cpu.c revision 1.136 1 1.136 ad /* $NetBSD: cpu.c,v 1.136 2020/05/21 21:12:31 ad Exp $ */
2 1.2 bouyer
3 1.2 bouyer /*-
4 1.2 bouyer * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 1.19 joerg * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
6 1.2 bouyer * All rights reserved.
7 1.2 bouyer *
8 1.2 bouyer * This code is derived from software contributed to The NetBSD Foundation
9 1.2 bouyer * by RedBack Networks Inc.
10 1.2 bouyer *
11 1.2 bouyer * Author: Bill Sommerfeld
12 1.2 bouyer *
13 1.2 bouyer * Redistribution and use in source and binary forms, with or without
14 1.2 bouyer * modification, are permitted provided that the following conditions
15 1.2 bouyer * are met:
16 1.2 bouyer * 1. Redistributions of source code must retain the above copyright
17 1.2 bouyer * notice, this list of conditions and the following disclaimer.
18 1.2 bouyer * 2. Redistributions in binary form must reproduce the above copyright
19 1.2 bouyer * notice, this list of conditions and the following disclaimer in the
20 1.2 bouyer * documentation and/or other materials provided with the distribution.
21 1.2 bouyer *
22 1.2 bouyer * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 1.2 bouyer * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 1.2 bouyer * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 1.2 bouyer * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 1.2 bouyer * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.2 bouyer * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.2 bouyer * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.2 bouyer * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.2 bouyer * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.2 bouyer * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 1.2 bouyer * POSSIBILITY OF SUCH DAMAGE.
33 1.2 bouyer */
34 1.2 bouyer
35 1.2 bouyer /*
36 1.2 bouyer * Copyright (c) 1999 Stefan Grefen
37 1.2 bouyer *
38 1.2 bouyer * Redistribution and use in source and binary forms, with or without
39 1.2 bouyer * modification, are permitted provided that the following conditions
40 1.2 bouyer * are met:
41 1.2 bouyer * 1. Redistributions of source code must retain the above copyright
42 1.2 bouyer * notice, this list of conditions and the following disclaimer.
43 1.2 bouyer * 2. Redistributions in binary form must reproduce the above copyright
44 1.2 bouyer * notice, this list of conditions and the following disclaimer in the
45 1.2 bouyer * documentation and/or other materials provided with the distribution.
46 1.2 bouyer * 3. All advertising materials mentioning features or use of this software
47 1.2 bouyer * must display the following acknowledgement:
48 1.2 bouyer * This product includes software developed by the NetBSD
49 1.2 bouyer * Foundation, Inc. and its contributors.
50 1.2 bouyer * 4. Neither the name of The NetBSD Foundation nor the names of its
51 1.2 bouyer * contributors may be used to endorse or promote products derived
52 1.2 bouyer * from this software without specific prior written permission.
53 1.2 bouyer *
54 1.2 bouyer * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
55 1.2 bouyer * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 1.2 bouyer * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 1.2 bouyer * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
58 1.2 bouyer * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 1.2 bouyer * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 1.2 bouyer * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 1.2 bouyer * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 1.2 bouyer * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 1.2 bouyer * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 1.2 bouyer * SUCH DAMAGE.
