	tlbflushg();
    686    1.2    bouyer 
    687   1.11    cegger 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    688    1.2    bouyer 
    689   1.37     rmind 	pcb = lwp_getpcb(curlwp);
    690   1.85    cherry 	pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
    691   1.37     rmind 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    692   1.37     rmind 
    693   1.62    cherry 	xen_ipi_init();
    694   1.62    cherry 
    695   1.62    cherry 	xen_initclocks();
    696   1.62    cherry 
    697   1.62    cherry #ifdef __x86_64__
    698   1.12    cegger 	fpuinit(ci);
    699   1.12    cegger #endif
    700    1.2    bouyer 
    701    1.2    bouyer 	lldt(GSEL(GLDT_SEL, SEL_KPL));
    702    1.2    bouyer 
    703    1.2    bouyer 	cpu_init(ci);
    704   1.11    cegger 	cpu_get_tsc_freq(ci);
    705    1.2    bouyer 
    706    1.2    bouyer 	s = splhigh();
    707   1.11    cegger 	x86_enable_intr();
    708   1.11    cegger 	splx(s);
    709    1.2    bouyer 
    710   1.62    cherry 	aprint_debug_dev(ci->ci_dev, "running\n");
    711   1.62    cherry 
    712   1.62    cherry 	cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
    713   1.62    cherry 
    714   1.91     rmind 	idle_loop(NULL);
    715   1.91     rmind 	KASSERT(false);
    716    1.2    bouyer }
    717    1.2    bouyer 
    718    1.2    bouyer #if defined(DDB)
    719    1.2    bouyer 
    720    1.2    bouyer #include <ddb/db_output.h>
    721    1.2    bouyer #include <machine/db_machdep.h>
    722    1.2    bouyer 
    723    1.2    bouyer /*
    724    1.2    bouyer  * Dump CPU information from ddb.
    725    1.2    bouyer  */
    726    1.2    bouyer void
    727    1.2    bouyer cpu_debug_dump(void)
    728    1.2    bouyer {
    729    1.2    bouyer 	struct cpu_info *ci;
    730    1.2    bouyer 	CPU_INFO_ITERATOR cii;
    731    1.2    bouyer 
    732   1.95  christos 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    733    1.2    bouyer 	for (CPU_INFO_FOREACH(cii, ci)) {
    734   1.95  christos 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    735    1.2    bouyer 		    ci,
    736    1.9    cegger 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    737   1.12    cegger 		    (long)ci->ci_cpuid,
    738    1.2    bouyer 		    ci->ci_flags, ci->ci_ipis,
    739   1.95  christos 		    ci->ci_curlwp,
    740   1.95  christos 		    ci->ci_fpcurlwp);
    741    1.2    bouyer 	}
    742    1.2    bouyer }
    743   1.38    cegger #endif /* DDB */
    744    1.2    bouyer 
    745   1.62    cherry #endif /* MULTIPROCESSOR */
    746   1.62    cherry 
    747   1.62    cherry extern void hypervisor_callback(void);
    748   1.62    cherry extern void failsafe_callback(void);
    749   1.62    cherry #ifdef __x86_64__
    750   1.62    cherry typedef void (vector)(void);
    751   1.62    cherry extern vector Xsyscall, Xsyscall32;
    752   1.62    cherry #endif
    753   1.62    cherry 
    754   1.62    cherry /*
    755   1.62    cherry  * Setup the "trampoline". On Xen, we setup nearly all cpu context
    756   1.62    cherry  * outside a trampoline, so we prototype and call targetip like so:
    757   1.62    cherry  * void targetip(struct cpu_info *);
    758   1.62    cherry  */
    759   1.62    cherry 
    760    1.2    bouyer static void
    761   1.62    cherry gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
    762    1.2    bouyer {
    763   1.62    cherry 	int i;
    764   1.62    cherry 	for (i = 0; i < roundup(entries, PAGE_SIZE) >> PAGE_SHIFT; i++) {
