cpu.c revision 1.113 1 1.113 maxv /* $NetBSD: cpu.c,v 1.113 2017/11/08 17:52:22 maxv Exp $ */
2 1.2 bouyer
3 1.2 bouyer /*-
4 1.2 bouyer * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 1.19 joerg * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
6 1.2 bouyer * All rights reserved.
7 1.2 bouyer *
8 1.2 bouyer * This code is derived from software contributed to The NetBSD Foundation
9 1.2 bouyer * by RedBack Networks Inc.
10 1.2 bouyer *
11 1.2 bouyer * Author: Bill Sommerfeld
12 1.2 bouyer *
13 1.2 bouyer * Redistribution and use in source and binary forms, with or without
14 1.2 bouyer * modification, are permitted provided that the following conditions
15 1.2 bouyer * are met:
16 1.2 bouyer * 1. Redistributions of source code must retain the above copyright
17 1.2 bouyer * notice, this list of conditions and the following disclaimer.
18 1.2 bouyer * 2. Redistributions in binary form must reproduce the above copyright
19 1.2 bouyer * notice, this list of conditions and the following disclaimer in the
20 1.2 bouyer * documentation and/or other materials provided with the distribution.
21 1.2 bouyer *
22 1.2 bouyer * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 1.2 bouyer * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 1.2 bouyer * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 1.2 bouyer * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 1.2 bouyer * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.2 bouyer * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.2 bouyer * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.2 bouyer * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.2 bouyer * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.2 bouyer * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 1.2 bouyer * POSSIBILITY OF SUCH DAMAGE.
33 1.2 bouyer */
34 1.2 bouyer
35 1.2 bouyer /*
36 1.2 bouyer * Copyright (c) 1999 Stefan Grefen
37 1.2 bouyer *
38 1.2 bouyer * Redistribution and use in source and binary forms, with or without
39 1.2 bouyer * modification, are permitted provided that the following conditions
40 1.2 bouyer * are met:
41 1.2 bouyer * 1. Redistributions of source code must retain the above copyright
42 1.2 bouyer * notice, this list of conditions and the following disclaimer.
43 1.2 bouyer * 2. Redistributions in binary form must reproduce the above copyright
44 1.2 bouyer * notice, this list of conditions and the following disclaimer in the
45 1.2 bouyer * documentation and/or other materials provided with the distribution.
46 1.2 bouyer * 3. All advertising materials mentioning features or use of this software
47 1.2 bouyer * must display the following acknowledgement:
48 1.2 bouyer * This product includes software developed by the NetBSD
49 1.2 bouyer * Foundation, Inc. and its contributors.
50 1.2 bouyer * 4. Neither the name of The NetBSD Foundation nor the names of its
51 1.2 bouyer * contributors may be used to endorse or promote products derived
52 1.2 bouyer * from this software without specific prior written permission.
53 1.2 bouyer *
54 1.2 bouyer * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
55 1.2 bouyer * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 1.2 bouyer * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 1.2 bouyer * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
58 1.2 bouyer * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 1.2 bouyer * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 1.2 bouyer * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 1.2 bouyer * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 1.2 bouyer * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 1.2 bouyer * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 1.2 bouyer * SUCH DAMAGE.
65 1.2 bouyer */
66 1.2 bouyer
67 1.2 bouyer #include <sys/cdefs.h>
68 1.113 maxv __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.113 2017/11/08 17:52:22 maxv Exp $");
69 1.2 bouyer
70 1.2 bouyer #include "opt_ddb.h"
71 1.2 bouyer #include "opt_multiprocessor.h"
72 1.2 bouyer #include "opt_mpbios.h" /* for MPDEBUG */
73 1.2 bouyer #include "opt_mtrr.h"
74 1.2 bouyer #include "opt_xen.h"
75 1.2 bouyer
76 1.2 bouyer #include "lapic.h"
77 1.2 bouyer #include "ioapic.h"
78 1.2 bouyer
79 1.2 bouyer #include <sys/param.h>
80 1.2 bouyer #include <sys/proc.h>
81 1.2 bouyer #include <sys/systm.h>
82 1.2 bouyer #include <sys/device.h>
83 1.31 cegger #include <sys/kmem.h>
84 1.11 cegger #include <sys/cpu.h>
85 1.66 jruoho #include <sys/cpufreq.h>
86 1.11 cegger #include <sys/atomic.h>
87 1.32 cegger #include <sys/reboot.h>
88 1.62 cherry #include <sys/idle.h>
89 1.2 bouyer
90 1.51 uebayasi #include <uvm/uvm.h>
91 1.2 bouyer
92 1.2 bouyer #include <machine/cpufunc.h>
93 1.2 bouyer #include <machine/cpuvar.h>
94 1.2 bouyer #include <machine/pmap.h>
95 1.2 bouyer #include <machine/vmparam.h>
96 1.2 bouyer #include <machine/mpbiosvar.h>
97 1.2 bouyer #include <machine/pcb.h>
98 1.2 bouyer #include <machine/specialreg.h>
99 1.2 bouyer #include <machine/segments.h>
100 1.2 bouyer #include <machine/gdt.h>
101 1.2 bouyer #include <machine/mtrr.h>
102 1.2 bouyer #include <machine/pio.h>
103 1.2 bouyer
104 1.97 dsl #include <x86/fpu.h>
105 1.62 cherry
106 1.62 cherry #include <xen/xen.h>
107 1.71 cegger #include <xen/xen-public/vcpu.h>
108 1.2 bouyer #include <xen/vcpuvar.h>
109 1.2 bouyer
110 1.2 bouyer #if NLAPIC > 0
111 1.2 bouyer #include <machine/apicvar.h>
112 1.2 bouyer #include <machine/i82489reg.h>
113 1.2 bouyer #include <machine/i82489var.h>
114 1.2 bouyer #endif
115 1.2 bouyer
116 1.2 bouyer #include <dev/ic/mc146818reg.h>
117 1.2 bouyer #include <dev/isa/isareg.h>
118 1.2 bouyer
119 1.56 jruoho static int cpu_match(device_t, cfdata_t, void *);
120 1.56 jruoho static void cpu_attach(device_t, device_t, void *);
121 1.56 jruoho static void cpu_defer(device_t);
122 1.56 jruoho static int cpu_rescan(device_t, const char *, const int *);
123 1.56 jruoho static void cpu_childdetached(device_t, device_t);
124 1.56 jruoho static int vcpu_match(device_t, cfdata_t, void *);
125 1.56 jruoho static void vcpu_attach(device_t, device_t, void *);
126 1.56 jruoho static void cpu_attach_common(device_t, device_t, void *);
127 1.56 jruoho void cpu_offline_md(void);
128 1.2 bouyer
129 1.2 bouyer struct cpu_softc {
130 1.10 cegger device_t sc_dev; /* device tree glue */
131 1.2 bouyer struct cpu_info *sc_info; /* pointer to CPU info */
132 1.32 cegger bool sc_wasonline;
133 1.2 bouyer };
134 1.2 bouyer
135 1.62 cherry int mp_cpu_start(struct cpu_info *, vaddr_t);
136 1.2 bouyer void mp_cpu_start_cleanup(struct cpu_info *);
137 1.2 bouyer const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
138 1.2 bouyer mp_cpu_start_cleanup };
139 1.2 bouyer
140 1.53 jruoho CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
141 1.53 jruoho cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
142 1.53 jruoho
143 1.10 cegger CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
144 1.2 bouyer vcpu_match, vcpu_attach, NULL, NULL);
145 1.2 bouyer
146 1.2 bouyer /*
147 1.2 bouyer * Statically-allocated CPU info for the primary CPU (or the only
148 1.2 bouyer * CPU, on uniprocessors). The CPU info list is initialized to
149 1.2 bouyer * point at it.
