Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.131.2.2
      1  1.131.2.2        ad /*	$NetBSD: cpu.c,v 1.131.2.2 2020/02/29 20:18:33 ad Exp $	*/
      2        1.2    bouyer 
      3        1.2    bouyer /*-
      4        1.2    bouyer  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5       1.19     joerg  * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
      6        1.2    bouyer  * All rights reserved.
      7        1.2    bouyer  *
      8        1.2    bouyer  * This code is derived from software contributed to The NetBSD Foundation
      9        1.2    bouyer  * by RedBack Networks Inc.
     10        1.2    bouyer  *
     11        1.2    bouyer  * Author: Bill Sommerfeld
     12        1.2    bouyer  *
     13        1.2    bouyer  * Redistribution and use in source and binary forms, with or without
     14        1.2    bouyer  * modification, are permitted provided that the following conditions
     15        1.2    bouyer  * are met:
     16        1.2    bouyer  * 1. Redistributions of source code must retain the above copyright
     17        1.2    bouyer  *    notice, this list of conditions and the following disclaimer.
     18        1.2    bouyer  * 2. Redistributions in binary form must reproduce the above copyright
     19        1.2    bouyer  *    notice, this list of conditions and the following disclaimer in the
     20        1.2    bouyer  *    documentation and/or other materials provided with the distribution.
     21        1.2    bouyer  *
     22        1.2    bouyer  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23        1.2    bouyer  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24        1.2    bouyer  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25        1.2    bouyer  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26        1.2    bouyer  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27        1.2    bouyer  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28        1.2    bouyer  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29        1.2    bouyer  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30        1.2    bouyer  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31        1.2    bouyer  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32        1.2    bouyer  * POSSIBILITY OF SUCH DAMAGE.
     33        1.2    bouyer  */
     34        1.2    bouyer 
     35        1.2    bouyer /*
     36        1.2    bouyer  * Copyright (c) 1999 Stefan Grefen
     37        1.2    bouyer  *
     38        1.2    bouyer  * Redistribution and use in source and binary forms, with or without
     39        1.2    bouyer  * modification, are permitted provided that the following conditions
     40        1.2    bouyer  * are met:
     41        1.2    bouyer  * 1. Redistributions of source code must retain the above copyright
     42        1.2    bouyer  *    notice, this list of conditions and the following disclaimer.
     43        1.2    bouyer  * 2. Redistributions in binary form must reproduce the above copyright
     44        1.2    bouyer  *    notice, this list of conditions and the following disclaimer in the
     45        1.2    bouyer  *    documentation and/or other materials provided with the distribution.
     46        1.2    bouyer  * 3. All advertising materials mentioning features or use of this software
     47        1.2    bouyer  *    must display the following acknowledgement:
     48        1.2    bouyer  *      This product includes software developed by the NetBSD
     49        1.2    bouyer  *      Foundation, Inc. and its contributors.
     50        1.2    bouyer  * 4. Neither the name of The NetBSD Foundation nor the names of its
     51        1.2    bouyer  *    contributors may be used to endorse or promote products derived
     52        1.2    bouyer  *    from this software without specific prior written permission.
     53        1.2    bouyer  *
     54        1.2    bouyer  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     55        1.2    bouyer  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56        1.2    bouyer  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57        1.2    bouyer  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     58        1.2    bouyer  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59        1.2    bouyer  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60        1.2    bouyer  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61        1.2    bouyer  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62        1.2    bouyer  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63        1.2    bouyer  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64        1.2    bouyer  * SUCH DAMAGE.
     65        1.2    bouyer  */
     66        1.2    bouyer 
     67        1.2    bouyer #include <sys/cdefs.h>
     68  1.131.2.2        ad __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.131.2.2 2020/02/29 20:18:33 ad Exp $");
     69        1.2    bouyer 
     70        1.2    bouyer #include "opt_ddb.h"
     71        1.2    bouyer #include "opt_multiprocessor.h"
     72        1.2    bouyer #include "opt_mpbios.h"		/* for MPDEBUG */
     73        1.2    bouyer #include "opt_mtrr.h"
     74        1.2    bouyer #include "opt_xen.h"
     75        1.2    bouyer 
     76        1.2    bouyer #include "lapic.h"
     77        1.2    bouyer #include "ioapic.h"
     78        1.2    bouyer 
     79        1.2    bouyer #include <sys/param.h>
     80        1.2    bouyer #include <sys/proc.h>
     81        1.2    bouyer #include <sys/systm.h>
     82        1.2    bouyer #include <sys/device.h>
     83       1.31    cegger #include <sys/kmem.h>
     84       1.11    cegger #include <sys/cpu.h>
     85       1.66    jruoho #include <sys/cpufreq.h>
     86       1.11    cegger #include <sys/atomic.h>
     87       1.32    cegger #include <sys/reboot.h>
     88       1.62    cherry #include <sys/idle.h>
     89        1.2    bouyer 
     90       1.51  uebayasi #include <uvm/uvm.h>
     91        1.2    bouyer 
     92      1.114  riastrad #include <machine/cpu.h>
     93        1.2    bouyer #include <machine/cpufunc.h>
     94        1.2    bouyer #include <machine/cpuvar.h>
     95        1.2    bouyer #include <machine/pmap.h>
     96        1.2    bouyer #include <machine/vmparam.h>
     97        1.2    bouyer #include <machine/mpbiosvar.h>
     98        1.2    bouyer #include <machine/pcb.h>
     99        1.2    bouyer #include <machine/specialreg.h>
    100        1.2    bouyer #include <machine/segments.h>
    101        1.2    bouyer #include <machine/gdt.h>
    102        1.2    bouyer #include <machine/mtrr.h>
    103        1.2    bouyer #include <machine/pio.h>
    104        1.2    bouyer 
    105       1.97       dsl #include <x86/fpu.h>
    106       1.62    cherry 
    107       1.62    cherry #include <xen/xen.h>
    108      1.128    cherry #include <xen/include/public/vcpu.h>
    109        1.2    bouyer #include <xen/vcpuvar.h>
    110        1.2    bouyer 
    111        1.2    bouyer #if NLAPIC > 0
    112        1.2    bouyer #include <machine/apicvar.h>
    113        1.2    bouyer #include <machine/i82489reg.h>
    114        1.2    bouyer #include <machine/i82489var.h>
    115        1.2    bouyer #endif
    116        1.2    bouyer 
    117        1.2    bouyer #include <dev/ic/mc146818reg.h>
    118        1.2    bouyer #include <dev/isa/isareg.h>
    119        1.2    bouyer 
    120       1.56    jruoho static int	cpu_match(device_t, cfdata_t, void *);
    121       1.56    jruoho static void	cpu_attach(device_t, device_t, void *);
    122       1.56    jruoho static void	cpu_defer(device_t);
    123       1.56    jruoho static int	cpu_rescan(device_t, const char *, const int *);
    124       1.56    jruoho static void	cpu_childdetached(device_t, device_t);
    125       1.56    jruoho static int	vcpu_match(device_t, cfdata_t, void *);
    126       1.56    jruoho static void	vcpu_attach(device_t, device_t, void *);
    127       1.56    jruoho static void	cpu_attach_common(device_t, device_t, void *);
    128       1.56    jruoho void		cpu_offline_md(void);
    129        1.2    bouyer 
    130        1.2    bouyer struct cpu_softc {
    131       1.10    cegger 	device_t sc_dev;		/* device tree glue */
    132        1.2    bouyer 	struct cpu_info *sc_info;	/* pointer to CPU info */
    133       1.32    cegger 	bool sc_wasonline;
    134        1.2    bouyer };
    135        1.2    bouyer 
    136       1.62    cherry int mp_cpu_start(struct cpu_info *, vaddr_t);
    137        1.2    bouyer void mp_cpu_start_cleanup(struct cpu_info *);
    138        1.2    bouyer const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    139        1.2    bouyer 				      mp_cpu_start_cleanup };
    140        1.2    bouyer 
    141       1.53    jruoho CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    142       1.53    jruoho     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    143       1.53    jruoho 
    144       1.10    cegger CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
    145        1.2    bouyer     vcpu_match, vcpu_attach, NULL, NULL);
    146        1.2    bouyer 
    147        1.2    bouyer /*
    148        1.2    bouyer  * Statically-allocated CPU info for the primary CPU (or the only
    149        1.2    bouyer  * CPU, on uniprocessors).  The CPU info list is initialized to
    150        1.2    bouyer  * point at it.