    765   1.62    cherry 
    766   1.62    cherry 		frames[i] = ((paddr_t) xpmap_ptetomach(
    767   1.62    cherry 				(pt_entry_t *) (base + (i << PAGE_SHIFT))))
    768   1.62    cherry 			>> PAGE_SHIFT;
    769   1.62    cherry 
    770   1.62    cherry 		/* Mark Read-only */
    771   1.62    cherry 		pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
    772   1.62    cherry 		    PG_RW);
    773   1.62    cherry 	}
    774   1.62    cherry }
    775   1.62    cherry 
    776   1.62    cherry #ifdef __x86_64__
    777   1.85    cherry extern char *ldtstore;
    778   1.62    cherry 
    779   1.62    cherry static void
    780   1.62    cherry xen_init_amd64_vcpuctxt(struct cpu_info *ci,
    781   1.62    cherry 			struct vcpu_guest_context *initctx,
    782   1.62    cherry 			void targetrip(struct cpu_info *))
    783   1.62    cherry {
    784   1.62    cherry 	/* page frames to point at GDT */
    785   1.62    cherry 	extern int gdt_size;
    786   1.62    cherry 	paddr_t frames[16];
    787   1.62    cherry 	psize_t gdt_ents;
    788   1.62    cherry 
    789   1.62    cherry 	struct lwp *l;
    790   1.62    cherry 	struct pcb *pcb;
    791   1.62    cherry 
    792   1.62    cherry 	volatile struct vcpu_info *vci;
    793   1.62    cherry 
    794   1.62    cherry 	KASSERT(ci != NULL);
    795   1.62    cherry 	KASSERT(ci != &cpu_info_primary);
    796   1.62    cherry 	KASSERT(initctx != NULL);
    797   1.62    cherry 	KASSERT(targetrip != NULL);
    798   1.62    cherry 
    799   1.62    cherry 	memset(initctx, 0, sizeof *initctx);
    800   1.62    cherry 
    801   1.85    cherry 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
    802   1.62    cherry 	KASSERT(gdt_ents <= 16);
    803   1.62    cherry 
    804   1.62    cherry 	gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
    805   1.62    cherry 
    806   1.62    cherry 	/* Initialise the vcpu context: We use idle_loop()'s pcb context. */
    807   1.11    cegger 
    808   1.62    cherry 	l = ci->ci_data.cpu_idlelwp;
    809   1.11    cegger 
    810   1.62    cherry 	KASSERT(l != NULL);
    811   1.62    cherry 	pcb = lwp_getpcb(l);
    812   1.62    cherry 	KASSERT(pcb != NULL);
    813   1.11    cegger 
    814   1.62    cherry 	/* resume with interrupts off */
    815   1.62    cherry 	vci = ci->ci_vcpu;
    816   1.62    cherry 	vci->evtchn_upcall_mask = 1;
    817   1.62    cherry 	xen_mb();
    818    1.2    bouyer 
    819   1.62    cherry 	/* resume in kernel-mode */
    820   1.62    cherry 	initctx->flags = VGCF_in_kernel | VGCF_online;
    821    1.2    bouyer 
    822   1.62    cherry 	/* Stack and entry points:
    823   1.62    cherry 	 * We arrange for the stack frame for cpu_hatch() to
    824   1.62    cherry 	 * appear as a callee frame of lwp_trampoline(). Being a
    825   1.62    cherry 	 * leaf frame prevents trampling on any of the MD stack setup
    826   1.62    cherry 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    827   1.62    cherry 	 */
    828    1.2    bouyer 
    829   1.62    cherry 	initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
    830   1.62    cherry 	initctx->user_regs.rip = (vaddr_t) targetrip;
    831    1.2    bouyer 
    832   1.62    cherry 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    833   1.11    cegger 
    834   1.62    cherry 	initctx->user_regs.rflags = pcb->pcb_flags;
    835   1.62    cherry 	initctx->user_regs.rsp = pcb->pcb_rsp;
    836   1.11    cegger 