150 1.2 bouyer */
151 1.38 cegger struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
152 1.7 bouyer .ci_dev = 0,
153 1.2 bouyer .ci_self = &cpu_info_primary,
154 1.4 bouyer .ci_idepth = -1,
155 1.2 bouyer .ci_curlwp = &lwp0,
156 1.25 ad .ci_curldt = -1,
157 1.2 bouyer };
158 1.38 cegger struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
159 1.7 bouyer .ci_dev = 0,
160 1.2 bouyer .ci_self = &phycpu_info_primary,
161 1.2 bouyer };
162 1.2 bouyer
163 1.2 bouyer struct cpu_info *cpu_info_list = &cpu_info_primary;
164 1.38 cegger struct cpu_info *phycpu_info_list = &phycpu_info_primary;
165 1.2 bouyer
166 1.107 maxv uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits
167 1.43 jym * [0] basic features %edx
168 1.43 jym * [1] basic features %ecx
169 1.43 jym * [2] extended features %edx
170 1.43 jym * [3] extended features %ecx
171 1.43 jym * [4] VIA padlock features
172 1.102 christos * [5] structured extended features cpuid.7:%ebx
173 1.102 christos * [6] structured extended features cpuid.7:%ecx
174 1.43 jym */
175 1.43 jym
176 1.11 cegger bool x86_mp_online;
177 1.11 cegger paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
178 1.2 bouyer
179 1.38 cegger #if defined(MULTIPROCESSOR)
180 1.2 bouyer void cpu_hatch(void *);
181 1.2 bouyer static void cpu_boot_secondary(struct cpu_info *ci);
182 1.2 bouyer static void cpu_start_secondary(struct cpu_info *ci);
183 1.38 cegger #endif /* MULTIPROCESSOR */
184 1.2 bouyer
185 1.56 jruoho static int
186 1.10 cegger cpu_match(device_t parent, cfdata_t match, void *aux)
187 1.2 bouyer {
188 1.2 bouyer
189 1.2 bouyer return 1;
190 1.2 bouyer }
191 1.2 bouyer
192 1.56 jruoho static void
193 1.10 cegger cpu_attach(device_t parent, device_t self, void *aux)
194 1.2 bouyer {
195 1.10 cegger struct cpu_softc *sc = device_private(self);
196 1.2 bouyer struct cpu_attach_args *caa = aux;
197 1.2 bouyer struct cpu_info *ci;
198 1.34 cegger uintptr_t ptr;
199 1.52 bouyer static int nphycpu = 0;
200 1.2 bouyer
201 1.10 cegger sc->sc_dev = self;
202 1.10 cegger
203 1.2 bouyer /*
204 1.2 bouyer * If we're an Application Processor, allocate a cpu_info
205 1.52 bouyer * If we're the first attached CPU use the primary cpu_info,
206 1.52 bouyer * otherwise allocate a new one
207 1.2 bouyer */
208 1.52 bouyer aprint_naive("\n");
209 1.52 bouyer aprint_normal("\n");
210 1.52 bouyer if (nphycpu > 0) {
211 1.52 bouyer struct cpu_info *tmp;
212 1.34 cegger ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
213 1.34 cegger KM_SLEEP);
214 1.42 jym ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
215 1.24 ad ci->ci_curldt = -1;
216 1.52 bouyer
217 1.52 bouyer tmp = phycpu_info_list;
218 1.52 bouyer while (tmp->ci_next)
219 1.52 bouyer tmp = tmp->ci_next;
220 1.52 bouyer
221 1.52 bouyer tmp->ci_next = ci;
222 1.2 bouyer } else {
223 1.2 bouyer ci = &phycpu_info_primary;
224 1.2 bouyer }
225 1.2 bouyer
226 1.2 bouyer ci->ci_self = ci;
227 1.2 bouyer sc->sc_info = ci;
228 1.2 bouyer
229 1.2 bouyer ci->ci_dev = self;
230 1.50 jruoho ci->ci_acpiid = caa->cpu_id;
231 1.23 ad ci->ci_cpuid = caa->cpu_number;
232 1.16 cegger ci->ci_vcpu = NULL;
233 1.52 bouyer ci->ci_index = nphycpu++;
234 1.2 bouyer
235 1.52 bouyer if (!pmf_device_register(self, NULL, NULL))
236 1.52 bouyer aprint_error_dev(self, "couldn't establish power handler\n");
237 1.34 cegger
238 1.56 jruoho (void)config_defer(self, cpu_defer);
239 1.56 jruoho }
240 1.56 jruoho
241 1.56 jruoho static void
242 1.56 jruoho cpu_defer(device_t self)
243 1.56 jruoho {
244 1.56 jruoho cpu_rescan(self, NULL, NULL);
245 1.2 bouyer }
246 1.2 bouyer
247 1.56 jruoho static int
248 1.53 jruoho cpu_rescan(device_t self, const char *ifattr, const int *locators)
249 1.53 jruoho {
250 1.53 jruoho struct cpu_softc *sc = device_private(self);
251 1.53 jruoho struct cpufeature_attach_args cfaa;
252 1.53 jruoho struct cpu_info *ci = sc->sc_info;
253 1.53 jruoho
254 1.53 jruoho memset(&cfaa, 0, sizeof(cfaa));
255 1.53 jruoho cfaa.ci = ci;
256 1.53 jruoho
257 1.53 jruoho if (ifattr_match(ifattr, "cpufeaturebus")) {
258 1.53 jruoho
259 1.53 jruoho if (ci->ci_frequency == NULL) {
260 1.55 jruoho cfaa.name = "frequency";
261 1.54 jruoho ci->ci_frequency = config_found_ia(self,
262 1.54 jruoho "cpufeaturebus", &cfaa, NULL);
263 1.54 jruoho }
264 1.53 jruoho }
265 1.53 jruoho
266 1.53 jruoho return 0;
267 1.53 jruoho }
268 1.53 jruoho
269 1.56 jruoho static void
270 1.53 jruoho cpu_childdetached(device_t self, device_t child)
271 1.53 jruoho {
272 1.53 jruoho struct cpu_softc *sc = device_private(self);
273 1.53 jruoho struct cpu_info *ci = sc->sc_info;
274 1.53 jruoho
275 1.53 jruoho if (ci->ci_frequency == child)
276 1.53 jruoho ci->ci_frequency = NULL;
277 1.53 jruoho }
278 1.53 jruoho
279 1.56 jruoho static int
280 1.10 cegger vcpu_match(device_t parent, cfdata_t match, void *aux)
281 1.2 bouyer {
282 1.2 bouyer struct vcpu_attach_args *vcaa = aux;
283 1.62 cherry struct vcpu_runstate_info vcr;
284 1.62 cherry int error;
285 1.62 cherry
286 1.62 cherry if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
287 1.62 cherry error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
288 1.105 maxv vcaa->vcaa_caa.cpu_number, &vcr);
289 1.62 cherry switch (error) {
290 1.62 cherry case 0:
291 1.62 cherry return 1;
292 1.62 cherry case -ENOENT:
293 1.62 cherry return 0;
294 1.62 cherry default:
295 1.62 cherry panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
296 1.62 cherry }
297 1.62 cherry }
298 1.2 bouyer
299 1.2 bouyer return 0;
300 1.2 bouyer }
301 1.2 bouyer
302 1.56 jruoho static void
303 1.10 cegger vcpu_attach(device_t parent, device_t self, void *aux)
304 1.2 bouyer {
305 1.2 bouyer struct vcpu_attach_args *vcaa = aux;
306 1.2 bouyer
307 1.62 cherry KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
308 1.62 cherry vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
309 1.2 bouyer cpu_attach_common(parent, self, &vcaa->vcaa_caa);
310 1.65 jym
311 1.65 jym if (!pmf_device_register(self, NULL, NULL))
312 1.65 jym aprint_error_dev(self, "couldn't establish power handler\n");
313 1.2 bouyer }
314 1.2 bouyer
315 1.62 cherry static int
316 1.62 cherry vcpu_is_up(struct cpu_info *ci)
317 1.62 cherry {
318 1.62 cherry KASSERT(ci != NULL);
319 1.62 cherry return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
320 1.62 cherry }
321 1.62 cherry
322 1.2 bouyer static void
323 1.2 bouyer cpu_vm_init(struct cpu_info *ci)
324 1.2 bouyer {
325 1.2 bouyer int ncolors = 2, i;
326 1.2 bouyer
327 1.2 bouyer for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
328 1.2 bouyer struct x86_cache_info *cai;
329 1.2 bouyer int tcolors;
330 1.2 bouyer
331 1.2 bouyer cai = &ci->ci_cinfo[i];
332 1.2 bouyer
333 1.2 bouyer tcolors = atop(cai->cai_totalsize);
334 1.105 maxv switch (cai->cai_associativity) {
335 1.2 bouyer case 0xff:
336 1.2 bouyer tcolors = 1; /* fully associative */
337 1.2 bouyer break;
338 1.2 bouyer case 0:
339 1.2 bouyer case 1:
340 1.2 bouyer break;
341 1.2 bouyer default:
342 1.2 bouyer tcolors /= cai->cai_associativity;
343 1.2 bouyer }
344 1.2 bouyer ncolors = max(ncolors, tcolors);
345 1.2 bouyer }
346 1.2 bouyer
347 1.2 bouyer /*
348 1.67 mrg * Knowing the size of the largest cache on this CPU, potentially
349 1.67 mrg * re-color our pages.