    151        1.2    bouyer  */
    152       1.38    cegger struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    153        1.7    bouyer 	.ci_dev = 0,
    154        1.2    bouyer 	.ci_self = &cpu_info_primary,
    155        1.4    bouyer 	.ci_idepth = -1,
    156        1.2    bouyer 	.ci_curlwp = &lwp0,
    157       1.25        ad 	.ci_curldt = -1,
    158        1.2    bouyer };
    159       1.38    cegger struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    160        1.7    bouyer 	.ci_dev = 0,
    161        1.2    bouyer 	.ci_self = &phycpu_info_primary,
    162        1.2    bouyer };
    163        1.2    bouyer 
    164        1.2    bouyer struct cpu_info *cpu_info_list = &cpu_info_primary;
    165       1.38    cegger struct cpu_info *phycpu_info_list = &phycpu_info_primary;
    166        1.2    bouyer 
    167      1.107      maxv uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits
    168       1.43       jym 			  *	[0] basic features %edx
    169       1.43       jym 			  *	[1] basic features %ecx
    170       1.43       jym 			  *	[2] extended features %edx
    171       1.43       jym 			  *	[3] extended features %ecx
    172       1.43       jym 			  *	[4] VIA padlock features
    173      1.102  christos 			  *	[5] structured extended features cpuid.7:%ebx
    174      1.102  christos 			  *	[6] structured extended features cpuid.7:%ecx
    175       1.43       jym 			  */
    176       1.43       jym 
    177       1.11    cegger bool x86_mp_online;
    178       1.11    cegger paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    179        1.2    bouyer 
    180       1.38    cegger #if defined(MULTIPROCESSOR)
    181        1.2    bouyer void    	cpu_hatch(void *);
    182        1.2    bouyer static void    	cpu_boot_secondary(struct cpu_info *ci);
    183        1.2    bouyer static void    	cpu_start_secondary(struct cpu_info *ci);
    184       1.38    cegger #endif	/* MULTIPROCESSOR */
    185        1.2    bouyer 
    186       1.56    jruoho static int
    187       1.10    cegger cpu_match(device_t parent, cfdata_t match, void *aux)
    188        1.2    bouyer {
    189        1.2    bouyer 
    190        1.2    bouyer 	return 1;
    191        1.2    bouyer }
    192        1.2    bouyer 
    193       1.56    jruoho static void
    194       1.10    cegger cpu_attach(device_t parent, device_t self, void *aux)
    195        1.2    bouyer {
    196       1.10    cegger 	struct cpu_softc *sc = device_private(self);
    197        1.2    bouyer 	struct cpu_attach_args *caa = aux;
    198        1.2    bouyer 	struct cpu_info *ci;
    199       1.34    cegger 	uintptr_t ptr;
    200       1.52    bouyer 	static int nphycpu = 0;
    201        1.2    bouyer 
    202       1.10    cegger 	sc->sc_dev = self;
    203       1.10    cegger 
    204        1.2    bouyer 	/*
    205        1.2    bouyer 	 * If we're an Application Processor, allocate a cpu_info
    206       1.52    bouyer 	 * If we're the first attached CPU use the primary cpu_info,
    207       1.52    bouyer 	 * otherwise allocate a new one
    208        1.2    bouyer 	 */
    209       1.52    bouyer 	aprint_naive("\n");
    210       1.52    bouyer 	aprint_normal("\n");
    211       1.52    bouyer 	if (nphycpu > 0) {
    212       1.52    bouyer 		struct cpu_info *tmp;
    213       1.34    cegger 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    214       1.34    cegger 		    KM_SLEEP);
    215       1.42       jym 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    216       1.24        ad 		ci->ci_curldt = -1;
    217       1.52    bouyer 
    218       1.52    bouyer 		tmp = phycpu_info_list;
    219       1.52    bouyer 		while (tmp->ci_next)
    220       1.52    bouyer 			tmp = tmp->ci_next;
    221       1.52    bouyer 
    222       1.52    bouyer 		tmp->ci_next = ci;
    223        1.2    bouyer 	} else {
    224        1.2    bouyer 		ci = &phycpu_info_primary;
    225        1.2    bouyer 	}
    226        1.2    bouyer 
    227        1.2    bouyer 	ci->ci_self = ci;
    228        1.2    bouyer 	sc->sc_info = ci;
    229        1.2    bouyer 
    230        1.2    bouyer 	ci->ci_dev = self;
    231       1.50    jruoho 	ci->ci_acpiid = caa->cpu_id;
    232       1.23        ad 	ci->ci_cpuid = caa->cpu_number;
    233       1.16    cegger 	ci->ci_vcpu = NULL;
    234       1.52    bouyer 	ci->ci_index = nphycpu++;
    235        1.2    bouyer 
    236       1.52    bouyer 	if (!pmf_device_register(self, NULL, NULL))
    237       1.52    bouyer 		aprint_error_dev(self, "couldn't establish power handler\n");
    238       1.34    cegger 
    239       1.56    jruoho 	(void)config_defer(self, cpu_defer);
    240       1.56    jruoho }
    241       1.56    jruoho 
    242       1.56    jruoho static void
    243       1.56    jruoho cpu_defer(device_t self)
    244       1.56    jruoho {
    245       1.56    jruoho 	cpu_rescan(self, NULL, NULL);
    246        1.2    bouyer }
    247        1.2    bouyer 
    248       1.56    jruoho static int
    249       1.53    jruoho cpu_rescan(device_t self, const char *ifattr, const int *locators)
    250       1.53    jruoho {
    251       1.53    jruoho 	struct cpu_softc *sc = device_private(self);
    252       1.53    jruoho 	struct cpufeature_attach_args cfaa;
    253       1.53    jruoho 	struct cpu_info *ci = sc->sc_info;
    254       1.53    jruoho 
    255       1.53    jruoho 	memset(&cfaa, 0, sizeof(cfaa));
    256       1.53    jruoho 	cfaa.ci = ci;
    257       1.53    jruoho 
    258       1.53    jruoho 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    259       1.53    jruoho 
    260       1.53    jruoho 		if (ci->ci_frequency == NULL) {
    261       1.55    jruoho 			cfaa.name = "frequency";
    262       1.54    jruoho 			ci->ci_frequency = config_found_ia(self,
    263       1.54    jruoho 			    "cpufeaturebus", &cfaa, NULL);
    264       1.54    jruoho 		}
    265       1.53    jruoho 	}
    266       1.53    jruoho 
    267       1.53    jruoho 	return 0;
    268       1.53    jruoho }
    269       1.53    jruoho 
    270       1.56    jruoho static void
    271       1.53    jruoho cpu_childdetached(device_t self, device_t child)
    272       1.53    jruoho {
    273       1.53    jruoho 	struct cpu_softc *sc = device_private(self);
    274       1.53    jruoho 	struct cpu_info *ci = sc->sc_info;
    275       1.53    jruoho 
    276       1.53    jruoho 	if (ci->ci_frequency == child)
    277       1.53    jruoho 		ci->ci_frequency = NULL;
    278       1.53    jruoho }
    279       1.53    jruoho 
    280       1.56    jruoho static int
    281       1.10    cegger vcpu_match(device_t parent, cfdata_t match, void *aux)
    282        1.2    bouyer {
    283        1.2    bouyer 	struct vcpu_attach_args *vcaa = aux;
    284       1.62    cherry 	struct vcpu_runstate_info vcr;
    285       1.62    cherry 	int error;
    286       1.62    cherry 
    287       1.62    cherry 	if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
    288       1.62    cherry 		error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
    289      1.105      maxv 		    vcaa->vcaa_caa.cpu_number, &vcr);
    290       1.62    cherry 		switch (error) {
    291       1.62    cherry 		case 0:
    292       1.62    cherry 			return 1;
    293       1.62    cherry 		case -ENOENT:
    294       1.62    cherry 			return 0;
    295       1.62    cherry 		default:
    296       1.62    cherry 			panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
    297       1.62    cherry 		}
    298       1.62    cherry 	}
    299        1.2    bouyer 
    300        1.2    bouyer 	return 0;
    301        1.2    bouyer }
    302        1.2    bouyer 
    303       1.56    jruoho static void
    304       1.10    cegger vcpu_attach(device_t parent, device_t self, void *aux)
    305        1.2    bouyer {
    306        1.2    bouyer 	struct vcpu_attach_args *vcaa = aux;
    307        1.2    bouyer 
    308       1.62    cherry 	KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
    309       1.62    cherry 	vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
    310        1.2    bouyer 	cpu_attach_common(parent, self, &vcaa->vcaa_caa);
    311       1.65       jym 
    312       1.65       jym 	if (!pmf_device_register(self, NULL, NULL))
    313       1.65       jym 		aprint_error_dev(self, "couldn't establish power handler\n");
    314        1.2    bouyer }
    315        1.2    bouyer 
    316       1.62    cherry static int
    317       1.62    cherry vcpu_is_up(struct cpu_info *ci)
    318       1.62    cherry {
    319       1.62    cherry 	KASSERT(ci != NULL);
    320       1.62    cherry 	return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
    321       1.62    cherry }
    322       1.62    cherry 
    323        1.2    bouyer static void
    324        1.2    bouyer cpu_vm_init(struct cpu_info *ci)
    325        1.2    bouyer {
    326        1.2    bouyer 	int ncolors = 2, i;
    327        1.2    bouyer 
    328        1.2    bouyer 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    329        1.2    bouyer 		struct x86_cache_info *cai;
    330        1.2    bouyer 		int tcolors;
    331        1.2    bouyer 
    332        1.2    bouyer 		cai = &ci->ci_cinfo[i];
    333        1.2    bouyer 
    334        1.2    bouyer 		tcolors = atop(cai->cai_totalsize);
    335      1.105      maxv 		switch (cai->cai_associativity) {
    336        1.2    bouyer 		case 0xff:
    337        1.2    bouyer 			tcolors = 1; /* fully associative */
    338        1.2    bouyer 			break;
    339        1.2    bouyer 		case 0:
    340        1.2    bouyer 		case 1:
    341        1.2    bouyer 			break;
    342        1.2    bouyer 		default:
    343        1.2    bouyer 			tcolors /= cai->cai_associativity;
    344        1.2    bouyer 		}
    345      1.127  riastrad 		ncolors = uimax(ncolors, tcolors);
    346        1.2    bouyer 	}
    347        1.2    bouyer 
    348        1.2    bouyer 	/*
    349       1.67       mrg 	 * Knowing the size of the largest cache on this CPU, potentially
    350       1.67       mrg 	 * re-color our pages.