    837   1.62    cherry 	/* Data segments */
    838   1.62    cherry 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
    839   1.62    cherry 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
    840   1.62    cherry 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
    841   1.62    cherry 
    842   1.62    cherry 	/* GDT */
    843   1.62    cherry 	memcpy(initctx->gdt_frames, frames, sizeof frames);
    844   1.62    cherry 	initctx->gdt_ents = gdt_ents;
    845   1.62    cherry 
    846   1.62    cherry 	/* LDT */
    847   1.62    cherry 	initctx->ldt_base = (unsigned long) ldtstore;
    848   1.62    cherry 	initctx->ldt_ents = LDT_SIZE >> 3;
    849   1.62    cherry 
    850   1.62    cherry 	/* Kernel context state */
    851   1.62    cherry 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
    852   1.62    cherry 	initctx->kernel_sp = pcb->pcb_rsp0;
    853   1.62    cherry 	initctx->ctrlreg[0] = pcb->pcb_cr0;
    854   1.62    cherry 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
    855   1.85    cherry 	initctx->ctrlreg[2] = (vaddr_t) targetrip;
    856   1.62    cherry 	/*
    857   1.62    cherry 	 * Use pmap_kernel() L4 PD directly, until we setup the
    858   1.62    cherry 	 * per-cpu L4 PD in pmap_cpu_init_late()
    859    1.2    bouyer 	 */
    860   1.70    cherry 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
    861   1.62    cherry 	initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
    862    1.2    bouyer 
    863   1.62    cherry 
    864   1.62    cherry 	/* Xen callbacks */
    865   1.62    cherry 	initctx->event_callback_eip = (unsigned long) hypervisor_callback;
    866   1.62    cherry 	initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
    867   1.62    cherry 	initctx->syscall_callback_eip = (unsigned long) Xsyscall;
    868   1.62    cherry 
    869   1.62    cherry 	return;
    870    1.2    bouyer }
    871   1.62    cherry #else /* i386 */
    872   1.62    cherry extern union descriptor *ldt;
    873   1.62    cherry extern void Xsyscall(void);
    874   1.62    cherry 
    875   1.11    cegger static void
    876   1.62    cherry xen_init_i386_vcpuctxt(struct cpu_info *ci,
    877   1.62    cherry 			struct vcpu_guest_context *initctx,
    878   1.62    cherry 			void targeteip(struct cpu_info *))
    879   1.62    cherry {
    880   1.62    cherry 	/* page frames to point at GDT */
    881   1.62    cherry 	extern int gdt_size;
    882   1.62    cherry 	paddr_t frames[16];
    883   1.62    cherry 	psize_t gdt_ents;
    884   1.62    cherry 
    885   1.62    cherry 	struct lwp *l;
    886   1.62    cherry 	struct pcb *pcb;
    887   1.62    cherry 
    888   1.62    cherry 	volatile struct vcpu_info *vci;
    889   1.62    cherry 
    890   1.62    cherry 	KASSERT(ci != NULL);
    891   1.62    cherry 	KASSERT(ci != &cpu_info_primary);
    892   1.62    cherry 	KASSERT(initctx != NULL);
    893   1.62    cherry 	KASSERT(targeteip != NULL);
    894   1.62    cherry 
    895   1.62    cherry 	memset(initctx, 0, sizeof *initctx);
    896   1.11    cegger 
    897   1.85    cherry 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
    898   1.62    cherry 	KASSERT(gdt_ents <= 16);
    899    1.2    bouyer 
    900   1.62    cherry 	gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
    901    1.2    bouyer 
    902   1.62    cherry 	/*
    903   1.62    cherry 	 * Initialise the vcpu context:
    904   1.62    cherry 	 * We use this cpu's idle_loop() pcb context.