65 1.2 bouyer */
66 1.2 bouyer
67 1.2 bouyer #include <sys/cdefs.h>
68 1.136 ad __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.136 2020/05/21 21:12:31 ad Exp $");
69 1.2 bouyer
70 1.2 bouyer #include "opt_ddb.h"
71 1.2 bouyer #include "opt_multiprocessor.h"
72 1.2 bouyer #include "opt_mpbios.h" /* for MPDEBUG */
73 1.2 bouyer #include "opt_mtrr.h"
74 1.2 bouyer #include "opt_xen.h"
75 1.2 bouyer
76 1.2 bouyer #include "lapic.h"
77 1.2 bouyer #include "ioapic.h"
78 1.2 bouyer
79 1.2 bouyer #include <sys/param.h>
80 1.2 bouyer #include <sys/proc.h>
81 1.2 bouyer #include <sys/systm.h>
82 1.2 bouyer #include <sys/device.h>
83 1.31 cegger #include <sys/kmem.h>
84 1.11 cegger #include <sys/cpu.h>
85 1.66 jruoho #include <sys/cpufreq.h>
86 1.11 cegger #include <sys/atomic.h>
87 1.32 cegger #include <sys/reboot.h>
88 1.62 cherry #include <sys/idle.h>
89 1.2 bouyer
90 1.51 uebayasi #include <uvm/uvm.h>
91 1.2 bouyer
92 1.114 riastrad #include <machine/cpu.h>
93 1.2 bouyer #include <machine/cpufunc.h>
94 1.2 bouyer #include <machine/cpuvar.h>
95 1.2 bouyer #include <machine/pmap.h>
96 1.2 bouyer #include <machine/vmparam.h>
97 1.2 bouyer #include <machine/mpbiosvar.h>
98 1.2 bouyer #include <machine/pcb.h>
99 1.2 bouyer #include <machine/specialreg.h>
100 1.2 bouyer #include <machine/segments.h>
101 1.2 bouyer #include <machine/gdt.h>
102 1.2 bouyer #include <machine/mtrr.h>
103 1.2 bouyer #include <machine/pio.h>
104 1.2 bouyer
105 1.97 dsl #include <x86/fpu.h>
106 1.62 cherry
107 1.62 cherry #include <xen/xen.h>
108 1.128 cherry #include <xen/include/public/vcpu.h>
109 1.2 bouyer #include <xen/vcpuvar.h>
110 1.2 bouyer
111 1.2 bouyer #if NLAPIC > 0
112 1.2 bouyer #include <machine/apicvar.h>
113 1.2 bouyer #include <machine/i82489reg.h>
114 1.2 bouyer #include <machine/i82489var.h>
115 1.2 bouyer #endif
116 1.2 bouyer
117 1.2 bouyer #include <dev/ic/mc146818reg.h>
118 1.2 bouyer #include <dev/isa/isareg.h>
119 1.2 bouyer
120 1.56 jruoho static int cpu_match(device_t, cfdata_t, void *);
121 1.56 jruoho static void cpu_attach(device_t, device_t, void *);
122 1.56 jruoho static void cpu_defer(device_t);
123 1.56 jruoho static int cpu_rescan(device_t, const char *, const int *);
124 1.56 jruoho static void cpu_childdetached(device_t, device_t);
125 1.56 jruoho static int vcpu_match(device_t, cfdata_t, void *);
126 1.56 jruoho static void vcpu_attach(device_t, device_t, void *);
127 1.56 jruoho static void cpu_attach_common(device_t, device_t, void *);
128 1.56 jruoho void cpu_offline_md(void);
129 1.2 bouyer
130 1.2 bouyer struct cpu_softc {
131 1.10 cegger device_t sc_dev; /* device tree glue */
132 1.2 bouyer struct cpu_info *sc_info; /* pointer to CPU info */
133 1.32 cegger bool sc_wasonline;
134 1.2 bouyer };
135 1.2 bouyer
136 1.62 cherry int mp_cpu_start(struct cpu_info *, vaddr_t);
137 1.2 bouyer void mp_cpu_start_cleanup(struct cpu_info *);
138 1.2 bouyer const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
139 1.2 bouyer mp_cpu_start_cleanup };
140 1.2 bouyer
141 1.53 jruoho CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
142 1.53 jruoho cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
143 1.53 jruoho
144 1.10 cegger CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
145 1.2 bouyer vcpu_match, vcpu_attach, NULL, NULL);
146 1.2 bouyer
147 1.2 bouyer /*
148 1.2 bouyer * Statically-allocated CPU info for the primary CPU (or the only
149 1.2 bouyer * CPU, on uniprocessors). The CPU info list is initialized to
150 1.2 bouyer * point at it.