    351        1.2    bouyer 	 */
    352       1.28    bouyer 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    353        1.2    bouyer 	uvm_page_recolor(ncolors);
    354       1.91     rmind 	pmap_tlb_cpu_init(ci);
    355      1.109      maxv #ifndef __HAVE_DIRECT_MAP
    356      1.109      maxv 	pmap_vpage_cpu_init(ci);
    357      1.109      maxv #endif
    358        1.2    bouyer }
    359        1.2    bouyer 
    360       1.56    jruoho static void
    361       1.11    cegger cpu_attach_common(device_t parent, device_t self, void *aux)
    362        1.2    bouyer {
    363       1.10    cegger 	struct cpu_softc *sc = device_private(self);
    364        1.2    bouyer 	struct cpu_attach_args *caa = aux;
    365        1.2    bouyer 	struct cpu_info *ci;
    366       1.12    cegger 	uintptr_t ptr;
    367        1.2    bouyer 	int cpunum = caa->cpu_number;
    368       1.38    cegger 	static bool again = false;
    369        1.2    bouyer 
    370       1.10    cegger 	sc->sc_dev = self;
    371       1.10    cegger 
    372        1.2    bouyer 	/*
    373        1.2    bouyer 	 * If we're an Application Processor, allocate a cpu_info
    374        1.2    bouyer 	 * structure, otherwise use the primary's.
    375        1.2    bouyer 	 */
    376        1.2    bouyer 	if (caa->cpu_role == CPU_ROLE_AP) {
    377       1.12    cegger 		aprint_naive(": Application Processor\n");
    378       1.31    cegger 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    379       1.31    cegger 		    KM_SLEEP);
    380       1.42       jym 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    381       1.12    cegger 		memset(ci, 0, sizeof(*ci));
    382      1.117    bouyer 		cpu_init_tss(ci);
    383        1.2    bouyer 	} else {
    384       1.12    cegger 		aprint_naive(": %s Processor\n",
    385       1.12    cegger 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    386        1.2    bouyer 		ci = &cpu_info_primary;
    387        1.2    bouyer 	}
    388        1.2    bouyer 
    389        1.2    bouyer 	ci->ci_self = ci;
    390        1.2    bouyer 	sc->sc_info = ci;
    391        1.2    bouyer 	ci->ci_dev = self;
    392       1.23        ad 	ci->ci_cpuid = cpunum;
    393       1.16    cegger 
    394       1.16    cegger 	KASSERT(HYPERVISOR_shared_info != NULL);
    395       1.89    bouyer 	KASSERT(cpunum < XEN_LEGACY_MAX_VCPUS);
    396       1.16    cegger 	ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
    397       1.16    cegger 
    398       1.62    cherry 	KASSERT(ci->ci_func == 0);
    399        1.2    bouyer 	ci->ci_func = caa->cpu_func;
    400      1.101   msaitoh 	aprint_normal("\n");
    401        1.2    bouyer 
    402       1.38    cegger 	/* Must be called before mi_cpu_attach(). */
    403       1.38    cegger 	cpu_vm_init(ci);
    404       1.38    cegger 
    405        1.2    bouyer 	if (caa->cpu_role == CPU_ROLE_AP) {
    406        1.2    bouyer 		int error;
    407        1.2    bouyer 
    408        1.2    bouyer 		error = mi_cpu_attach(ci);
    409       1.62    cherry 
    410       1.62    cherry 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    411        1.2    bouyer 		if (error != 0) {
    412       1.38    cegger 			aprint_error_dev(self,
    413       1.38    cegger 			    "mi_cpu_attach failed with %d\n", error);
    414        1.2    bouyer 			return;
    415        1.2    bouyer 		}
    416       1.62    cherry 
    417        1.2    bouyer 	} else {
    418        1.2    bouyer 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    419        1.2    bouyer 	}
    420        1.2    bouyer 
    421       1.89    bouyer 	KASSERT(ci->ci_cpuid == ci->ci_index);
    422      1.100    bouyer #ifdef __x86_64__
    423      1.100    bouyer 	/* No user PGD mapped for this CPU yet */
    424      1.100    bouyer 	ci->ci_xen_current_user_pgd = 0;
    425      1.100    bouyer #endif
    426      1.100    bouyer 	mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
    427        1.2    bouyer 	pmap_reference(pmap_kernel());
    428        1.2    bouyer 	ci->ci_pmap = pmap_kernel();
    429        1.2    bouyer 	ci->ci_tlbstate = TLBSTATE_STALE;
    430        1.2    bouyer 
    431       1.38    cegger 	/*
    432       1.38    cegger 	 * Boot processor may not be attached first, but the below
    433       1.38    cegger 	 * must be done to allow booting other processors.