350 1.2 bouyer */
351 1.28 bouyer aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
352 1.2 bouyer uvm_page_recolor(ncolors);
353 1.91 rmind pmap_tlb_cpu_init(ci);
354 1.109 maxv #ifndef __HAVE_DIRECT_MAP
355 1.109 maxv pmap_vpage_cpu_init(ci);
356 1.109 maxv #endif
357 1.2 bouyer }
358 1.2 bouyer
359 1.56 jruoho static void
360 1.11 cegger cpu_attach_common(device_t parent, device_t self, void *aux)
361 1.2 bouyer {
362 1.10 cegger struct cpu_softc *sc = device_private(self);
363 1.2 bouyer struct cpu_attach_args *caa = aux;
364 1.2 bouyer struct cpu_info *ci;
365 1.12 cegger uintptr_t ptr;
366 1.2 bouyer int cpunum = caa->cpu_number;
367 1.38 cegger static bool again = false;
368 1.2 bouyer
369 1.10 cegger sc->sc_dev = self;
370 1.10 cegger
371 1.2 bouyer /*
372 1.2 bouyer * If we're an Application Processor, allocate a cpu_info
373 1.2 bouyer * structure, otherwise use the primary's.
374 1.2 bouyer */
375 1.2 bouyer if (caa->cpu_role == CPU_ROLE_AP) {
376 1.12 cegger aprint_naive(": Application Processor\n");
377 1.31 cegger ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
378 1.31 cegger KM_SLEEP);
379 1.42 jym ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
380 1.12 cegger memset(ci, 0, sizeof(*ci));
381 1.2 bouyer } else {
382 1.12 cegger aprint_naive(": %s Processor\n",
383 1.12 cegger caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
384 1.2 bouyer ci = &cpu_info_primary;
385 1.2 bouyer }
386 1.2 bouyer
387 1.2 bouyer ci->ci_self = ci;
388 1.2 bouyer sc->sc_info = ci;
389 1.2 bouyer ci->ci_dev = self;
390 1.23 ad ci->ci_cpuid = cpunum;
391 1.16 cegger
392 1.16 cegger KASSERT(HYPERVISOR_shared_info != NULL);
393 1.89 bouyer KASSERT(cpunum < XEN_LEGACY_MAX_VCPUS);
394 1.16 cegger ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
395 1.16 cegger
396 1.62 cherry KASSERT(ci->ci_func == 0);
397 1.2 bouyer ci->ci_func = caa->cpu_func;
398 1.101 msaitoh aprint_normal("\n");
399 1.2 bouyer
400 1.38 cegger /* Must be called before mi_cpu_attach(). */
401 1.38 cegger cpu_vm_init(ci);
402 1.38 cegger
403 1.2 bouyer if (caa->cpu_role == CPU_ROLE_AP) {
404 1.2 bouyer int error;
405 1.2 bouyer
406 1.2 bouyer error = mi_cpu_attach(ci);
407 1.62 cherry
408 1.62 cherry KASSERT(ci->ci_data.cpu_idlelwp != NULL);
409 1.2 bouyer if (error != 0) {
410 1.38 cegger aprint_error_dev(self,
411 1.38 cegger "mi_cpu_attach failed with %d\n", error);
412 1.2 bouyer return;
413 1.2 bouyer }
414 1.62 cherry
415 1.2 bouyer } else {
416 1.2 bouyer KASSERT(ci->ci_data.cpu_idlelwp != NULL);
417 1.2 bouyer }
418 1.2 bouyer
419 1.89 bouyer KASSERT(ci->ci_cpuid == ci->ci_index);
420 1.100 bouyer #ifdef __x86_64__
421 1.100 bouyer /* No user PGD mapped for this CPU yet */
422 1.100 bouyer ci->ci_xen_current_user_pgd = 0;
423 1.100 bouyer #endif
424 1.100 bouyer #if defined(__x86_64__) || defined(PAE)
425 1.100 bouyer mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
426 1.100 bouyer #endif
427 1.2 bouyer pmap_reference(pmap_kernel());
428 1.2 bouyer ci->ci_pmap = pmap_kernel();
429 1.2 bouyer ci->ci_tlbstate = TLBSTATE_STALE;
430 1.2 bouyer
431 1.38 cegger /*
432 1.38 cegger * Boot processor may not be attached first, but the below
433 1.38 cegger * must be done to allow booting other processors.