    905   1.11    cegger 	 */
    906   1.11    cegger 
    907   1.62    cherry 	l = ci->ci_data.cpu_idlelwp;
    908   1.62    cherry 
    909   1.62    cherry 	KASSERT(l != NULL);
    910   1.62    cherry 	pcb = lwp_getpcb(l);
    911   1.62    cherry 	KASSERT(pcb != NULL);
    912   1.62    cherry 
    913   1.62    cherry 	/* resume with interrupts off */
    914   1.62    cherry 	vci = ci->ci_vcpu;
    915   1.62    cherry 	vci->evtchn_upcall_mask = 1;
    916   1.62    cherry 	xen_mb();
    917   1.62    cherry 
    918   1.62    cherry 	/* resume in kernel-mode */
    919   1.62    cherry 	initctx->flags = VGCF_in_kernel | VGCF_online;
    920   1.62    cherry 
    921   1.62    cherry 	/* Stack frame setup for cpu_hatch():
    922   1.62    cherry 	 * We arrange for the stack frame for cpu_hatch() to
    923   1.62    cherry 	 * appear as a callee frame of lwp_trampoline(). Being a
    924   1.62    cherry 	 * leaf frame prevents trampling on any of the MD stack setup
    925   1.62    cherry 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    926    1.2    bouyer 	 */
    927    1.2    bouyer 
    928   1.62    cherry 	initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
    929   1.62    cherry 						      arg1 */
    930   1.62    cherry 	{ /* targeteip(ci); */
    931   1.62    cherry 		uint32_t *arg = (uint32_t *) initctx->user_regs.esp;
    932   1.62    cherry 		arg[1] = (uint32_t) ci; /* arg1 */
    933   1.62    cherry 
    934   1.62    cherry 	}
    935    1.2    bouyer 
    936   1.62    cherry 	initctx->user_regs.eip = (vaddr_t) targeteip;
    937   1.62    cherry 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    938   1.62    cherry 	initctx->user_regs.eflags |= pcb->pcb_iopl;
    939   1.62    cherry 
    940   1.62    cherry 	/* Data segments */
    941   1.62    cherry 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
    942   1.62    cherry 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
    943   1.62    cherry 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
    944   1.62    cherry 	initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
    945   1.62    cherry 
    946   1.62    cherry 	/* GDT */
    947   1.62    cherry 	memcpy(initctx->gdt_frames, frames, sizeof frames);
    948   1.62    cherry 	initctx->gdt_ents = gdt_ents;
    949   1.62    cherry 
    950   1.62    cherry 	/* LDT */
    951   1.62    cherry 	initctx->ldt_base = (unsigned long) ldt;
    952   1.62    cherry 	initctx->ldt_ents = NLDT;
    953   1.62    cherry 
    954   1.62    cherry 	/* Kernel context state */
    955   1.62    cherry 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
    956   1.62    cherry 	initctx->kernel_sp = pcb->pcb_esp0;
    957   1.62    cherry 	initctx->ctrlreg[0] = pcb->pcb_cr0;
    958   1.62    cherry 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
    959   1.85    cherry 	initctx->ctrlreg[2] = (vaddr_t) targeteip;
    960   1.70    cherry #ifdef PAE
    961   1.70    cherry 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
    962   1.70    cherry #else /* PAE */
    963   1.70    cherry 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
    964   1.70    cherry #endif /* PAE */
    965   1.62    cherry 	initctx->ctrlreg[4] = /* CR4_PAE |  */CR4_OSFXSR | CR4_OSXMMEXCPT;
    966    1.2    bouyer 
    967    1.2    bouyer 
    968   1.62    cherry 	/* Xen callbacks */
    969   1.62    cherry 	initctx->event_callback_eip = (unsigned long) hypervisor_callback;
    970   1.62    cherry 	initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
    971   1.62    cherry 	initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
    972   1.62    cherry 	initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
    973   1.45     rmind 
    974   1.62    cherry 	return;
    975   1.62    cherry }
    976   1.62    cherry #endif /* __x86_64__ */
    977   1.45     rmind 
    978   1.62    cherry int
    979   1.62    cherry mp_cpu_start(struct cpu_info *ci, vaddr_t target)
    980   1.62    cherry {
    981   1.62    cherry 
    982   1.62    cherry 	int hyperror;
    983   1.62    cherry 	struct vcpu_guest_context vcpuctx;
    984    1.2    bouyer 
    985   1.62    cherry 	KASSERT(ci != NULL);
    986   1.62    cherry 	KASSERT(ci != &cpu_info_primary);
    987   1.62    cherry 	KASSERT(ci->ci_flags & CPUF_AP);
    988   1.62    cherry 
    989   1.62    cherry #ifdef __x86_64__
    990   1.62    cherry 	xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
    991   1.62    cherry #else  /* i386 */
    992   1.62    cherry 	xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