    434       1.38    cegger 	 */
    435       1.38    cegger 	if (!again) {
    436       1.38    cegger 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    437       1.38    cegger 		/* Basic init. */
    438       1.38    cegger 		cpu_intr_init(ci);
    439       1.38    cegger 		cpu_get_tsc_freq(ci);
    440       1.38    cegger 		cpu_init(ci);
    441       1.78    cherry 		pmap_cpu_init_late(ci);
    442       1.62    cherry 
    443       1.99       snj 		/* Every processor needs to init its own ipi h/w (similar to lapic) */
    444       1.62    cherry 		xen_ipi_init();
    445       1.62    cherry 
    446       1.38    cegger 		/* Make sure DELAY() is initialized. */
    447       1.38    cegger 		DELAY(1);
    448       1.38    cegger 		again = true;
    449       1.38    cegger 	}
    450       1.38    cegger 
    451        1.2    bouyer 	/* further PCB init done later. */
    452        1.2    bouyer 
    453        1.2    bouyer 	switch (caa->cpu_role) {
    454        1.2    bouyer 	case CPU_ROLE_SP:
    455       1.38    cegger 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    456       1.21        ad 		cpu_identify(ci);
    457       1.38    cegger 		x86_cpu_idle_init();
    458        1.2    bouyer 		break;
    459        1.2    bouyer 
    460        1.2    bouyer 	case CPU_ROLE_BP:
    461       1.38    cegger 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    462       1.21        ad 		cpu_identify(ci);
    463       1.38    cegger 		x86_cpu_idle_init();
    464        1.2    bouyer 		break;
    465        1.2    bouyer 
    466        1.2    bouyer 	case CPU_ROLE_AP:
    467       1.62    cherry 		atomic_or_32(&ci->ci_flags, CPUF_AP);
    468       1.62    cherry 
    469        1.2    bouyer 		/*
    470        1.2    bouyer 		 * report on an AP
    471        1.2    bouyer 		 */
    472        1.2    bouyer 
    473        1.2    bouyer #if defined(MULTIPROCESSOR)
    474       1.62    cherry 		/* interrupt handler stack */
    475        1.2    bouyer 		cpu_intr_init(ci);
    476       1.62    cherry 
    477       1.62    cherry 		/* Setup per-cpu memory for gdt */
    478        1.2    bouyer 		gdt_alloc_cpu(ci);
    479       1.62    cherry 
    480       1.62    cherry 		pmap_cpu_init_late(ci);
    481        1.2    bouyer 		cpu_start_secondary(ci);
    482       1.62    cherry 
    483        1.2    bouyer 		if (ci->ci_flags & CPUF_PRESENT) {
    484       1.30    cegger 			struct cpu_info *tmp;
    485       1.30    cegger 
    486       1.62    cherry 			cpu_identify(ci);
    487       1.30    cegger 			tmp = cpu_info_list;
    488       1.30    cegger 			while (tmp->ci_next)
    489       1.30    cegger 				tmp = tmp->ci_next;
    490       1.30    cegger 
    491       1.30    cegger 			tmp->ci_next = ci;
    492        1.2    bouyer 		}
    493        1.2    bouyer #else
    494      1.101   msaitoh 		aprint_error_dev(ci->ci_dev, "not started\n");
    495        1.2    bouyer #endif
    496        1.2    bouyer 		break;
    497        1.2    bouyer 
    498        1.2    bouyer 	default:
    499        1.2    bouyer 		panic("unknown processor type??\n");
    500        1.2    bouyer 	}
    501        1.2    bouyer 
    502       1.62    cherry #ifdef MPVERBOSE
    503        1.2    bouyer 	if (mp_verbose) {
    504        1.2    bouyer 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    505       1.37     rmind 		struct pcb *pcb = lwp_getpcb(l);
    506        1.2    bouyer 
    507       1.38    cegger 		aprint_verbose_dev(self,
    508  1.131.2.2        ad 		    "idle lwp at %p, idle sp at %p\n",
    509       1.12    cegger 		    l,
    510       1.12    cegger #ifdef i386
    511       1.37     rmind 		    (void *)pcb->pcb_esp
    512      1.105      maxv #else
    513       1.37     rmind 		    (void *)pcb->pcb_rsp
    514      1.105      maxv #endif
    515       1.12    cegger 		);
    516       1.12    cegger 
    517        1.2    bouyer 	}
    518       1.62    cherry #endif /* MPVERBOSE */
    519        1.2    bouyer }
    520        1.2    bouyer 
    521        1.2    bouyer /*
    522        1.2    bouyer  * Initialize the processor appropriately.
    523        1.2    bouyer  */
    524        1.2    bouyer 
    525        1.2    bouyer void
    526       1.10    cegger cpu_init(struct cpu_info *ci)
    527        1.2    bouyer {
    528      1.122  jdolecek 	uint32_t cr4 = 0;
    529        1.2    bouyer 
    530        1.2    bouyer 	/*
    531        1.2    bouyer 	 * If we have FXSAVE/FXRESTOR, use them.
    532        1.2    bouyer 	 */
    533       1.43       jym 	if (cpu_feature[0] & CPUID_FXSR) {
    534      1.122  jdolecek 		cr4 |= CR4_OSFXSR;
    535        1.2    bouyer 
    536        1.2    bouyer 		/*
    537        1.2    bouyer 		 * If we have SSE/SSE2, enable XMM exceptions.
    538        1.2    bouyer 		 */
    539       1.43       jym 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    540      1.122  jdolecek 			cr4 |= CR4_OSXMMEXCPT;
    541      1.122  jdolecek 	}
    542      1.122  jdolecek 
    543      1.122  jdolecek 	/* If xsave is supported, enable it */
    544      1.122  jdolecek 	if (cpu_feature[1] & CPUID2_XSAVE && x86_fpu_save >= FPU_SAVE_XSAVE)
    545      1.122  jdolecek 		cr4 |= CR4_OSXSAVE;
    546      1.122  jdolecek 
    547      1.122  jdolecek 	if (cr4) {
    548      1.122  jdolecek 		cr4 |= rcr4();
    549      1.122  jdolecek 		lcr4(cr4);
    550        1.2    bouyer 	}
    551        1.2    bouyer 
    552      1.116      maxv 	if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
    553      1.120      maxv 		fpuinit_mxcsr_mask();
    554      1.118  jdolecek 	}
    555      1.118  jdolecek 
    556      1.122  jdolecek 	/*
    557      1.122  jdolecek 	 * Changing CR4 register may change cpuid values. For example, setting
    558      1.122  jdolecek 	 * CR4_OSXSAVE sets CPUID2_OSXSAVE. The CPUID2_OSXSAVE is in
    559      1.122  jdolecek 	 * ci_feat_val[1], so update it.
    560      1.122  jdolecek 	 * XXX Other than ci_feat_val[1] might be changed.
    561      1.122  jdolecek 	 */
    562      1.122  jdolecek 	if (cpuid_level >= 1) {
    563      1.122  jdolecek 		u_int descs[4];
    564      1.122  jdolecek 
    565      1.122  jdolecek 		x86_cpuid(1, descs);
    566      1.122  jdolecek 		ci->ci_feat_val[1] = descs[2];
    567      1.122  jdolecek 	}
    568      1.122  jdolecek 
    569      1.122  jdolecek 	/* If xsave is enabled, enable all fpu features */
    570      1.122  jdolecek 	if (cr4 & CR4_OSXSAVE) {
    571      1.122  jdolecek 		wrxcr(0, x86_xsave_features & XCR0_FPU);
    572      1.122  jdolecek 	}
    573      1.122  jdolecek 
    574       1.11    cegger 	atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    575        1.2    bouyer }
    576        1.2    bouyer 
    577        1.2    bouyer 
    578        1.2    bouyer #ifdef MULTIPROCESSOR
    579       1.62    cherry 
    580        1.2    bouyer void
    581       1.10    cegger cpu_boot_secondary_processors(void)
    582        1.2    bouyer {
    583        1.2    bouyer 	struct cpu_info *ci;
    584      1.123    bouyer 	kcpuset_t *cpus;
    585        1.2    bouyer 	u_long i;
    586      1.123    bouyer 
    587      1.123    bouyer 	kcpuset_create(&cpus, true);
    588      1.123    bouyer 	kcpuset_set(cpus, cpu_index(curcpu()));
    589       1.38    cegger 	for (i = 0; i < maxcpus; i++) {
    590       1.38    cegger 		ci = cpu_lookup(i);
    591        1.2    bouyer 		if (ci == NULL)
    592        1.2    bouyer 			continue;
    593        1.2    bouyer 		if (ci->ci_data.cpu_idlelwp == NULL)
    594        1.2    bouyer 			continue;
    595        1.2    bouyer 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    596        1.2    bouyer 			continue;
    597        1.2    bouyer 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    598        1.2    bouyer 			continue;
    599        1.2    bouyer 		cpu_boot_secondary(ci);
    600      1.123    bouyer 		kcpuset_set(cpus, cpu_index(ci));
    601        1.2    bouyer 	}
    602      1.123    bouyer 	while (!kcpuset_match(cpus, kcpuset_running))
    603      1.123    bouyer 		;
    604      1.123    bouyer 	kcpuset_destroy(cpus);
    605       1.11    cegger 
    606       1.11    cegger 	x86_mp_online = true;
    607        1.2    bouyer }
    608        1.2    bouyer 
    609        1.2    bouyer static void
    610        1.2    bouyer cpu_init_idle_lwp(struct cpu_info *ci)
    611        1.2    bouyer {
    612        1.2    bouyer 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    613       1.37     rmind 	struct pcb *pcb = lwp_getpcb(l);
    614        1.2    bouyer 
    615        1.2    bouyer 	pcb->pcb_cr0 = rcr0();
    616        1.2    bouyer }
    617        1.2    bouyer 
    618        1.2    bouyer void
    619       1.10    cegger cpu_init_idle_lwps(void)
    620        1.2    bouyer {
    621        1.2    bouyer 	struct cpu_info *ci;
    622        1.2    bouyer 	u_long i;
    623        1.2    bouyer 
    624       1.38    cegger 	for (i = 0; i < maxcpus; i++) {
    625       1.38    cegger 		ci = cpu_lookup(i);
    626        1.2    bouyer 		if (ci == NULL)
    627        1.2    bouyer 			continue;
    628        1.2    bouyer 		if (ci->ci_data.cpu_idlelwp == NULL)
    629        1.2    bouyer 			continue;
    630        1.2    bouyer 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    631        1.2    bouyer 			continue;
    632        1.2    bouyer 		cpu_init_idle_lwp(ci);
    633        1.2    bouyer 	}
    634        1.2    bouyer }
    635        1.2    bouyer 
    636       1.62    cherry static void
    637       1.10    cegger cpu_start_secondary(struct cpu_info *ci)
    638        1.2    bouyer {
    639        1.2    bouyer 	int i;
    640        1.2    bouyer 
    641       1.11    cegger 	aprint_debug_dev(ci->ci_dev, "starting\n");
    642        1.2    bouyer 
    643        1.2    bouyer 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    644       1.62    cherry 
    645       1.62    cherry 	if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
    646       1.11    cegger 		return;
    647       1.62    cherry 	}
    648        1.2    bouyer 
    649        1.2    bouyer 	/*
    650        1.2    bouyer 	 * wait for it to become ready
    651        1.2    bouyer 	 */
    652       1.11    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    653        1.2    bouyer 		delay(10);
    654        1.2    bouyer 	}
    655       1.11    cegger 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    656        1.9    cegger 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    657        1.2    bouyer #if defined(MPDEBUG) && defined(DDB)
    658        1.2    bouyer 		printf("dropping into debugger; continue from here to resume boot\n");
    659        1.2    bouyer 		Debugger();
    660        1.2    bouyer #endif
    661        1.2    bouyer 	}
    662        1.2    bouyer 
    663        1.2    bouyer 	CPU_START_CLEANUP(ci);
    664        1.2    bouyer }
    665        1.2    bouyer 
    666        1.2    bouyer void
    667       1.10    cegger cpu_boot_secondary(struct cpu_info *ci)
    668        1.2    bouyer {
    669        1.2    bouyer 	int i;
    670       1.11    cegger 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    671       1.11    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    672        1.2    bouyer 		delay(10);
    673        1.2    bouyer 	}
    674       1.11    cegger 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    675       1.11    cegger 		aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
    676        1.2    bouyer #if defined(MPDEBUG) && defined(DDB)
    677        1.2    bouyer 		printf("dropping into debugger; continue from here to resume boot\n");
    678        1.2    bouyer 		Debugger();
    679        1.2    bouyer #endif
    680        1.2    bouyer 	}
    681        1.2    bouyer }
    682        1.2    bouyer 
    683        1.2    bouyer /*
    684       1.62    cherry  * APs end up here immediately after initialisation and VCPUOP_up in
    685       1.62    cherry  * mp_cpu_start().