151 1.2 bouyer */
152 1.38 cegger struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
153 1.7 bouyer .ci_dev = 0,
154 1.2 bouyer .ci_self = &cpu_info_primary,
155 1.4 bouyer .ci_idepth = -1,
156 1.2 bouyer .ci_curlwp = &lwp0,
157 1.25 ad .ci_curldt = -1,
158 1.2 bouyer };
159 1.38 cegger struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
160 1.7 bouyer .ci_dev = 0,
161 1.2 bouyer .ci_self = &phycpu_info_primary,
162 1.2 bouyer };
163 1.2 bouyer
164 1.2 bouyer struct cpu_info *cpu_info_list = &cpu_info_primary;
165 1.38 cegger struct cpu_info *phycpu_info_list = &phycpu_info_primary;
166 1.2 bouyer
167 1.107 maxv uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits
168 1.43 jym * [0] basic features %edx
169 1.43 jym * [1] basic features %ecx
170 1.43 jym * [2] extended features %edx
171 1.43 jym * [3] extended features %ecx
172 1.43 jym * [4] VIA padlock features
173 1.102 christos * [5] structured extended features cpuid.7:%ebx
174 1.102 christos * [6] structured extended features cpuid.7:%ecx
175 1.43 jym */
176 1.43 jym
177 1.11 cegger bool x86_mp_online;
178 1.11 cegger paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
179 1.2 bouyer
180 1.38 cegger #if defined(MULTIPROCESSOR)
181 1.2 bouyer void cpu_hatch(void *);
182 1.2 bouyer static void cpu_boot_secondary(struct cpu_info *ci);
183 1.2 bouyer static void cpu_start_secondary(struct cpu_info *ci);
184 1.38 cegger #endif /* MULTIPROCESSOR */
185 1.2 bouyer
186 1.56 jruoho static int
187 1.10 cegger cpu_match(device_t parent, cfdata_t match, void *aux)
188 1.2 bouyer {
189 1.2 bouyer
190 1.2 bouyer return 1;
191 1.2 bouyer }
192 1.2 bouyer
193 1.56 jruoho static void
194 1.10 cegger cpu_attach(device_t parent, device_t self, void *aux)
195 1.2 bouyer {
196 1.10 cegger struct cpu_softc *sc = device_private(self);
197 1.2 bouyer struct cpu_attach_args *caa = aux;
198 1.2 bouyer struct cpu_info *ci;
199 1.34 cegger uintptr_t ptr;
200 1.52 bouyer static int nphycpu = 0;
201 1.2 bouyer
202 1.10 cegger sc->sc_dev = self;
203 1.10 cegger
204 1.2 bouyer /*
205 1.2 bouyer * If we're an Application Processor, allocate a cpu_info
206 1.52 bouyer * If we're the first attached CPU use the primary cpu_info,
207 1.52 bouyer * otherwise allocate a new one
208 1.2 bouyer */
209 1.52 bouyer aprint_naive("\n");
210 1.52 bouyer aprint_normal("\n");
211 1.52 bouyer if (nphycpu > 0) {
212 1.52 bouyer struct cpu_info *tmp;
213 1.34 cegger ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
214 1.34 cegger KM_SLEEP);
215 1.42 jym ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
216 1.24 ad ci->ci_curldt = -1;
217 1.52 bouyer
218 1.52 bouyer tmp = phycpu_info_list;
219 1.52 bouyer while (tmp->ci_next)
220 1.52 bouyer tmp = tmp->ci_next;
221 1.52 bouyer
222 1.52 bouyer tmp->ci_next = ci;
223 1.2 bouyer } else {
224 1.2 bouyer ci = &phycpu_info_primary;
225 1.2 bouyer }
226 1.2 bouyer
227 1.2 bouyer ci->ci_self = ci;
228 1.2 bouyer sc->sc_info = ci;
229 1.2 bouyer
230 1.2 bouyer ci->ci_dev = self;
231 1.50 jruoho ci->ci_acpiid = caa->cpu_id;
232 1.23 ad ci->ci_cpuid = caa->cpu_number;
233 1.16 cegger ci->ci_vcpu = NULL;
234 1.52 bouyer ci->ci_index = nphycpu++;
235 1.2 bouyer
236 1.52 bouyer if (!pmf_device_register(self, NULL, NULL))
237 1.52 bouyer aprint_error_dev(self, "couldn't establish power handler\n");
238 1.34 cegger
239 1.56 jruoho (void)config_defer(self, cpu_defer);
240 1.56 jruoho }
241 1.56 jruoho
242 1.56 jruoho static void
243 1.56 jruoho cpu_defer(device_t self)
244 1.56 jruoho {
245 1.56 jruoho cpu_rescan(self, NULL, NULL);
246 1.2 bouyer }
247 1.2 bouyer
248 1.56 jruoho static int