    993   1.62    cherry #endif /* __x86_64__ */
    994   1.62    cherry 
    995   1.62    cherry 	/* Initialise the given vcpu to execute cpu_hatch(ci); */
    996   1.62    cherry 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
    997   1.62    cherry 		aprint_error(": context initialisation failed. errno = %d\n", hyperror);
    998   1.62    cherry 		return hyperror;
    999   1.62    cherry 	}
   1000   1.62    cherry 
   1001   1.62    cherry 	/* Start it up */
   1002   1.62    cherry 
   1003   1.70    cherry 	/* First bring it down */
   1004   1.62    cherry 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
   1005   1.62    cherry 		aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
   1006   1.62    cherry 		return hyperror;
   1007   1.62    cherry 	}
   1008   1.62    cherry 
   1009   1.62    cherry 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
   1010   1.62    cherry 		aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
   1011   1.62    cherry 		return hyperror;
   1012   1.62    cherry 	}
   1013    1.2    bouyer 
   1014   1.62    cherry 	if (!vcpu_is_up(ci)) {
   1015   1.62    cherry 		aprint_error(": did not come up\n");
   1016   1.62    cherry 		return -1;
   1017    1.2    bouyer 	}
   1018   1.62    cherry 
   1019    1.2    bouyer 	return 0;
   1020    1.2    bouyer }
   1021    1.2    bouyer 
   1022    1.2    bouyer void
   1023    1.2    bouyer mp_cpu_start_cleanup(struct cpu_info *ci)
   1024    1.2    bouyer {
   1025   1.62    cherry 	if (vcpu_is_up(ci)) {
   1026   1.62    cherry 		aprint_debug_dev(ci->ci_dev, "is started.\n");
   1027   1.62    cherry 	}
   1028   1.62    cherry 	else {
   1029   1.62    cherry 		aprint_error_dev(ci->ci_dev, "did not start up.\n");
   1030   1.62    cherry 	}
   1031   1.62    cherry 
   1032    1.2    bouyer }
   1033    1.2    bouyer 
   1034    1.2    bouyer void
   1035    1.3    bouyer cpu_init_msrs(struct cpu_info *ci, bool full)
   1036    1.2    bouyer {
   1037   1.43       jym #ifdef __x86_64__
   1038    1.3    bouyer 	if (full) {
   1039    1.3    bouyer 		HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
   1040   1.11    cegger 		HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
   1041    1.3    bouyer 		HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
   1042    1.3    bouyer 	}
   1043   1.43       jym #endif	/* __x86_64__ */
   1044   1.44       jym 
   1045   1.44       jym 	if (cpu_feature[2] & CPUID_NOX)
   1046   1.44       jym 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1047   1.62    cherry 
   1048    1.2    bouyer }
   1049    1.2    bouyer 
   1050   1.95  christos void
   1051   1.95  christos cpu_offline_md(void)
   1052   1.95  christos {
   1053   1.95  christos         int s;
   1054   1.95  christos 
   1055   1.95  christos         s = splhigh();
   1056   1.95  christos         fpusave_cpu(true);
   1057   1.95  christos         splx(s);
   1058   1.95  christos }
   1059   1.95  christos 
   1060    1.2    bouyer void
   1061    1.2    bouyer cpu_get_tsc_freq(struct cpu_info *ci)
   1062    1.2    bouyer {
   1063   1.62    cherry 	uint32_t vcpu_tversion;
   1064   1.16    cegger 	const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
   1065   1.62    cherry 
   1066   1.62    cherry 	vcpu_tversion = tinfo->version;
   1067   1.62    cherry 	while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
   1068   1.62    cherry 
   1069    1.2    bouyer 	uint64_t freq = 1000000000ULL << 32;
   1070    1.2    bouyer 	freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
   1071    1.2    bouyer 	if ( tinfo->tsc_shift < 0 )
   1072    1.2    bouyer 		freq = freq << -tinfo->tsc_shift;
   1073    1.2    bouyer 	else
   1074    1.2    bouyer 		freq = freq >> tinfo->tsc_shift;
   1075   1.20        ad 	ci->ci_data.cpu_cc_freq = freq;
   1076    1.2    bouyer }
   1077   1.19     joerg 
   1078   1.19     joerg void
   1079   1.19     joerg x86_cpu_idle_xen(void)
   1080   1.19     joerg {
   1081   1.19     joerg 	struct cpu_info *ci = curcpu();
   1082   1.62    cherry 
   1083   1.19     joerg 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1084   1.19     joerg 
   1085   1.19     joerg 	x86_disable_intr();
   1086   1.19     joerg 	if (!__predict_false(ci->ci_want_resched)) {
   1087   1.19     joerg 		idle_block();
   1088   1.19     joerg 	} else {
   1089   1.19     joerg 		x86_enable_intr();
   1090   1.19     joerg 	}
   1091   1.19     joerg }
   1092   1.47       jym 
   1093   1.47       jym /*
   1094   1.47       jym  * Loads pmap for the current CPU.