434 1.38 cegger */
435 1.38 cegger if (!again) {
436 1.38 cegger atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
437 1.38 cegger /* Basic init. */
438 1.38 cegger cpu_intr_init(ci);
439 1.38 cegger cpu_get_tsc_freq(ci);
440 1.38 cegger cpu_init(ci);
441 1.78 cherry pmap_cpu_init_late(ci);
442 1.62 cherry
443 1.99 snj /* Every processor needs to init its own ipi h/w (similar to lapic) */
444 1.62 cherry xen_ipi_init();
445 1.62 cherry
446 1.38 cegger /* Make sure DELAY() is initialized. */
447 1.38 cegger DELAY(1);
448 1.38 cegger again = true;
449 1.38 cegger }
450 1.38 cegger
451 1.2 bouyer /* further PCB init done later. */
452 1.2 bouyer
453 1.2 bouyer switch (caa->cpu_role) {
454 1.2 bouyer case CPU_ROLE_SP:
455 1.38 cegger atomic_or_32(&ci->ci_flags, CPUF_SP);
456 1.21 ad cpu_identify(ci);
457 1.38 cegger x86_cpu_idle_init();
458 1.2 bouyer break;
459 1.2 bouyer
460 1.2 bouyer case CPU_ROLE_BP:
461 1.38 cegger atomic_or_32(&ci->ci_flags, CPUF_BSP);
462 1.21 ad cpu_identify(ci);
463 1.38 cegger x86_cpu_idle_init();
464 1.2 bouyer break;
465 1.2 bouyer
466 1.2 bouyer case CPU_ROLE_AP:
467 1.62 cherry atomic_or_32(&ci->ci_flags, CPUF_AP);
468 1.62 cherry
469 1.2 bouyer /*
470 1.2 bouyer * report on an AP
471 1.2 bouyer */
472 1.2 bouyer
473 1.2 bouyer #if defined(MULTIPROCESSOR)
474 1.62 cherry /* interrupt handler stack */
475 1.2 bouyer cpu_intr_init(ci);
476 1.62 cherry
477 1.62 cherry /* Setup per-cpu memory for gdt */
478 1.2 bouyer gdt_alloc_cpu(ci);
479 1.62 cherry
480 1.62 cherry pmap_cpu_init_late(ci);
481 1.2 bouyer cpu_start_secondary(ci);
482 1.62 cherry
483 1.2 bouyer if (ci->ci_flags & CPUF_PRESENT) {
484 1.30 cegger struct cpu_info *tmp;
485 1.30 cegger
486 1.62 cherry cpu_identify(ci);
487 1.30 cegger tmp = cpu_info_list;
488 1.30 cegger while (tmp->ci_next)
489 1.30 cegger tmp = tmp->ci_next;
490 1.30 cegger
491 1.30 cegger tmp->ci_next = ci;
492 1.2 bouyer }
493 1.2 bouyer #else
494 1.101 msaitoh aprint_error_dev(ci->ci_dev, "not started\n");
495 1.2 bouyer #endif
496 1.2 bouyer break;
497 1.2 bouyer
498 1.2 bouyer default:
499 1.2 bouyer panic("unknown processor type??\n");
500 1.2 bouyer }
501 1.2 bouyer
502 1.62 cherry #ifdef MPVERBOSE
503 1.2 bouyer if (mp_verbose) {
504 1.2 bouyer struct lwp *l = ci->ci_data.cpu_idlelwp;
505 1.37 rmind struct pcb *pcb = lwp_getpcb(l);
506 1.2 bouyer
507 1.38 cegger aprint_verbose_dev(self,
508 1.38 cegger "idle lwp at %p, idle sp at 0x%p\n",
509 1.12 cegger l,
510 1.12 cegger #ifdef i386
511 1.37 rmind (void *)pcb->pcb_esp
512 1.105 maxv #else
513 1.37 rmind (void *)pcb->pcb_rsp
514 1.105 maxv #endif
515 1.12 cegger );
516 1.12 cegger
517 1.2 bouyer }
518 1.62 cherry #endif /* MPVERBOSE */
519 1.2 bouyer }
520 1.2 bouyer
521 1.2 bouyer /*
522 1.2 bouyer * Initialize the processor appropriately.
523 1.2 bouyer */
524 1.2 bouyer
525 1.2 bouyer void
526 1.10 cegger cpu_init(struct cpu_info *ci)
527 1.2 bouyer {
528 1.113 maxv extern int x86_fpu_save;
529 1.2 bouyer
530 1.2 bouyer /*
531 1.2 bouyer * If we have FXSAVE/FXRESTOR, use them.
532 1.2 bouyer */
533 1.43 jym if (cpu_feature[0] & CPUID_FXSR) {
534 1.2 bouyer lcr4(rcr4() | CR4_OSFXSR);
535 1.2 bouyer
536 1.2 bouyer /*
537 1.2 bouyer * If we have SSE/SSE2, enable XMM exceptions.
538 1.2 bouyer */
539 1.43 jym if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
540 1.2 bouyer lcr4(rcr4() | CR4_OSXMMEXCPT);
541 1.2 bouyer }
542 1.2 bouyer
543 1.113 maxv if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
544 1.113 maxv fpuinit_mxcsr_mask();
545 1.113 maxv }
546 1.113 maxv
547 1.11 cegger atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
548 1.2 bouyer }
549 1.2 bouyer
550 1.2 bouyer
551 1.2 bouyer #ifdef MULTIPROCESSOR
552 1.62 cherry
553 1.2 bouyer void
554 1.10 cegger cpu_boot_secondary_processors(void)
555 1.2 bouyer {
556 1.2 bouyer struct cpu_info *ci;
557 1.2 bouyer u_long i;
558 1.38 cegger for (i = 0; i < maxcpus; i++) {
559 1.38 cegger ci = cpu_lookup(i);
560 1.2 bouyer if (ci == NULL)
561 1.2 bouyer continue;
562 1.2 bouyer if (ci->ci_data.cpu_idlelwp == NULL)
563 1.2 bouyer continue;
564 1.2 bouyer if ((ci->ci_flags & CPUF_PRESENT) == 0)
565 1.2 bouyer continue;
566 1.2 bouyer if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
567 1.2 bouyer continue;
568 1.2 bouyer cpu_boot_secondary(ci);
569 1.2 bouyer }
570 1.11 cegger
571 1.11 cegger x86_mp_online = true;
572 1.2 bouyer }
573 1.2 bouyer
574 1.2 bouyer static void
575 1.2 bouyer cpu_init_idle_lwp(struct cpu_info *ci)
576 1.2 bouyer {
577 1.2 bouyer struct lwp *l = ci->ci_data.cpu_idlelwp;
578 1.37 rmind struct pcb *pcb = lwp_getpcb(l);
579 1.2 bouyer
580 1.2 bouyer pcb->pcb_cr0 = rcr0();
581 1.2 bouyer }
582 1.2 bouyer
583 1.2 bouyer void
584 1.10 cegger cpu_init_idle_lwps(void)
585 1.2 bouyer {
586 1.2 bouyer struct cpu_info *ci;
587 1.2 bouyer u_long i;
588 1.2 bouyer
589 1.38 cegger for (i = 0; i < maxcpus; i++) {
590 1.38 cegger ci = cpu_lookup(i);
591 1.2 bouyer if (ci == NULL)
592 1.2 bouyer continue;
593 1.2 bouyer if (ci->ci_data.cpu_idlelwp == NULL)
594 1.2 bouyer continue;
595 1.2 bouyer if ((ci->ci_flags & CPUF_PRESENT) == 0)
596 1.2 bouyer continue;
597 1.2 bouyer cpu_init_idle_lwp(ci);
598 1.2 bouyer }
599 1.2 bouyer }
600 1.2 bouyer
601 1.62 cherry static void
602 1.10 cegger cpu_start_secondary(struct cpu_info *ci)
603 1.2 bouyer {
604 1.2 bouyer int i;
605 1.2 bouyer
606 1.11 cegger aprint_debug_dev(ci->ci_dev, "starting\n");
607 1.2 bouyer
608 1.2 bouyer ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
609 1.62 cherry
610 1.62 cherry if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
611 1.11 cegger return;
612 1.62 cherry }
613 1.2 bouyer
614 1.2 bouyer /*
615 1.2 bouyer * wait for it to become ready
616 1.2 bouyer */
617 1.11 cegger for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
618 1.2 bouyer delay(10);
619 1.2 bouyer }
620 1.11 cegger if ((ci->ci_flags & CPUF_PRESENT) == 0) {
621 1.9 cegger aprint_error_dev(ci->ci_dev, "failed to become ready\n");
622 1.2 bouyer #if defined(MPDEBUG) && defined(DDB)
623 1.2 bouyer printf("dropping into debugger; continue from here to resume boot\n");
624 1.2 bouyer Debugger();
625 1.2 bouyer #endif
626 1.2 bouyer }
627 1.2 bouyer
628 1.2 bouyer CPU_START_CLEANUP(ci);
629 1.2 bouyer }
630 1.2 bouyer
631 1.2 bouyer void
632 1.10 cegger cpu_boot_secondary(struct cpu_info *ci)
633 1.2 bouyer {
634 1.2 bouyer int i;
635 1.11 cegger atomic_or_32(&ci->ci_flags, CPUF_GO);
636 1.11 cegger for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
637 1.2 bouyer delay(10);
638 1.2 bouyer }
639 1.11 cegger if ((ci->ci_flags & CPUF_RUNNING) == 0) {
640 1.11 cegger aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
641 1.2 bouyer #if defined(MPDEBUG) && defined(DDB)
642 1.2 bouyer printf("dropping into debugger; continue from here to resume boot\n");
643 1.2 bouyer Debugger();
644 1.2 bouyer #endif
645 1.2 bouyer }
646 1.2 bouyer }
647 1.2 bouyer
648 1.2 bouyer /*
649 1.62 cherry * APs end up here immediately after initialisation and VCPUOP_up in
650 1.62 cherry * mp_cpu_start().