249 1.53 jruoho cpu_rescan(device_t self, const char *ifattr, const int *locators)
250 1.53 jruoho {
251 1.53 jruoho struct cpu_softc *sc = device_private(self);
252 1.53 jruoho struct cpufeature_attach_args cfaa;
253 1.53 jruoho struct cpu_info *ci = sc->sc_info;
254 1.53 jruoho
255 1.53 jruoho memset(&cfaa, 0, sizeof(cfaa));
256 1.53 jruoho cfaa.ci = ci;
257 1.53 jruoho
258 1.53 jruoho if (ifattr_match(ifattr, "cpufeaturebus")) {
259 1.53 jruoho
260 1.53 jruoho if (ci->ci_frequency == NULL) {
261 1.55 jruoho cfaa.name = "frequency";
262 1.54 jruoho ci->ci_frequency = config_found_ia(self,
263 1.54 jruoho "cpufeaturebus", &cfaa, NULL);
264 1.54 jruoho }
265 1.53 jruoho }
266 1.53 jruoho
267 1.53 jruoho return 0;
268 1.53 jruoho }
269 1.53 jruoho
270 1.56 jruoho static void
271 1.53 jruoho cpu_childdetached(device_t self, device_t child)
272 1.53 jruoho {
273 1.53 jruoho struct cpu_softc *sc = device_private(self);
274 1.53 jruoho struct cpu_info *ci = sc->sc_info;
275 1.53 jruoho
276 1.53 jruoho if (ci->ci_frequency == child)
277 1.53 jruoho ci->ci_frequency = NULL;
278 1.53 jruoho }
279 1.53 jruoho
280 1.56 jruoho static int
281 1.10 cegger vcpu_match(device_t parent, cfdata_t match, void *aux)
282 1.2 bouyer {
283 1.2 bouyer struct vcpu_attach_args *vcaa = aux;
284 1.62 cherry struct vcpu_runstate_info vcr;
285 1.62 cherry int error;
286 1.62 cherry
287 1.62 cherry if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
288 1.62 cherry error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
289 1.105 maxv vcaa->vcaa_caa.cpu_number, &vcr);
290 1.62 cherry switch (error) {
291 1.62 cherry case 0:
292 1.62 cherry return 1;
293 1.62 cherry case -ENOENT:
294 1.62 cherry return 0;
295 1.62 cherry default:
296 1.62 cherry panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
297 1.62 cherry }
298 1.62 cherry }
299 1.2 bouyer
300 1.2 bouyer return 0;
301 1.2 bouyer }
302 1.2 bouyer
303 1.56 jruoho static void
304 1.10 cegger vcpu_attach(device_t parent, device_t self, void *aux)
305 1.2 bouyer {
306 1.2 bouyer struct vcpu_attach_args *vcaa = aux;
307 1.2 bouyer
308 1.62 cherry KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
309 1.62 cherry vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
310 1.2 bouyer cpu_attach_common(parent, self, &vcaa->vcaa_caa);
311 1.65 jym
312 1.65 jym if (!pmf_device_register(self, NULL, NULL))
313 1.65 jym aprint_error_dev(self, "couldn't establish power handler\n");
314 1.2 bouyer }
315 1.2 bouyer
316 1.62 cherry static int
317 1.62 cherry vcpu_is_up(struct cpu_info *ci)
318 1.62 cherry {
319 1.62 cherry KASSERT(ci != NULL);
320 1.135 bouyer return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_vcpuid, NULL);
321 1.62 cherry }
322 1.62 cherry
323 1.2 bouyer static void
324 1.2 bouyer cpu_vm_init(struct cpu_info *ci)
325 1.2 bouyer {
326 1.2 bouyer int ncolors = 2, i;
327 1.2 bouyer
328 1.2 bouyer for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
329 1.2 bouyer struct x86_cache_info *cai;
330 1.2 bouyer int tcolors;
331 1.2 bouyer
332 1.2 bouyer cai = &ci->ci_cinfo[i];
333 1.2 bouyer
334 1.2 bouyer tcolors = atop(cai->cai_totalsize);
335 1.105 maxv switch (cai->cai_associativity) {
336 1.2 bouyer case 0xff:
337 1.2 bouyer tcolors = 1; /* fully associative */
338 1.2 bouyer break;
339 1.2 bouyer case 0:
340 1.2 bouyer case 1:
341 1.2 bouyer break;
342 1.2 bouyer default:
343 1.2 bouyer tcolors /= cai->cai_associativity;
344 1.2 bouyer }
345 1.127 riastrad ncolors = uimax(ncolors, tcolors);
346 1.2 bouyer }
347 1.2 bouyer
348 1.2 bouyer /*
349 1.67 mrg * Knowing the size of the largest cache on this CPU, potentially
350 1.67 mrg * re-color our pages.