   1095   1.47       jym  */
   1096   1.47       jym void
   1097   1.81    bouyer cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
   1098   1.47       jym {
   1099   1.84    cherry 	KASSERT(pmap != pmap_kernel());
   1100   1.91     rmind 
   1101   1.81    bouyer #if defined(__x86_64__) || defined(PAE)
   1102   1.81    bouyer 	struct cpu_info *ci = curcpu();
   1103   1.92     rmind 	cpuid_t cid = cpu_index(ci);
   1104   1.81    bouyer 
   1105   1.81    bouyer 	mutex_enter(&ci->ci_kpm_mtx);
   1106   1.93       jym 	/* make new pmap visible to xen_kpm_sync() */
   1107   1.92     rmind 	kcpuset_atomic_set(pmap->pm_xen_ptp_cpus, cid);
   1108   1.81    bouyer #endif
   1109   1.47       jym #ifdef i386
   1110   1.47       jym #ifdef PAE
   1111   1.81    bouyer 	{
   1112   1.81    bouyer 		int i;
   1113   1.81    bouyer 		paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
   1114   1.81    bouyer 		/* don't update the kernel L3 slot */
   1115   1.81    bouyer 		for (i = 0 ; i < PDP_SIZE - 1; i++) {
   1116   1.81    bouyer 			xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
   1117   1.81    bouyer 			    xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
   1118   1.81    bouyer 		}
   1119   1.81    bouyer 		tlbflush();
   1120   1.47       jym 	}
   1121   1.47       jym #else /* PAE */
   1122   1.47       jym 	lcr3(pmap_pdirpa(pmap, 0));
   1123   1.47       jym #endif /* PAE */
   1124   1.47       jym #endif /* i386 */
   1125   1.47       jym 
   1126   1.47       jym #ifdef __x86_64__
   1127   1.81    bouyer 	{
   1128   1.81    bouyer 		int i;
   1129   1.81    bouyer 		pd_entry_t *new_pgd;
   1130   1.81    bouyer 		paddr_t l4_pd_ma;
   1131   1.81    bouyer 
   1132   1.81    bouyer 		l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
   1133   1.47       jym 
   1134   1.81    bouyer 		/*
   1135   1.81    bouyer 		 * Map user space address in kernel space and load
   1136   1.81    bouyer 		 * user cr3
   1137   1.81    bouyer 		 */
   1138   1.81    bouyer 		new_pgd = pmap->pm_pdir;
   1139   1.81    bouyer 		KASSERT(pmap == ci->ci_pmap);
   1140   1.70    cherry 
   1141   1.81    bouyer 		/* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
   1142   1.81    bouyer 		for (i = 0; i < PDIR_SLOT_PTE; i++) {
   1143   1.81    bouyer 			KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
   1144   1.81    bouyer 			if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
   1145   1.81    bouyer 				xpq_queue_pte_update(