    686       1.62    cherry  * At this point, we are running in the idle pcb/idle stack of the new
    687       1.62    cherry  * CPU.  This function jumps to the idle loop and starts looking for
    688       1.62    cherry  * work.
    689        1.2    bouyer  */
    690       1.62    cherry extern void x86_64_tls_switch(struct lwp *);
    691        1.2    bouyer void
    692        1.2    bouyer cpu_hatch(void *v)
    693        1.2    bouyer {
    694        1.2    bouyer 	struct cpu_info *ci = (struct cpu_info *)v;
    695       1.37     rmind 	struct pcb *pcb;
    696       1.11    cegger 	int s, i;
    697       1.11    cegger 
    698       1.62    cherry 	/* Setup TLS and kernel GS/FS */
    699       1.62    cherry 	cpu_init_msrs(ci, true);
    700       1.62    cherry 	cpu_init_idt();
    701       1.62    cherry 	gdt_init_cpu(ci);
    702       1.62    cherry 
    703       1.21        ad 	cpu_probe(ci);
    704       1.11    cegger 
    705       1.62    cherry 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    706        1.2    bouyer 
    707       1.11    cegger 	while ((ci->ci_flags & CPUF_GO) == 0) {
    708       1.11    cegger 		/* Don't use delay, boot CPU may be patching the text. */
    709       1.11    cegger 		for (i = 10000; i != 0; i--)
    710       1.11    cegger 			x86_pause();
    711       1.11    cegger 	}
    712        1.2    bouyer 
    713       1.11    cegger 	/* Because the text may have been patched in x86_patch(). */
    714       1.11    cegger 	x86_flush();
    715       1.58     rmind 	tlbflushg();
    716        1.2    bouyer 
    717       1.11    cegger 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    718        1.2    bouyer 
    719  1.131.2.1        ad 	KASSERT(ci->ci_curlwp == ci->ci_data.cpu_idlelwp);
    720  1.131.2.1        ad 	KASSERT(curlwp == ci->ci_data.cpu_idlelwp);
    721       1.37     rmind 	pcb = lwp_getpcb(curlwp);
    722       1.85    cherry 	pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
    723       1.37     rmind 
    724       1.62    cherry 	xen_ipi_init();
    725       1.62    cherry 
    726       1.62    cherry 	xen_initclocks();
    727      1.105      maxv 
    728       1.62    cherry #ifdef __x86_64__
    729       1.12    cegger 	fpuinit(ci);
    730       1.12    cegger #endif
    731        1.2    bouyer 
    732        1.2    bouyer 	lldt(GSEL(GLDT_SEL, SEL_KPL));
    733        1.2    bouyer 
    734        1.2    bouyer 	cpu_init(ci);
    735       1.11    cegger 	cpu_get_tsc_freq(ci);
    736        1.2    bouyer 
    737        1.2    bouyer 	s = splhigh();
    738       1.11    cegger 	x86_enable_intr();
    739       1.11    cegger 	splx(s);
    740        1.2    bouyer 
    741       1.62    cherry 	aprint_debug_dev(ci->ci_dev, "running\n");
    742       1.62    cherry 
    743  1.131.2.1        ad 	KASSERT(ci->ci_curlwp == ci->ci_data.cpu_idlelwp);
    744       1.91     rmind 	idle_loop(NULL);
    745       1.91     rmind 	KASSERT(false);
    746        1.2    bouyer }
    747        1.2    bouyer 
    748        1.2    bouyer #if defined(DDB)
    749        1.2    bouyer 
    750        1.2    bouyer #include <ddb/db_output.h>
    751        1.2    bouyer #include <machine/db_machdep.h>
    752        1.2    bouyer 
    753        1.2    bouyer /*
    754        1.2    bouyer  * Dump CPU information from ddb.
    755        1.2    bouyer  */
    756        1.2    bouyer void
    757        1.2    bouyer cpu_debug_dump(void)
    758        1.2    bouyer {
    759        1.2    bouyer 	struct cpu_info *ci;
    760        1.2    bouyer 	CPU_INFO_ITERATOR cii;
    761        1.2    bouyer 
    762      1.130      maxv 	db_printf("addr		dev	id	flags	ipis	curlwp\n");
    763        1.2    bouyer 	for (CPU_INFO_FOREACH(cii, ci)) {
    764      1.130      maxv 		db_printf("%p	%s	%ld	%x	%x	%10p\n",
    765        1.2    bouyer 		    ci,
    766        1.9    cegger 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    767       1.12    cegger 		    (long)ci->ci_cpuid,
    768        1.2    bouyer 		    ci->ci_flags, ci->ci_ipis,
    769      1.130      maxv 		    ci->ci_curlwp);
    770        1.2    bouyer 	}
    771        1.2    bouyer }
    772       1.38    cegger #endif /* DDB */
    773        1.2    bouyer 
    774       1.62    cherry #endif /* MULTIPROCESSOR */
    775       1.62    cherry 
    776       1.62    cherry extern void hypervisor_callback(void);
    777       1.62    cherry extern void failsafe_callback(void);
    778       1.62    cherry #ifdef __x86_64__
    779       1.62    cherry typedef void (vector)(void);
    780       1.62    cherry extern vector Xsyscall, Xsyscall32;
    781       1.62    cherry #endif
    782       1.62    cherry 
    783       1.62    cherry /*
    784       1.62    cherry  * Setup the "trampoline". On Xen, we setup nearly all cpu context
    785       1.62    cherry  * outside a trampoline, so we prototype and call targetip like so:
    786       1.62    cherry  * void targetip(struct cpu_info *);
    787       1.62    cherry  */
    788       1.62    cherry 
    789        1.2    bouyer static void
    790       1.62    cherry gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
    791        1.2    bouyer {
    792      1.104   msaitoh 	int i;
    793      1.111    bouyer 	for (i = 0; i < entries; i++) {
    794      1.105      maxv 		frames[i] = ((paddr_t)xpmap_ptetomach(
    795      1.105      maxv 		    (pt_entry_t *)(base + (i << PAGE_SHIFT)))) >> PAGE_SHIFT;
    796       1.62    cherry 
    797       1.62    cherry 		/* Mark Read-only */
    798       1.62    cherry 		pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
    799      1.129      maxv 		    PTE_W);
    800       1.62    cherry 	}
    801       1.62    cherry }
    802       1.62    cherry 
    803       1.62    cherry #ifdef __x86_64__
    804       1.85    cherry extern char *ldtstore;
    805       1.62    cherry 
    806       1.62    cherry static void
    807      1.105      maxv xen_init_amd64_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
    808      1.105      maxv     void targetrip(struct cpu_info *))
    809       1.62    cherry {
    810       1.62    cherry 	/* page frames to point at GDT */
    811       1.62    cherry 	extern int gdt_size;
    812       1.62    cherry 	paddr_t frames[16];