651 1.62 cherry * At this point, we are running in the idle pcb/idle stack of the new
652 1.62 cherry * CPU. This function jumps to the idle loop and starts looking for
653 1.62 cherry * work.
654 1.2 bouyer */
655 1.62 cherry extern void x86_64_tls_switch(struct lwp *);
656 1.2 bouyer void
657 1.2 bouyer cpu_hatch(void *v)
658 1.2 bouyer {
659 1.2 bouyer struct cpu_info *ci = (struct cpu_info *)v;
660 1.37 rmind struct pcb *pcb;
661 1.11 cegger int s, i;
662 1.11 cegger
663 1.62 cherry /* Setup TLS and kernel GS/FS */
664 1.62 cherry cpu_init_msrs(ci, true);
665 1.62 cherry cpu_init_idt();
666 1.62 cherry gdt_init_cpu(ci);
667 1.62 cherry
668 1.21 ad cpu_probe(ci);
669 1.11 cegger
670 1.62 cherry atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
671 1.2 bouyer
672 1.11 cegger while ((ci->ci_flags & CPUF_GO) == 0) {
673 1.11 cegger /* Don't use delay, boot CPU may be patching the text. */
674 1.11 cegger for (i = 10000; i != 0; i--)
675 1.11 cegger x86_pause();
676 1.11 cegger }
677 1.2 bouyer
678 1.11 cegger /* Because the text may have been patched in x86_patch(). */
679 1.11 cegger x86_flush();
680 1.58 rmind tlbflushg();
681 1.2 bouyer
682 1.11 cegger KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
683 1.2 bouyer
684 1.37 rmind pcb = lwp_getpcb(curlwp);
685 1.85 cherry pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
686 1.37 rmind pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
687 1.37 rmind
688 1.62 cherry xen_ipi_init();
689 1.62 cherry
690 1.62 cherry xen_initclocks();
691 1.105 maxv
692 1.62 cherry #ifdef __x86_64__
693 1.12 cegger fpuinit(ci);
694 1.12 cegger #endif
695 1.2 bouyer
696 1.2 bouyer lldt(GSEL(GLDT_SEL, SEL_KPL));
697 1.2 bouyer
698 1.2 bouyer cpu_init(ci);
699 1.11 cegger cpu_get_tsc_freq(ci);
700 1.2 bouyer
701 1.2 bouyer s = splhigh();
702 1.11 cegger x86_enable_intr();
703 1.11 cegger splx(s);
704 1.2 bouyer
705 1.62 cherry aprint_debug_dev(ci->ci_dev, "running\n");
706 1.62 cherry
707 1.62 cherry cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
708 1.62 cherry
709 1.91 rmind idle_loop(NULL);
710 1.91 rmind KASSERT(false);
711 1.2 bouyer }
712 1.2 bouyer
713 1.2 bouyer #if defined(DDB)
714 1.2 bouyer
715 1.2 bouyer #include <ddb/db_output.h>
716 1.2 bouyer #include <machine/db_machdep.h>
717 1.2 bouyer
718 1.2 bouyer /*
719 1.2 bouyer * Dump CPU information from ddb.
720 1.2 bouyer */
721 1.2 bouyer void
722 1.2 bouyer cpu_debug_dump(void)
723 1.2 bouyer {
724 1.2 bouyer struct cpu_info *ci;
725 1.2 bouyer CPU_INFO_ITERATOR cii;
726 1.2 bouyer
727 1.95 christos db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
728 1.2 bouyer for (CPU_INFO_FOREACH(cii, ci)) {
729 1.95 christos db_printf("%p %s %ld %x %x %10p %10p\n",
730 1.2 bouyer ci,
731 1.9 cegger ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
732 1.12 cegger (long)ci->ci_cpuid,
733 1.2 bouyer ci->ci_flags, ci->ci_ipis,
734 1.95 christos ci->ci_curlwp,
735 1.95 christos ci->ci_fpcurlwp);
736 1.2 bouyer }
737 1.2 bouyer }
738 1.38 cegger #endif /* DDB */
739 1.2 bouyer
740 1.62 cherry #endif /* MULTIPROCESSOR */
741 1.62 cherry
742 1.62 cherry extern void hypervisor_callback(void);
743 1.62 cherry extern void failsafe_callback(void);
744 1.62 cherry #ifdef __x86_64__
745 1.62 cherry typedef void (vector)(void);
746 1.62 cherry extern vector Xsyscall, Xsyscall32;
747 1.62 cherry #endif
748 1.62 cherry
749 1.62 cherry /*
750 1.62 cherry * Setup the "trampoline". On Xen, we setup nearly all cpu context
751 1.62 cherry * outside a trampoline, so we prototype and call targetip like so:
752 1.62 cherry * void targetip(struct cpu_info *);
753 1.62 cherry */
754 1.62 cherry
755 1.2 bouyer static void
756 1.62 cherry gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
757 1.2 bouyer {
758 1.104 msaitoh int i;
759 1.111 bouyer for (i = 0; i < entries; i++) {
760 1.105 maxv frames[i] = ((paddr_t)xpmap_ptetomach(
761 1.105 maxv (pt_entry_t *)(base + (i << PAGE_SHIFT)))) >> PAGE_SHIFT;
762 1.62 cherry
763 1.62 cherry /* Mark Read-only */
764 1.62 cherry pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
765 1.62 cherry PG_RW);
766 1.62 cherry }
767 1.62 cherry }
768 1.62 cherry
769 1.62 cherry #ifdef __x86_64__
770 1.85 cherry extern char *ldtstore;
771 1.62 cherry
772 1.62 cherry static void
773 1.105 maxv xen_init_amd64_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
774 1.105 maxv void targetrip(struct cpu_info *))
775 1.62 cherry {
776 1.62 cherry /* page frames to point at GDT */
777 1.62 cherry extern int gdt_size;
778 1.62 cherry paddr_t frames[16];
779 1.62 cherry psize_t gdt_ents;
780 1.62 cherry
781 1.62 cherry struct lwp *l;
782 1.62 cherry struct pcb *pcb;
783 1.62 cherry
784 1.62 cherry volatile struct vcpu_info *vci;
785 1.62 cherry
786 1.62 cherry KASSERT(ci != NULL);
787 1.62 cherry KASSERT(ci != &cpu_info_primary);
788 1.62 cherry KASSERT(initctx != NULL);
789 1.62 cherry KASSERT(targetrip != NULL);
790 1.62 cherry
791 1.105 maxv memset(initctx, 0, sizeof(*initctx));
792 1.62 cherry
793 1.104 msaitoh gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
794 1.62 cherry KASSERT(gdt_ents <= 16);
795 1.62 cherry
796 1.105 maxv gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
797 1.62 cherry
798 1.62 cherry /* Initialise the vcpu context: We use idle_loop()'s pcb context. */
799 1.11 cegger
800 1.62 cherry l = ci->ci_data.cpu_idlelwp;
801 1.11 cegger
802 1.62 cherry KASSERT(l != NULL);
803 1.62 cherry pcb = lwp_getpcb(l);
804 1.62 cherry KASSERT(pcb != NULL);
805 1.11 cegger
806 1.62 cherry /* resume with interrupts off */
807 1.62 cherry vci = ci->ci_vcpu;
808 1.62 cherry vci->evtchn_upcall_mask = 1;
809 1.62 cherry xen_mb();
810 1.2 bouyer
811 1.62 cherry /* resume in kernel-mode */
812 1.62 cherry initctx->flags = VGCF_in_kernel | VGCF_online;
813 1.2 bouyer
814 1.62 cherry /* Stack and entry points:
815 1.62 cherry * We arrange for the stack frame for cpu_hatch() to
816 1.62 cherry * appear as a callee frame of lwp_trampoline(). Being a
817 1.62 cherry * leaf frame prevents trampling on any of the MD stack setup
818 1.62 cherry * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
819 1.62 cherry */
820 1.2 bouyer
821 1.62 cherry initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
822 1.62 cherry initctx->user_regs.rip = (vaddr_t) targetrip;
823 1.2 bouyer
824 1.62 cherry initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
825 1.11 cegger
826 1.62 cherry initctx->user_regs.rflags = pcb->pcb_flags;