351 1.2 bouyer */
352 1.28 bouyer aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
353 1.2 bouyer uvm_page_recolor(ncolors);
354 1.91 rmind pmap_tlb_cpu_init(ci);
355 1.109 maxv #ifndef __HAVE_DIRECT_MAP
356 1.109 maxv pmap_vpage_cpu_init(ci);
357 1.109 maxv #endif
358 1.2 bouyer }
359 1.2 bouyer
360 1.56 jruoho static void
361 1.11 cegger cpu_attach_common(device_t parent, device_t self, void *aux)
362 1.2 bouyer {
363 1.10 cegger struct cpu_softc *sc = device_private(self);
364 1.2 bouyer struct cpu_attach_args *caa = aux;
365 1.2 bouyer struct cpu_info *ci;
366 1.12 cegger uintptr_t ptr;
367 1.2 bouyer int cpunum = caa->cpu_number;
368 1.38 cegger static bool again = false;
369 1.2 bouyer
370 1.10 cegger sc->sc_dev = self;
371 1.10 cegger
372 1.2 bouyer /*
373 1.2 bouyer * If we're an Application Processor, allocate a cpu_info
374 1.2 bouyer * structure, otherwise use the primary's.
375 1.2 bouyer */
376 1.2 bouyer if (caa->cpu_role == CPU_ROLE_AP) {
377 1.12 cegger aprint_naive(": Application Processor\n");
378 1.31 cegger ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
379 1.31 cegger KM_SLEEP);
380 1.42 jym ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
381 1.12 cegger memset(ci, 0, sizeof(*ci));
382 1.117 bouyer cpu_init_tss(ci);
383 1.2 bouyer } else {
384 1.12 cegger aprint_naive(": %s Processor\n",
385 1.12 cegger caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
386 1.2 bouyer ci = &cpu_info_primary;
387 1.2 bouyer }
388 1.2 bouyer
389 1.2 bouyer ci->ci_self = ci;
390 1.2 bouyer sc->sc_info = ci;
391 1.2 bouyer ci->ci_dev = self;
392 1.23 ad ci->ci_cpuid = cpunum;
393 1.135 bouyer ci->ci_vcpuid = cpunum;
394 1.16 cegger
395 1.16 cegger KASSERT(HYPERVISOR_shared_info != NULL);
396 1.89 bouyer KASSERT(cpunum < XEN_LEGACY_MAX_VCPUS);
397 1.16 cegger ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
398 1.16 cegger
399 1.62 cherry KASSERT(ci->ci_func == 0);
400 1.2 bouyer ci->ci_func = caa->cpu_func;
401 1.101 msaitoh aprint_normal("\n");
402 1.2 bouyer
403 1.38 cegger /* Must be called before mi_cpu_attach(). */
404 1.38 cegger cpu_vm_init(ci);
405 1.38 cegger
406 1.2 bouyer if (caa->cpu_role == CPU_ROLE_AP) {
407 1.2 bouyer int error;
408 1.2 bouyer
409 1.2 bouyer error = mi_cpu_attach(ci);
410 1.62 cherry
411 1.62 cherry KASSERT(ci->ci_data.cpu_idlelwp != NULL);
412 1.2 bouyer if (error != 0) {
413 1.38 cegger aprint_error_dev(self,
414 1.38 cegger "mi_cpu_attach failed with %d\n", error);
415 1.2 bouyer return;
416 1.2 bouyer }
417 1.62 cherry
418 1.2 bouyer } else {
419 1.2 bouyer KASSERT(ci->ci_data.cpu_idlelwp != NULL);
420 1.2 bouyer }
421 1.2 bouyer
422 1.89 bouyer KASSERT(ci->ci_cpuid == ci->ci_index);
423 1.100 bouyer #ifdef __x86_64__
424 1.100 bouyer /* No user PGD mapped for this CPU yet */
425 1.100 bouyer ci->ci_xen_current_user_pgd = 0;
426 1.100 bouyer #endif
427 1.100 bouyer mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
428 1.2 bouyer pmap_reference(pmap_kernel());
429 1.2 bouyer ci->ci_pmap = pmap_kernel();
430 1.2 bouyer ci->ci_tlbstate = TLBSTATE_STALE;
431 1.2 bouyer
432 1.38 cegger /*
433 1.38 cegger * Boot processor may not be attached first, but the below
434 1.38 cegger * must be done to allow booting other processors.