   1146   1.81    bouyer 				   l4_pd_ma + i * sizeof(pd_entry_t),
   1147   1.81    bouyer 				    new_pgd[i]);
   1148   1.81    bouyer 			}
   1149   1.81    bouyer 		}
   1150   1.70    cherry 
   1151   1.84    cherry 		xen_set_user_pgd(pmap_pdirpa(pmap, 0));
   1152   1.84    cherry 		ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
   1153   1.70    cherry 
   1154   1.81    bouyer 		tlbflush();
   1155   1.70    cherry 	}
   1156   1.70    cherry 
   1157   1.47       jym #endif /* __x86_64__ */
   1158   1.81    bouyer #if defined(__x86_64__) || defined(PAE)
   1159   1.93       jym 	/* old pmap no longer visible to xen_kpm_sync() */
   1160   1.92     rmind 	if (oldpmap != pmap_kernel()) {
   1161   1.92     rmind 		kcpuset_atomic_clear(oldpmap->pm_xen_ptp_cpus, cid);
   1162   1.92     rmind 	}
   1163   1.81    bouyer 	mutex_exit(&ci->ci_kpm_mtx);
   1164   1.81    bouyer #endif
   1165   1.47       jym }
   1166   1.61    cherry 
   1167   1.70    cherry  /*
   1168   1.70    cherry   * pmap_cpu_init_late: perform late per-CPU initialization.
   1169   1.70    cherry   * Short note about percpu PDIR pages:
   1170   1.70    cherry   * Both the PAE and __x86_64__ architectures have per-cpu PDIR
   1171   1.70    cherry   * tables. This is to get around Xen's pagetable setup constraints for
   1172   1.70    cherry   * PAE (multiple L3[3]s cannot point to the same L2 - Xen
   1173   1.70    cherry   * will refuse to pin a table setup this way.) and for multiple cpus
   1174   1.70    cherry   * to map in different user pmaps on __x86_64__ (see: cpu_load_pmap())
   1175   1.70    cherry   *
   1176   1.70    cherry   * What this means for us is that the PDIR of the pmap_kernel() is
   1177   1.70    cherry   * considered to be a canonical "SHADOW" PDIR with the following
   1178   1.70    cherry   * properties:
   1179   1.70    cherry   * - Its recursive mapping points to itself
   1180   1.90       jym   * - per-cpu recursive mappings point to themselves on __x86_64__
   1181   1.70    cherry   * - per-cpu L4 pages' kernel entries are expected to be in sync with
   1182   1.70    cherry   *   the shadow
   1183   1.70    cherry   */
   1184   1.70    cherry 
   1185   1.70    cherry void
   1186   1.70    cherry pmap_cpu_init_late(struct cpu_info *ci)
   1187   1.70    cherry {
   1188   1.70    cherry #if defined(PAE) || defined(__x86_64__)
   1189   1.70    cherry 	/*
   1190   1.70    cherry 	 * The BP has already its own PD page allocated during early
   1191   1.70    cherry 	 * MD startup.