    813       1.62    cherry 	psize_t gdt_ents;
    814       1.62    cherry 
    815       1.62    cherry 	struct lwp *l;
    816       1.62    cherry 	struct pcb *pcb;
    817       1.62    cherry 
    818       1.62    cherry 	volatile struct vcpu_info *vci;
    819       1.62    cherry 
    820       1.62    cherry 	KASSERT(ci != NULL);
    821       1.62    cherry 	KASSERT(ci != &cpu_info_primary);
    822       1.62    cherry 	KASSERT(initctx != NULL);
    823       1.62    cherry 	KASSERT(targetrip != NULL);
    824       1.62    cherry 
    825      1.105      maxv 	memset(initctx, 0, sizeof(*initctx));
    826       1.62    cherry 
    827      1.104   msaitoh 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
    828       1.62    cherry 	KASSERT(gdt_ents <= 16);
    829       1.62    cherry 
    830      1.105      maxv 	gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
    831       1.62    cherry 
    832       1.62    cherry 	/* Initialise the vcpu context: We use idle_loop()'s pcb context. */
    833       1.11    cegger 
    834       1.62    cherry 	l = ci->ci_data.cpu_idlelwp;
    835       1.11    cegger 
    836       1.62    cherry 	KASSERT(l != NULL);
    837       1.62    cherry 	pcb = lwp_getpcb(l);
    838       1.62    cherry 	KASSERT(pcb != NULL);
    839       1.11    cegger 
    840       1.62    cherry 	/* resume with interrupts off */
    841       1.62    cherry 	vci = ci->ci_vcpu;
    842       1.62    cherry 	vci->evtchn_upcall_mask = 1;
    843       1.62    cherry 	xen_mb();
    844        1.2    bouyer 
    845       1.62    cherry 	/* resume in kernel-mode */
    846       1.62    cherry 	initctx->flags = VGCF_in_kernel | VGCF_online;
    847        1.2    bouyer 
    848       1.62    cherry 	/* Stack and entry points:
    849       1.62    cherry 	 * We arrange for the stack frame for cpu_hatch() to
    850       1.62    cherry 	 * appear as a callee frame of lwp_trampoline(). Being a
    851       1.62    cherry 	 * leaf frame prevents trampling on any of the MD stack setup
    852       1.62    cherry 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    853       1.62    cherry 	 */
    854        1.2    bouyer 
    855       1.62    cherry 	initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
    856       1.62    cherry 	initctx->user_regs.rip = (vaddr_t) targetrip;
    857        1.2    bouyer 
    858       1.62    cherry 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    859       1.11    cegger 
    860       1.62    cherry 	initctx->user_regs.rflags = pcb->pcb_flags;
    861       1.62    cherry 	initctx->user_regs.rsp = pcb->pcb_rsp;
    862       1.11    cegger 
    863       1.62    cherry 	/* Data segments */
    864       1.62    cherry 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
    865       1.62    cherry 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
    866       1.62    cherry 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
    867       1.62    cherry 
    868       1.62    cherry 	/* GDT */
    869      1.105      maxv 	memcpy(initctx->gdt_frames, frames, sizeof(frames));
    870       1.62    cherry 	initctx->gdt_ents = gdt_ents;
    871       1.62    cherry 
    872       1.62    cherry 	/* LDT */
    873      1.105      maxv 	initctx->ldt_base = (unsigned long)ldtstore;
    874       1.62    cherry 	initctx->ldt_ents = LDT_SIZE >> 3;
    875       1.62    cherry 
    876       1.62    cherry 	/* Kernel context state */
    877       1.62    cherry 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
    878       1.62    cherry 	initctx->kernel_sp = pcb->pcb_rsp0;
    879       1.62    cherry 	initctx->ctrlreg[0] = pcb->pcb_cr0;
    880       1.62    cherry 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
    881      1.105      maxv 	initctx->ctrlreg[2] = (vaddr_t)targetrip;
    882      1.105      maxv 	/*
    883       1.62    cherry 	 * Use pmap_kernel() L4 PD directly, until we setup the
    884       1.62    cherry 	 * per-cpu L4 PD in pmap_cpu_init_late()
    885        1.2    bouyer 	 */
    886       1.70    cherry 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
    887       1.62    cherry 	initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
    888        1.2    bouyer 
    889       1.62    cherry 	/* Xen callbacks */
    890      1.105      maxv 	initctx->event_callback_eip = (unsigned long)hypervisor_callback;
    891      1.105      maxv 	initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
    892      1.105      maxv 	initctx->syscall_callback_eip = (unsigned long)Xsyscall;
    893       1.62    cherry 
    894       1.62    cherry 	return;
    895        1.2    bouyer }
    896       1.62    cherry #else /* i386 */
    897      1.108      maxv extern union descriptor *ldtstore;
    898       1.62    cherry extern void Xsyscall(void);
    899       1.62    cherry 
    900       1.11    cegger static void
    901      1.105      maxv xen_init_i386_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
    902      1.105      maxv     void targeteip(struct cpu_info *))
    903       1.62    cherry {
    904       1.62    cherry 	/* page frames to point at GDT */
    905       1.62    cherry 	extern int gdt_size;
    906       1.62    cherry 	paddr_t frames[16];
    907       1.62    cherry 	psize_t gdt_ents;
    908       1.62    cherry 
    909       1.62    cherry 	struct lwp *l;
    910       1.62    cherry 	struct pcb *pcb;
    911       1.62    cherry 
    912       1.62    cherry 	volatile struct vcpu_info *vci;
    913       1.62    cherry 
    914       1.62    cherry 	KASSERT(ci != NULL);
    915       1.62    cherry 	KASSERT(ci != &cpu_info_primary);
    916       1.62    cherry 	KASSERT(initctx != NULL);
    917       1.62    cherry 	KASSERT(targeteip != NULL);
    918       1.62    cherry 
    919      1.105      maxv 	memset(initctx, 0, sizeof(*initctx));
    920       1.11    cegger 
    921       1.85    cherry 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
    922       1.62    cherry 	KASSERT(gdt_ents <= 16);
    923        1.2    bouyer 
    924      1.105      maxv 	gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
    925        1.2    bouyer 
    926       1.62    cherry 	/*
    927       1.62    cherry 	 * Initialise the vcpu context:
    928       1.62    cherry 	 * We use this cpu's idle_loop() pcb context.