435 1.38 cegger */
436 1.38 cegger if (!again) {
437 1.38 cegger atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
438 1.38 cegger /* Basic init. */
439 1.38 cegger cpu_intr_init(ci);
440 1.38 cegger cpu_get_tsc_freq(ci);
441 1.38 cegger cpu_init(ci);
442 1.78 cherry pmap_cpu_init_late(ci);
443 1.62 cherry
444 1.99 snj /* Every processor needs to init its own ipi h/w (similar to lapic) */
445 1.62 cherry xen_ipi_init();
446 1.62 cherry
447 1.38 cegger /* Make sure DELAY() is initialized. */
448 1.38 cegger DELAY(1);
449 1.38 cegger again = true;
450 1.38 cegger }
451 1.38 cegger
452 1.2 bouyer /* further PCB init done later. */
453 1.2 bouyer
454 1.2 bouyer switch (caa->cpu_role) {
455 1.2 bouyer case CPU_ROLE_SP:
456 1.38 cegger atomic_or_32(&ci->ci_flags, CPUF_SP);
457 1.21 ad cpu_identify(ci);
458 1.38 cegger x86_cpu_idle_init();
459 1.2 bouyer break;
460 1.2 bouyer
461 1.2 bouyer case CPU_ROLE_BP:
462 1.38 cegger atomic_or_32(&ci->ci_flags, CPUF_BSP);
463 1.21 ad cpu_identify(ci);
464 1.38 cegger x86_cpu_idle_init();
465 1.2 bouyer break;
466 1.2 bouyer
467 1.2 bouyer case CPU_ROLE_AP:
468 1.62 cherry atomic_or_32(&ci->ci_flags, CPUF_AP);
469 1.62 cherry
470 1.2 bouyer /*
471 1.2 bouyer * report on an AP
472 1.2 bouyer */
473 1.2 bouyer
474 1.2 bouyer #if defined(MULTIPROCESSOR)
475 1.62 cherry /* interrupt handler stack */
476 1.2 bouyer cpu_intr_init(ci);
477 1.62 cherry
478 1.62 cherry /* Setup per-cpu memory for gdt */
479 1.2 bouyer gdt_alloc_cpu(ci);
480 1.62 cherry
481 1.62 cherry pmap_cpu_init_late(ci);
482 1.2 bouyer cpu_start_secondary(ci);
483 1.62 cherry
484 1.2 bouyer if (ci->ci_flags & CPUF_PRESENT) {
485 1.30 cegger struct cpu_info *tmp;
486 1.30 cegger
487 1.62 cherry cpu_identify(ci);
488 1.30 cegger tmp = cpu_info_list;
489 1.30 cegger while (tmp->ci_next)
490 1.30 cegger tmp = tmp->ci_next;
491 1.30 cegger
492 1.30 cegger tmp->ci_next = ci;
493 1.2 bouyer }
494 1.2 bouyer #else
495 1.101 msaitoh aprint_error_dev(ci->ci_dev, "not started\n");
496 1.2 bouyer #endif
497 1.2 bouyer break;
498 1.2 bouyer
499 1.2 bouyer default:
500 1.2 bouyer panic("unknown processor type??\n");
501 1.2 bouyer }
502 1.2 bouyer
503 1.62 cherry #ifdef MPVERBOSE
504 1.2 bouyer if (mp_verbose) {
505 1.2 bouyer struct lwp *l = ci->ci_data.cpu_idlelwp;
506 1.37 rmind struct pcb *pcb = lwp_getpcb(l);
507 1.2 bouyer
508 1.38 cegger aprint_verbose_dev(self,
509 1.133 rin "idle lwp at %p, idle sp at %p\n",
510 1.12 cegger l,
511 1.12 cegger #ifdef i386
512 1.37 rmind (void *)pcb->pcb_esp
513 1.105 maxv #else
514 1.37 rmind (void *)pcb->pcb_rsp
515 1.105 maxv #endif
516 1.12 cegger );
517 1.12 cegger
518 1.2 bouyer }
519 1.62 cherry #endif /* MPVERBOSE */
520 1.2 bouyer }
521 1.2 bouyer
522 1.2 bouyer /*
523 1.2 bouyer * Initialize the processor appropriately.