827 1.62 cherry initctx->user_regs.rsp = pcb->pcb_rsp;
828 1.11 cegger
829 1.62 cherry /* Data segments */
830 1.62 cherry initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
831 1.62 cherry initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
832 1.62 cherry initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
833 1.62 cherry
834 1.62 cherry /* GDT */
835 1.105 maxv memcpy(initctx->gdt_frames, frames, sizeof(frames));
836 1.62 cherry initctx->gdt_ents = gdt_ents;
837 1.62 cherry
838 1.62 cherry /* LDT */
839 1.105 maxv initctx->ldt_base = (unsigned long)ldtstore;
840 1.62 cherry initctx->ldt_ents = LDT_SIZE >> 3;
841 1.62 cherry
842 1.62 cherry /* Kernel context state */
843 1.62 cherry initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
844 1.62 cherry initctx->kernel_sp = pcb->pcb_rsp0;
845 1.62 cherry initctx->ctrlreg[0] = pcb->pcb_cr0;
846 1.62 cherry initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
847 1.105 maxv initctx->ctrlreg[2] = (vaddr_t)targetrip;
848 1.105 maxv /*
849 1.62 cherry * Use pmap_kernel() L4 PD directly, until we setup the
850 1.62 cherry * per-cpu L4 PD in pmap_cpu_init_late()
851 1.2 bouyer */
852 1.70 cherry initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
853 1.62 cherry initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
854 1.2 bouyer
855 1.62 cherry /* Xen callbacks */
856 1.105 maxv initctx->event_callback_eip = (unsigned long)hypervisor_callback;
857 1.105 maxv initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
858 1.105 maxv initctx->syscall_callback_eip = (unsigned long)Xsyscall;
859 1.62 cherry
860 1.62 cherry return;
861 1.2 bouyer }
862 1.62 cherry #else /* i386 */
863 1.108 maxv extern union descriptor *ldtstore;
864 1.62 cherry extern void Xsyscall(void);
865 1.62 cherry
866 1.11 cegger static void
867 1.105 maxv xen_init_i386_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
868 1.105 maxv void targeteip(struct cpu_info *))
869 1.62 cherry {
870 1.62 cherry /* page frames to point at GDT */
871 1.62 cherry extern int gdt_size;
872 1.62 cherry paddr_t frames[16];
873 1.62 cherry psize_t gdt_ents;
874 1.62 cherry
875 1.62 cherry struct lwp *l;
876 1.62 cherry struct pcb *pcb;
877 1.62 cherry
878 1.62 cherry volatile struct vcpu_info *vci;
879 1.62 cherry
880 1.62 cherry KASSERT(ci != NULL);
881 1.62 cherry KASSERT(ci != &cpu_info_primary);
882 1.62 cherry KASSERT(initctx != NULL);
883 1.62 cherry KASSERT(targeteip != NULL);
884 1.62 cherry
885 1.105 maxv memset(initctx, 0, sizeof(*initctx));
886 1.11 cegger
887 1.85 cherry gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
888 1.62 cherry KASSERT(gdt_ents <= 16);
889 1.2 bouyer
890 1.105 maxv gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
891 1.2 bouyer
892 1.62 cherry /*
893 1.62 cherry * Initialise the vcpu context:
894 1.62 cherry * We use this cpu's idle_loop() pcb context.
895 1.11 cegger */
896 1.11 cegger
897 1.62 cherry l = ci->ci_data.cpu_idlelwp;
898 1.62 cherry
899 1.62 cherry KASSERT(l != NULL);
900 1.62 cherry pcb = lwp_getpcb(l);
901 1.62 cherry KASSERT(pcb != NULL);
902 1.62 cherry
903 1.62 cherry /* resume with interrupts off */
904 1.62 cherry vci = ci->ci_vcpu;
905 1.62 cherry vci->evtchn_upcall_mask = 1;
906 1.62 cherry xen_mb();
907 1.62 cherry
908 1.62 cherry /* resume in kernel-mode */
909 1.62 cherry initctx->flags = VGCF_in_kernel | VGCF_online;
910 1.62 cherry
911 1.62 cherry /* Stack frame setup for cpu_hatch():
912 1.62 cherry * We arrange for the stack frame for cpu_hatch() to
913 1.62 cherry * appear as a callee frame of lwp_trampoline(). Being a
914 1.62 cherry * leaf frame prevents trampling on any of the MD stack setup
915 1.62 cherry * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
916 1.2 bouyer */
917 1.2 bouyer
918 1.62 cherry initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
919 1.62 cherry arg1 */
920 1.105 maxv {
921 1.105 maxv /* targeteip(ci); */
922 1.105 maxv uint32_t *arg = (uint32_t *)initctx->user_regs.esp;
923 1.105 maxv arg[1] = (uint32_t)ci; /* arg1 */
924 1.62 cherry }
925 1.2 bouyer
926 1.105 maxv initctx->user_regs.eip = (vaddr_t)targeteip;
927 1.62 cherry initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
928 1.62 cherry initctx->user_regs.eflags |= pcb->pcb_iopl;
929 1.62 cherry
930 1.62 cherry /* Data segments */
931 1.62 cherry initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
932 1.62 cherry initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
933 1.62 cherry initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
934 1.62 cherry initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
935 1.62 cherry
936 1.62 cherry /* GDT */
937 1.105 maxv memcpy(initctx->gdt_frames, frames, sizeof(frames));
938 1.62 cherry initctx->gdt_ents = gdt_ents;
939 1.62 cherry
940 1.62 cherry /* LDT */
941 1.108 maxv initctx->ldt_base = (unsigned long)ldtstore;
942 1.62 cherry initctx->ldt_ents = NLDT;
943 1.62 cherry
944 1.62 cherry /* Kernel context state */
945 1.62 cherry initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
946 1.62 cherry initctx->kernel_sp = pcb->pcb_esp0;
947 1.62 cherry initctx->ctrlreg[0] = pcb->pcb_cr0;
948 1.62 cherry initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
949 1.105 maxv initctx->ctrlreg[2] = (vaddr_t)targeteip;
950 1.70 cherry #ifdef PAE
951 1.70 cherry initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
952 1.105 maxv #else
953 1.70 cherry initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
954 1.105 maxv #endif
955 1.105 maxv initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;
956 1.2 bouyer
957 1.62 cherry /* Xen callbacks */
958 1.105 maxv initctx->event_callback_eip = (unsigned long)hypervisor_callback;
959 1.62 cherry initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
960 1.105 maxv initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
961 1.62 cherry initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
962 1.45 rmind
963 1.62 cherry return;
964 1.62 cherry }
965 1.62 cherry #endif /* __x86_64__ */
966 1.45 rmind
967 1.62 cherry int
968 1.62 cherry mp_cpu_start(struct cpu_info *ci, vaddr_t target)
969 1.62 cherry {
970 1.62 cherry int hyperror;
971 1.62 cherry struct vcpu_guest_context vcpuctx;
972 1.2 bouyer
973 1.62 cherry KASSERT(ci != NULL);
974 1.62 cherry KASSERT(ci != &cpu_info_primary);
975 1.62 cherry KASSERT(ci->ci_flags & CPUF_AP);
976 1.62 cherry
977 1.62 cherry #ifdef __x86_64__
978 1.62 cherry xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