    929       1.11    cegger 	 */
    930       1.11    cegger 
    931       1.62    cherry 	l = ci->ci_data.cpu_idlelwp;
    932       1.62    cherry 
    933       1.62    cherry 	KASSERT(l != NULL);
    934       1.62    cherry 	pcb = lwp_getpcb(l);
    935       1.62    cherry 	KASSERT(pcb != NULL);
    936       1.62    cherry 
    937       1.62    cherry 	/* resume with interrupts off */
    938       1.62    cherry 	vci = ci->ci_vcpu;
    939       1.62    cherry 	vci->evtchn_upcall_mask = 1;
    940       1.62    cherry 	xen_mb();
    941       1.62    cherry 
    942       1.62    cherry 	/* resume in kernel-mode */
    943       1.62    cherry 	initctx->flags = VGCF_in_kernel | VGCF_online;
    944       1.62    cherry 
    945       1.62    cherry 	/* Stack frame setup for cpu_hatch():
    946       1.62    cherry 	 * We arrange for the stack frame for cpu_hatch() to
    947       1.62    cherry 	 * appear as a callee frame of lwp_trampoline(). Being a
    948       1.62    cherry 	 * leaf frame prevents trampling on any of the MD stack setup
    949       1.62    cherry 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    950        1.2    bouyer 	 */
    951        1.2    bouyer 
    952       1.62    cherry 	initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
    953       1.62    cherry 						      arg1 */
    954      1.105      maxv 	{
    955      1.105      maxv 		/* targeteip(ci); */
    956      1.105      maxv 		uint32_t *arg = (uint32_t *)initctx->user_regs.esp;
    957      1.105      maxv 		arg[1] = (uint32_t)ci; /* arg1 */
    958       1.62    cherry 	}
    959        1.2    bouyer 
    960      1.105      maxv 	initctx->user_regs.eip = (vaddr_t)targeteip;
    961       1.62    cherry 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    962       1.62    cherry 	initctx->user_regs.eflags |= pcb->pcb_iopl;
    963       1.62    cherry 
    964       1.62    cherry 	/* Data segments */
    965       1.62    cherry 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
    966       1.62    cherry 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
    967       1.62    cherry 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
    968       1.62    cherry 	initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
    969       1.62    cherry 
    970       1.62    cherry 	/* GDT */
    971      1.105      maxv 	memcpy(initctx->gdt_frames, frames, sizeof(frames));
    972       1.62    cherry 	initctx->gdt_ents = gdt_ents;
    973       1.62    cherry 
    974       1.62    cherry 	/* LDT */
    975      1.108      maxv 	initctx->ldt_base = (unsigned long)ldtstore;
    976       1.62    cherry 	initctx->ldt_ents = NLDT;
    977       1.62    cherry 
    978       1.62    cherry 	/* Kernel context state */
    979       1.62    cherry 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
    980       1.62    cherry 	initctx->kernel_sp = pcb->pcb_esp0;
    981       1.62    cherry 	initctx->ctrlreg[0] = pcb->pcb_cr0;
    982       1.62    cherry 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
    983      1.105      maxv 	initctx->ctrlreg[2] = (vaddr_t)targeteip;
    984       1.70    cherry 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
    985      1.105      maxv 	initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;
    986        1.2    bouyer 
    987       1.62    cherry 	/* Xen callbacks */
    988      1.105      maxv 	initctx->event_callback_eip = (unsigned long)hypervisor_callback;
    989       1.62    cherry 	initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
    990      1.105      maxv 	initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
    991       1.62    cherry 	initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
    992       1.45     rmind 
    993       1.62    cherry 	return;
    994       1.62    cherry }
    995       1.62    cherry #endif /* __x86_64__ */
    996       1.45     rmind 
    997       1.62    cherry int
    998       1.62    cherry mp_cpu_start(struct cpu_info *ci, vaddr_t target)
    999       1.62    cherry {
   1000       1.62    cherry 	int hyperror;
   1001       1.62    cherry 	struct vcpu_guest_context vcpuctx;
   1002        1.2    bouyer 
   1003       1.62    cherry 	KASSERT(ci != NULL);
   1004       1.62    cherry 	KASSERT(ci != &cpu_info_primary);
   1005       1.62    cherry 	KASSERT(ci->ci_flags & CPUF_AP);
   1006       1.62    cherry 
   1007       1.62    cherry #ifdef __x86_64__
   1008       1.62    cherry 	xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
   1009      1.105      maxv #else
   1010       1.62    cherry 	xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
   1011      1.105      maxv #endif
   1012       1.62    cherry 
   1013       1.62    cherry 	/* Initialise the given vcpu to execute cpu_hatch(ci); */
   1014       1.62    cherry 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
   1015       1.62    cherry 		aprint_error(": context initialisation failed. errno = %d\n", hyperror);
   1016       1.62    cherry 		return hyperror;
   1017       1.62    cherry 	}
   1018       1.62    cherry 
   1019       1.62    cherry 	/* Start it up */
   1020       1.62    cherry 
   1021       1.70    cherry 	/* First bring it down */
   1022       1.62    cherry 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
   1023       1.62    cherry 		aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
   1024       1.62    cherry 		return hyperror;
   1025       1.62    cherry 	}
   1026       1.62    cherry 
   1027       1.62    cherry 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
   1028       1.62    cherry 		aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
   1029       1.62    cherry 		return hyperror;
   1030       1.62    cherry 	}
   1031        1.2    bouyer 
   1032       1.62    cherry 	if (!vcpu_is_up(ci)) {
   1033       1.62    cherry 		aprint_error(": did not come up\n");
   1034       1.62    cherry 		return -1;
   1035        1.2    bouyer 	}
   1036       1.62    cherry 
   1037        1.2    bouyer 	return 0;
   1038        1.2    bouyer }
   1039        1.2    bouyer 
   1040        1.2    bouyer void
   1041        1.2    bouyer mp_cpu_start_cleanup(struct cpu_info *ci)
   1042        1.2    bouyer {
   1043       1.62    cherry 	if (vcpu_is_up(ci)) {
   1044       1.62    cherry 		aprint_debug_dev(ci->ci_dev, "is started.\n");
   1045      1.105      maxv 	} else {
   1046       1.62    cherry 		aprint_error_dev(ci->ci_dev, "did not start up.\n");
   1047       1.62    cherry 	}
   1048        1.2    bouyer }
   1049        1.2    bouyer 
   1050        1.2    bouyer void
   1051        1.3    bouyer cpu_init_msrs(struct cpu_info *ci, bool full)
   1052        1.2    bouyer {
   1053       1.43       jym #ifdef __x86_64__
   1054        1.3    bouyer 	if (full) {
   1055      1.105      maxv 		HYPERVISOR_set_segment_base(SEGBASE_FS, 0);
   1056      1.105      maxv 		HYPERVISOR_set_segment_base(SEGBASE_GS_KERNEL, (uint64_t)ci);
   1057      1.105      maxv 		HYPERVISOR_set_segment_base(SEGBASE_GS_USER, 0);
   1058        1.3    bouyer 	}
   1059      1.105      maxv #endif
   1060       1.44       jym 
   1061       1.44       jym 	if (cpu_feature[2] & CPUID_NOX)
   1062       1.44       jym 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1063        1.2    bouyer }
   1064        1.2    bouyer 
   1065       1.95  christos void
   1066       1.95  christos cpu_offline_md(void)
   1067       1.95  christos {
   1068      1.130      maxv 	return;
   1069       1.95  christos }
   1070       1.95  christos 
   1071      1.105      maxv void
   1072        1.2    bouyer cpu_get_tsc_freq(struct cpu_info *ci)
   1073        1.2    bouyer {
   1074       1.62    cherry 	uint32_t vcpu_tversion;
   1075       1.16    cegger 	const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
   1076       1.62    cherry 
   1077       1.62    cherry 	vcpu_tversion = tinfo->version;
   1078       1.62    cherry 	while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
   1079       1.62    cherry 
   1080        1.2    bouyer 	uint64_t freq = 1000000000ULL << 32;
   1081        1.2    bouyer 	freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
   1082      1.105      maxv 	if (tinfo->tsc_shift < 0)
   1083        1.2    bouyer 		freq = freq << -tinfo->tsc_shift;
   1084        1.2    bouyer 	else
   1085        1.2    bouyer 		freq = freq >> tinfo->tsc_shift;
   1086       1.20        ad 	ci->ci_data.cpu_cc_freq = freq;
   1087        1.2    bouyer }
   1088       1.19     joerg 
   1089       1.19     joerg void
   1090       1.19     joerg x86_cpu_idle_xen(void)
   1091       1.19     joerg {
   1092       1.19     joerg 	struct cpu_info *ci = curcpu();
   1093       1.62    cherry 
   1094       1.19     joerg 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1095       1.19     joerg 
   1096       1.19     joerg 	x86_disable_intr();
   1097       1.19     joerg 	if (!__predict_false(ci->ci_want_resched)) {
   1098       1.19     joerg 		idle_block();
   1099       1.19     joerg 	} else {
   1100       1.19     joerg 		x86_enable_intr();
   1101       1.19     joerg 	}
   1102       1.19     joerg }
   1103       1.47       jym 
   1104       1.47       jym /*
   1105       1.47       jym  * Loads pmap for the current CPU.