   1192   1.70    cherry 	 */
   1193   1.70    cherry 
   1194   1.78    cherry #if defined(__x86_64__)
   1195   1.78    cherry 	/* Setup per-cpu normal_pdes */
   1196   1.78    cherry 	int i;
   1197   1.78    cherry 	extern pd_entry_t * const normal_pdes[];
   1198   1.78    cherry 	for (i = 0;i < PTP_LEVELS - 1;i++) {
   1199   1.78    cherry 		ci->ci_normal_pdes[i] = normal_pdes[i];
   1200   1.78    cherry 	}
   1201   1.78    cherry #endif /* __x86_64__ */
   1202   1.78    cherry 
   1203   1.70    cherry 	if (ci == &cpu_info_primary)
   1204   1.70    cherry 		return;
   1205   1.70    cherry 
   1206   1.70    cherry 	KASSERT(ci != NULL);
   1207   1.70    cherry 
   1208   1.70    cherry #if defined(PAE)
   1209   1.73    cherry 	cpu_alloc_l3_page(ci);
   1210   1.70    cherry 	KASSERT(ci->ci_pae_l3_pdirpa != 0);
   1211   1.70    cherry 
   1212   1.70    cherry 	/* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
   1213   1.73    cherry 	int i;
   1214   1.75    cherry 	for (i = 0 ; i < PDP_SIZE - 1; i++) {
   1215   1.73    cherry 		ci->ci_pae_l3_pdir[i] =
   1216   1.73    cherry 		    xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PG_V;
   1217   1.73    cherry 	}
   1218   1.70    cherry #endif /* PAE */
   1219   1.70    cherry 
   1220   1.70    cherry 	ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1221   1.70    cherry 	    UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
   1222   1.70    cherry 
   1223   1.70    cherry 	if (ci->ci_kpm_pdir == NULL) {
   1224   1.70    cherry 		panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
   1225   1.70    cherry 		      __func__, cpu_index(ci));
   1226   1.70    cherry 	}
   1227   1.70    cherry 	ci->ci_kpm_pdirpa = vtophys((vaddr_t) ci->ci_kpm_pdir);
   1228   1.70    cherry 	KASSERT(ci->ci_kpm_pdirpa != 0);
   1229   1.70    cherry 
   1230   1.70    cherry #if defined(__x86_64__)
   1231   1.70    cherry 	/*
   1232   1.70    cherry 	 * Copy over the pmap_kernel() shadow L4 entries
   1233   1.70    cherry 	 */
   1234   1.70    cherry 
   1235   1.70    cherry 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
   1236   1.70    cherry 
   1237   1.70    cherry 	/* Recursive kernel mapping */
   1238   1.70    cherry 	ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
   1239   1.70    cherry #elif defined(PAE)
   1240   1.70    cherry 	/* Copy over the pmap_kernel() shadow L2 entries that map the kernel */
   1241   1.70    cherry 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN, nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
   1242   1.70    cherry #endif /* __x86_64__ else PAE */
   1243   1.70    cherry 
   1244   1.70    cherry 	/* Xen wants R/O */
   1245   1.83    bouyer 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
   1246   1.83    bouyer 	    (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
   1247   1.83    bouyer 	pmap_update(pmap_kernel());
   1248   1.70    cherry #if defined(PAE)
   1249   1.70    cherry 	/* Initialise L3 entry 3. This mapping is shared across all
   1250   1.70    cherry 	 * pmaps and is static, ie; loading a new pmap will not update
   1251   1.70    cherry 	 * this entry.
   1252   1.70    cherry 	 */
   1253   1.70    cherry 
   1254   1.70    cherry 	ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
   1255   1.70    cherry 
   1256   1.70    cherry 	/* Mark L3 R/O (Xen wants this) */
   1257   1.83    bouyer 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
   1258   1.83    bouyer 	    (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
   1259   1.83    bouyer 	pmap_update(pmap_kernel());
   1260   1.70    cherry 
   1261   1.70    cherry 	xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
   1262   1.70    cherry 
   1263   1.70    cherry #elif defined(__x86_64__)
   1264   1.70    cherry 	xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
   1265   1.78    cherry #endif /* PAE , __x86_64__ */
   1266   1.70    cherry #endif /* defined(PAE) || defined(__x86_64__) */
   1267   1.70    cherry }
   1268   1.70    cherry 
   1269   1.61    cherry /*
   1270   1.61    cherry  * Notify all other cpus to halt.
   1271   1.61    cherry  */
   1272   1.61    cherry 
   1273   1.61    cherry void
   1274   1.61    cherry cpu_broadcast_halt(void)
   1275   1.61    cherry {
   1276   1.61    cherry 	xen_broadcast_ipi(XEN_IPI_HALT);
   1277   1.61    cherry }
   1278   1.61    cherry 
   1279   1.61    cherry /*
   1280   1.61    cherry  * Send a dummy ipi to a cpu.
   1281   1.61    cherry  */
   1282   1.61    cherry 
   1283   1.61    cherry void
   1284   1.61    cherry cpu_kick(struct cpu_info *ci)
   1285   1.61    cherry {
   1286   1.64  dholland 	(void)xen_send_ipi(ci, XEN_IPI_KICK);
   1287   1.61    cherry }
   1288