979 1.105 maxv #else
980 1.62 cherry xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
981 1.105 maxv #endif
982 1.62 cherry
983 1.62 cherry /* Initialise the given vcpu to execute cpu_hatch(ci); */
984 1.62 cherry if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
985 1.62 cherry aprint_error(": context initialisation failed. errno = %d\n", hyperror);
986 1.62 cherry return hyperror;
987 1.62 cherry }
988 1.62 cherry
989 1.62 cherry /* Start it up */
990 1.62 cherry
991 1.70 cherry /* First bring it down */
992 1.62 cherry if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
993 1.62 cherry aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
994 1.62 cherry return hyperror;
995 1.62 cherry }
996 1.62 cherry
997 1.62 cherry if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
998 1.62 cherry aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
999 1.62 cherry return hyperror;
1000 1.62 cherry }
1001 1.2 bouyer
1002 1.62 cherry if (!vcpu_is_up(ci)) {
1003 1.62 cherry aprint_error(": did not come up\n");
1004 1.62 cherry return -1;
1005 1.2 bouyer }
1006 1.62 cherry
1007 1.2 bouyer return 0;
1008 1.2 bouyer }
1009 1.2 bouyer
1010 1.2 bouyer void
1011 1.2 bouyer mp_cpu_start_cleanup(struct cpu_info *ci)
1012 1.2 bouyer {
1013 1.62 cherry if (vcpu_is_up(ci)) {
1014 1.62 cherry aprint_debug_dev(ci->ci_dev, "is started.\n");
1015 1.105 maxv } else {
1016 1.62 cherry aprint_error_dev(ci->ci_dev, "did not start up.\n");
1017 1.62 cherry }
1018 1.2 bouyer }
1019 1.2 bouyer
1020 1.2 bouyer void
1021 1.3 bouyer cpu_init_msrs(struct cpu_info *ci, bool full)
1022 1.2 bouyer {
1023 1.43 jym #ifdef __x86_64__
1024 1.3 bouyer if (full) {
1025 1.105 maxv HYPERVISOR_set_segment_base(SEGBASE_FS, 0);
1026 1.105 maxv HYPERVISOR_set_segment_base(SEGBASE_GS_KERNEL, (uint64_t)ci);
1027 1.105 maxv HYPERVISOR_set_segment_base(SEGBASE_GS_USER, 0);
1028 1.3 bouyer }
1029 1.105 maxv #endif
1030 1.44 jym
1031 1.44 jym if (cpu_feature[2] & CPUID_NOX)
1032 1.44 jym wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1033 1.2 bouyer }
1034 1.2 bouyer
1035 1.95 christos void
1036 1.95 christos cpu_offline_md(void)
1037 1.95 christos {
1038 1.105 maxv int s;
1039 1.95 christos
1040 1.105 maxv s = splhigh();
1041 1.105 maxv fpusave_cpu(true);
1042 1.105 maxv splx(s);
1043 1.95 christos }
1044 1.95 christos
1045 1.105 maxv void
1046 1.2 bouyer cpu_get_tsc_freq(struct cpu_info *ci)
1047 1.2 bouyer {
1048 1.62 cherry uint32_t vcpu_tversion;
1049 1.16 cegger const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1050 1.62 cherry
1051 1.62 cherry vcpu_tversion = tinfo->version;
1052 1.62 cherry while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
1053 1.62 cherry
1054 1.2 bouyer uint64_t freq = 1000000000ULL << 32;
1055 1.2 bouyer freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1056 1.105 maxv if (tinfo->tsc_shift < 0)
1057 1.2 bouyer freq = freq << -tinfo->tsc_shift;
1058 1.2 bouyer else
1059 1.2 bouyer freq = freq >> tinfo->tsc_shift;
1060 1.20 ad ci->ci_data.cpu_cc_freq = freq;
1061 1.2 bouyer }
1062 1.19 joerg
1063 1.19 joerg void
1064 1.19 joerg x86_cpu_idle_xen(void)
1065 1.19 joerg {
1066 1.19 joerg struct cpu_info *ci = curcpu();
1067 1.62 cherry
1068 1.19 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1069 1.19 joerg
1070 1.19 joerg x86_disable_intr();
1071 1.19 joerg if (!__predict_false(ci->ci_want_resched)) {
1072 1.19 joerg idle_block();
1073 1.19 joerg } else {
1074 1.19 joerg x86_enable_intr();
1075 1.19 joerg }
1076 1.19 joerg }
1077 1.47 jym
1078 1.47 jym /*
1079 1.47 jym * Loads pmap for the current CPU.
1080 1.47 jym */
1081 1.47 jym void
1082 1.81 bouyer cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1083 1.47 jym {
1084 1.84 cherry KASSERT(pmap != pmap_kernel());
1085 1.91 rmind
1086 1.81 bouyer #if defined(__x86_64__) || defined(PAE)
1087 1.81 bouyer struct cpu_info *ci = curcpu();
1088 1.92 rmind cpuid_t cid = cpu_index(ci);
1089 1.81 bouyer
1090 1.81 bouyer mutex_enter(&ci->ci_kpm_mtx);
1091 1.93 jym /* make new pmap visible to xen_kpm_sync() */
1092 1.92 rmind kcpuset_atomic_set(pmap->pm_xen_ptp_cpus, cid);
1093 1.81 bouyer #endif
1094 1.105 maxv
1095 1.47 jym #ifdef i386
1096 1.47 jym #ifdef PAE
1097 1.81 bouyer {
1098 1.81 bouyer int i;
1099 1.81 bouyer paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1100 1.81 bouyer /* don't update the kernel L3 slot */
1101 1.81 bouyer for (i = 0 ; i < PDP_SIZE - 1; i++) {
1102 1.81 bouyer xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1103 1.81 bouyer xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
1104 1.81 bouyer }
1105 1.81 bouyer tlbflush();
1106 1.47 jym }
1107 1.47 jym #else /* PAE */
1108 1.47 jym lcr3(pmap_pdirpa(pmap, 0));
1109 1.47 jym #endif /* PAE */
1110 1.47 jym #endif /* i386 */
1111 1.47 jym
1112 1.47 jym #ifdef __x86_64__
1113 1.81 bouyer {
1114 1.81 bouyer int i;
1115 1.81 bouyer pd_entry_t *new_pgd;
1116 1.81 bouyer paddr_t l4_pd_ma;
1117 1.81 bouyer
1118 1.81 bouyer l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
1119 1.47 jym
1120 1.81 bouyer /*
1121 1.81 bouyer * Map user space address in kernel space and load
1122 1.81 bouyer * user cr3
1123 1.81 bouyer */
1124 1.81 bouyer new_pgd = pmap->pm_pdir;
1125 1.81 bouyer KASSERT(pmap == ci->ci_pmap);
1126 1.70 cherry
1127 1.81 bouyer /* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
1128 1.81 bouyer for (i = 0; i < PDIR_SLOT_PTE; i++) {
1129 1.81 bouyer KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
1130 1.81 bouyer if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
1131 1.81 bouyer xpq_queue_pte_update(
1132 1.105 maxv l4_pd_ma + i * sizeof(pd_entry_t),
1133 1.81 bouyer new_pgd[i]);
1134 1.81 bouyer }
1135 1.81 bouyer }
1136 1.70 cherry
1137 1.84 cherry xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1138 1.84 cherry ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1139 1.70 cherry
1140 1.81 bouyer tlbflush();
1141 1.70 cherry }
1142 1.105 maxv #endif /* __x86_64__ */
1143 1.70 cherry
1144 1.81 bouyer #if defined(__x86_64__) || defined(PAE)
1145 1.93 jym /* old pmap no longer visible to xen_kpm_sync() */
1146 1.92 rmind if (oldpmap != pmap_kernel()) {
1147 1.92 rmind kcpuset_atomic_clear(oldpmap->pm_xen_ptp_cpus, cid);
1148 1.92 rmind }
1149 1.81 bouyer mutex_exit(&ci->ci_kpm_mtx);
1150 1.81 bouyer #endif
1151 1.47 jym }
1152 1.61 cherry
1153 1.105 maxv /*
1154 1.105 maxv * pmap_cpu_init_late: perform late per-CPU initialization.