   1106       1.47       jym  */
   1107       1.47       jym void
   1108       1.81    bouyer cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
   1109       1.47       jym {
   1110       1.81    bouyer 	struct cpu_info *ci = curcpu();
   1111       1.92     rmind 	cpuid_t cid = cpu_index(ci);
   1112      1.125      maxv 	int i;
   1113       1.81    bouyer 
   1114      1.124      maxv 	KASSERT(pmap != pmap_kernel());
   1115      1.124      maxv 
   1116       1.81    bouyer 	mutex_enter(&ci->ci_kpm_mtx);
   1117       1.93       jym 	/* make new pmap visible to xen_kpm_sync() */
   1118       1.92     rmind 	kcpuset_atomic_set(pmap->pm_xen_ptp_cpus, cid);
   1119      1.105      maxv 
   1120       1.47       jym #ifdef __x86_64__
   1121      1.125      maxv 	pd_entry_t *new_pgd;
   1122      1.125      maxv 	paddr_t l4_pd_ma;
   1123       1.81    bouyer 
   1124      1.125      maxv 	l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
   1125       1.47       jym 
   1126      1.125      maxv 	/*
   1127      1.125      maxv 	 * Map user space address in kernel space and load
   1128      1.125      maxv 	 * user cr3
   1129      1.125      maxv 	 */
   1130      1.125      maxv 	new_pgd = pmap->pm_pdir;
   1131      1.125      maxv 	KASSERT(pmap == ci->ci_pmap);
   1132       1.70    cherry 
   1133      1.125      maxv 	/* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
   1134      1.126      maxv 	for (i = 0; i < PDIR_SLOT_USERLIM; i++) {
   1135      1.125      maxv 		KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
   1136      1.125      maxv 		if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
   1137      1.125      maxv 			xpq_queue_pte_update(l4_pd_ma + i * sizeof(pd_entry_t),
   1138      1.125      maxv 			    new_pgd[i]);
   1139       1.81    bouyer 		}
   1140      1.125      maxv 	}
   1141       1.70    cherry 
   1142      1.125      maxv 	xen_set_user_pgd(pmap_pdirpa(pmap, 0));
   1143      1.125      maxv 	ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
   1144      1.125      maxv #else
   1145      1.125      maxv 	paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
   1146      1.125      maxv 	/* don't update the kernel L3 slot */
   1147      1.125      maxv 	for (i = 0; i < PDP_SIZE - 1; i++) {
   1148      1.125      maxv 		xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
   1149      1.129      maxv 		    xpmap_ptom(pmap->pm_pdirpa[i]) | PTE_P);
   1150       1.70    cherry 	}
   1151      1.124      maxv #endif
   1152       1.70    cherry 
   1153      1.125      maxv 	tlbflush();
   1154      1.125      maxv 
   1155       1.93       jym 	/* old pmap no longer visible to xen_kpm_sync() */
   1156       1.92     rmind 	if (oldpmap != pmap_kernel()) {
   1157       1.92     rmind 		kcpuset_atomic_clear(oldpmap->pm_xen_ptp_cpus, cid);
   1158       1.92     rmind 	}
   1159       1.81    bouyer 	mutex_exit(&ci->ci_kpm_mtx);
   1160       1.47       jym }
   1161       1.61    cherry 
   1162      1.105      maxv /*
   1163      1.105      maxv  * pmap_cpu_init_late: perform late per-CPU initialization.
   1164      1.105      maxv  *
   1165      1.105      maxv  * Short note about percpu PDIR pages. Both the PAE and __x86_64__ architectures
   1166      1.105      maxv  * have per-cpu PDIR tables, for two different reasons:
   1167      1.105      maxv  *  - on PAE, this is to get around Xen's pagetable setup constraints (multiple
   1168      1.105      maxv  *    L3[3]s cannot point to the same L2 - Xen will refuse to pin a table set up
   1169      1.105      maxv  *    this way).
   1170      1.105      maxv  *  - on __x86_64__, this is for multiple CPUs to map in different user pmaps
   1171      1.105      maxv  *    (see cpu_load_pmap()).
   1172      1.105      maxv  *
   1173      1.105      maxv  * What this means for us is that the PDIR of the pmap_kernel() is considered
   1174      1.105      maxv  * to be a canonical "SHADOW" PDIR with the following properties:
   1175      1.105      maxv  *  - its recursive mapping points to itself
   1176      1.105      maxv  *  - per-cpu recursive mappings point to themselves on __x86_64__
   1177      1.105      maxv  *  - per-cpu L4 pages' kernel entries are expected to be in sync with
   1178      1.105      maxv  *    the shadow
   1179      1.105      maxv  */
   1180       1.70    cherry 
   1181       1.70    cherry void
   1182       1.70    cherry pmap_cpu_init_late(struct cpu_info *ci)
   1183       1.70    cherry {
   1184      1.125      maxv 	int i;
   1185      1.125      maxv 
   1186       1.70    cherry 	/*
   1187       1.70    cherry 	 * The BP has already its own PD page allocated during early
   1188       1.70    cherry 	 * MD startup.
   1189       1.70    cherry 	 */
   1190       1.70    cherry 
   1191      1.124      maxv #ifdef __x86_64__
   1192       1.78    cherry 	/* Setup per-cpu normal_pdes */
   1193       1.78    cherry 	extern pd_entry_t * const normal_pdes[];
   1194       1.78    cherry 	for (i = 0;i < PTP_LEVELS - 1;i++) {
   1195       1.78    cherry 		ci->ci_normal_pdes[i] = normal_pdes[i];
   1196       1.78    cherry 	}
   1197      1.124      maxv #endif
   1198       1.78    cherry 
   1199       1.70    cherry 	if (ci == &cpu_info_primary)
   1200       1.70    cherry 		return;
   1201       1.70    cherry 
   1202       1.70    cherry 	KASSERT(ci != NULL);
   1203       1.70    cherry 
   1204      1.124      maxv #if defined(i386)
   1205       1.73    cherry 	cpu_alloc_l3_page(ci);
   1206       1.70    cherry 	KASSERT(ci->ci_pae_l3_pdirpa != 0);
   1207       1.70    cherry 
   1208       1.70    cherry 	/* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
   1209      1.125      maxv 	for (i = 0; i < PDP_SIZE - 1; i++) {
   1210       1.73    cherry 		ci->ci_pae_l3_pdir[i] =
   1211      1.129      maxv 		    xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PTE_P;
   1212       1.73    cherry 	}
   1213      1.124      maxv #endif
   1214       1.70    cherry 
   1215       1.70    cherry 	ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1216       1.70    cherry 	    UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
   1217       1.70    cherry 
   1218       1.70    cherry 	if (ci->ci_kpm_pdir == NULL) {
   1219       1.70    cherry 		panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
   1220      1.105      maxv 		    __func__, cpu_index(ci));
   1221       1.70    cherry 	}
   1222      1.105      maxv 	ci->ci_kpm_pdirpa = vtophys((vaddr_t)ci->ci_kpm_pdir);
   1223       1.70    cherry 	KASSERT(ci->ci_kpm_pdirpa != 0);
   1224       1.70    cherry 
   1225      1.124      maxv #ifdef __x86_64__
   1226      1.106      maxv 	extern pt_entry_t xpmap_pg_nx;
   1227       1.70    cherry 
   1228      1.106      maxv 	/* Copy over the pmap_kernel() shadow L4 entries */
   1229       1.70    cherry 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
   1230       1.70    cherry 
   1231       1.70    cherry 	/* Recursive kernel mapping */
   1232      1.105      maxv 	ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa)
   1233      1.129      maxv 	    | PTE_P | xpmap_pg_nx;
   1234      1.124      maxv #else
   1235      1.106      maxv 	/* Copy over the pmap_kernel() shadow L2 entries */
   1236      1.105      maxv 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN,
   1237      1.105      maxv 	    nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
   1238      1.106      maxv #endif
   1239       1.70    cherry 
   1240      1.105      maxv 	/* Xen wants a RO pdir. */
   1241       1.83    bouyer 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
   1242       1.83    bouyer 	    (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
   1243       1.83    bouyer 	pmap_update(pmap_kernel());
   1244      1.124      maxv 
   1245      1.124      maxv #ifdef __x86_64__
   1246      1.124      maxv 	xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
   1247      1.124      maxv #else
   1248      1.105      maxv 	/*
   1249      1.105      maxv 	 * Initialize L3 entry 3. This mapping is shared across all pmaps and is
   1250      1.105      maxv 	 * static, ie: loading a new pmap will not update this entry.
   1251       1.70    cherry 	 */
   1252      1.129      maxv 	ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PTE_P;
   1253       1.70    cherry 
   1254      1.105      maxv 	/* Xen wants a RO L3. */
   1255       1.83    bouyer 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
   1256       1.83    bouyer 	    (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
   1257       1.83    bouyer 	pmap_update(pmap_kernel());
   1258       1.70    cherry 
   1259       1.70    cherry 	xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
   1260      1.124      maxv #endif
   1261       1.70    cherry }
   1262       1.70    cherry 
   1263       1.61    cherry /*
   1264       1.61    cherry  * Notify all other cpus to halt.
   1265       1.61    cherry  */
   1266       1.61    cherry 
   1267       1.61    cherry void
   1268       1.61    cherry cpu_broadcast_halt(void)
   1269       1.61    cherry {
   1270       1.61    cherry 	xen_broadcast_ipi(XEN_IPI_HALT);
   1271       1.61    cherry }
   1272       1.61    cherry 
   1273       1.61    cherry /*
   1274      1.131        ad  * Send a dummy ipi to a cpu, and raise an AST on the running LWP.
   1275       1.61    cherry  */
   1276       1.61    cherry 
   1277       1.61    cherry void
   1278       1.61    cherry cpu_kick(struct cpu_info *ci)
   1279       1.61    cherry {
   1280      1.131        ad 	(void)xen_send_ipi(ci, XEN_IPI_AST);
   1281       1.61    cherry }
   1282