1155 1.105 maxv *
1156 1.105 maxv * Short note about percpu PDIR pages. Both the PAE and __x86_64__ architectures
1157 1.105 maxv * have per-cpu PDIR tables, for two different reasons:
1158 1.105 maxv * - on PAE, this is to get around Xen's pagetable setup constraints (multiple
1159 1.105 maxv * L3[3]s cannot point to the same L2 - Xen will refuse to pin a table set up
1160 1.105 maxv * this way).
1161 1.105 maxv * - on __x86_64__, this is for multiple CPUs to map in different user pmaps
1162 1.105 maxv * (see cpu_load_pmap()).
1163 1.105 maxv *
1164 1.105 maxv * What this means for us is that the PDIR of the pmap_kernel() is considered
1165 1.105 maxv * to be a canonical "SHADOW" PDIR with the following properties:
1166 1.105 maxv * - its recursive mapping points to itself
1167 1.105 maxv * - per-cpu recursive mappings point to themselves on __x86_64__
1168 1.105 maxv * - per-cpu L4 pages' kernel entries are expected to be in sync with
1169 1.105 maxv * the shadow
1170 1.105 maxv */
1171 1.70 cherry
1172 1.70 cherry void
1173 1.70 cherry pmap_cpu_init_late(struct cpu_info *ci)
1174 1.70 cherry {
1175 1.70 cherry #if defined(PAE) || defined(__x86_64__)
1176 1.70 cherry /*
1177 1.70 cherry * The BP has already its own PD page allocated during early
1178 1.70 cherry * MD startup.
1179 1.70 cherry */
1180 1.70 cherry
1181 1.78 cherry #if defined(__x86_64__)
1182 1.78 cherry /* Setup per-cpu normal_pdes */
1183 1.78 cherry int i;
1184 1.78 cherry extern pd_entry_t * const normal_pdes[];
1185 1.78 cherry for (i = 0;i < PTP_LEVELS - 1;i++) {
1186 1.78 cherry ci->ci_normal_pdes[i] = normal_pdes[i];
1187 1.78 cherry }
1188 1.78 cherry #endif /* __x86_64__ */
1189 1.78 cherry
1190 1.70 cherry if (ci == &cpu_info_primary)
1191 1.70 cherry return;
1192 1.70 cherry
1193 1.70 cherry KASSERT(ci != NULL);
1194 1.70 cherry
1195 1.70 cherry #if defined(PAE)
1196 1.73 cherry cpu_alloc_l3_page(ci);
1197 1.70 cherry KASSERT(ci->ci_pae_l3_pdirpa != 0);
1198 1.70 cherry
1199 1.70 cherry /* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
1200 1.73 cherry int i;
1201 1.75 cherry for (i = 0 ; i < PDP_SIZE - 1; i++) {
1202 1.73 cherry ci->ci_pae_l3_pdir[i] =
1203 1.73 cherry xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PG_V;
1204 1.73 cherry }
1205 1.70 cherry #endif /* PAE */
1206 1.70 cherry
1207 1.70 cherry ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1208 1.70 cherry UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
1209 1.70 cherry
1210 1.70 cherry if (ci->ci_kpm_pdir == NULL) {
1211 1.70 cherry panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
1212 1.105 maxv __func__, cpu_index(ci));
1213 1.70 cherry }
1214 1.105 maxv ci->ci_kpm_pdirpa = vtophys((vaddr_t)ci->ci_kpm_pdir);
1215 1.70 cherry KASSERT(ci->ci_kpm_pdirpa != 0);
1216 1.70 cherry
1217 1.70 cherry #if defined(__x86_64__)
1218 1.106 maxv extern pt_entry_t xpmap_pg_nx;
1219 1.70 cherry
1220 1.106 maxv /* Copy over the pmap_kernel() shadow L4 entries */
1221 1.70 cherry memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
1222 1.70 cherry
1223 1.70 cherry /* Recursive kernel mapping */
1224 1.105 maxv ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa)
1225 1.110 maxv | PG_V | xpmap_pg_nx;
1226 1.70 cherry #elif defined(PAE)
1227 1.106 maxv /* Copy over the pmap_kernel() shadow L2 entries */
1228 1.105 maxv memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN,
1229 1.105 maxv nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
1230 1.106 maxv #endif
1231 1.70 cherry
1232 1.105 maxv /* Xen wants a RO pdir. */
1233 1.83 bouyer pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
1234 1.83 bouyer (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
1235 1.83 bouyer pmap_update(pmap_kernel());
1236 1.70 cherry #if defined(PAE)
1237 1.105 maxv /*
1238 1.105 maxv * Initialize L3 entry 3. This mapping is shared across all pmaps and is
1239 1.105 maxv * static, ie: loading a new pmap will not update this entry.
1240 1.70 cherry */
1241 1.110 maxv ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_V;
1242 1.70 cherry
1243 1.105 maxv /* Xen wants a RO L3. */
1244 1.83 bouyer pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
1245 1.83 bouyer (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
1246 1.83 bouyer pmap_update(pmap_kernel());
1247 1.70 cherry
1248 1.70 cherry xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
1249 1.70 cherry
1250 1.105 maxv #elif defined(__x86_64__)
1251 1.70 cherry xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
1252 1.78 cherry #endif /* PAE , __x86_64__ */
1253 1.70 cherry #endif /* defined(PAE) || defined(__x86_64__) */
1254 1.70 cherry }
1255 1.70 cherry
1256 1.61 cherry /*
1257 1.61 cherry * Notify all other cpus to halt.
1258 1.61 cherry */
1259 1.61 cherry
1260 1.61 cherry void
1261 1.61 cherry cpu_broadcast_halt(void)
1262 1.61 cherry {
1263 1.61 cherry xen_broadcast_ipi(XEN_IPI_HALT);
1264 1.61 cherry }
1265 1.61 cherry
1266 1.61 cherry /*
1267 1.61 cherry * Send a dummy ipi to a cpu.
1268 1.61 cherry */
1269 1.61 cherry
1270 1.61 cherry void
1271 1.61 cherry cpu_kick(struct cpu_info *ci)
1272 1.61 cherry {
1273 1.64 dholland (void)xen_send_ipi(ci, XEN_IPI_KICK);
1274 1.61 cherry }
1275