524 1.2 bouyer */
525 1.2 bouyer
526 1.2 bouyer void
527 1.10 cegger cpu_init(struct cpu_info *ci)
528 1.2 bouyer {
529 1.122 jdolecek uint32_t cr4 = 0;
530 1.2 bouyer
531 1.2 bouyer /*
532 1.2 bouyer * If we have FXSAVE/FXRESTOR, use them.
533 1.2 bouyer */
534 1.43 jym if (cpu_feature[0] & CPUID_FXSR) {
535 1.122 jdolecek cr4 |= CR4_OSFXSR;
536 1.2 bouyer
537 1.2 bouyer /*
538 1.2 bouyer * If we have SSE/SSE2, enable XMM exceptions.
539 1.2 bouyer */
540 1.43 jym if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
541 1.122 jdolecek cr4 |= CR4_OSXMMEXCPT;
542 1.122 jdolecek }
543 1.122 jdolecek
544 1.122 jdolecek /* If xsave is supported, enable it */
545 1.122 jdolecek if (cpu_feature[1] & CPUID2_XSAVE && x86_fpu_save >= FPU_SAVE_XSAVE)
546 1.122 jdolecek cr4 |= CR4_OSXSAVE;
547 1.122 jdolecek
548 1.122 jdolecek if (cr4) {
549 1.122 jdolecek cr4 |= rcr4();
550 1.122 jdolecek lcr4(cr4);
551 1.2 bouyer }
552 1.2 bouyer
553 1.116 maxv if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
554 1.120 maxv fpuinit_mxcsr_mask();
555 1.118 jdolecek }
556 1.118 jdolecek
557 1.122 jdolecek /*
558 1.122 jdolecek * Changing CR4 register may change cpuid values. For example, setting
559 1.122 jdolecek * CR4_OSXSAVE sets CPUID2_OSXSAVE. The CPUID2_OSXSAVE is in
560 1.122 jdolecek * ci_feat_val[1], so update it.
561 1.122 jdolecek * XXX Other than ci_feat_val[1] might be changed.
562 1.122 jdolecek */
563 1.122 jdolecek if (cpuid_level >= 1) {
564 1.122 jdolecek u_int descs[4];
565 1.122 jdolecek
566 1.122 jdolecek x86_cpuid(1, descs);
567 1.122 jdolecek ci->ci_feat_val[1] = descs[2];
568 1.122 jdolecek }
569 1.122 jdolecek
570 1.122 jdolecek /* If xsave is enabled, enable all fpu features */
571 1.122 jdolecek if (cr4 & CR4_OSXSAVE) {
572 1.122 jdolecek wrxcr(0, x86_xsave_features & XCR0_FPU);
573 1.122 jdolecek }
574 1.122 jdolecek
575 1.11 cegger atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
576 1.2 bouyer }
577 1.2 bouyer
578 1.2 bouyer
579 1.2 bouyer #ifdef MULTIPROCESSOR
580 1.62 cherry
581 1.2 bouyer void
582 1.10 cegger cpu_boot_secondary_processors(void)
583 1.2 bouyer {
584 1.2 bouyer struct cpu_info *ci;
585 1.123 bouyer kcpuset_t *cpus;
586 1.2 bouyer u_long i;
587 1.123 bouyer
588 1.123 bouyer kcpuset_create(&cpus, true);
589 1.123 bouyer kcpuset_set(cpus, cpu_index(curcpu()));
590 1.38 cegger for (i = 0; i < maxcpus; i++) {
591 1.38 cegger ci = cpu_lookup(i);
592 1.2 bouyer if (ci == NULL)
593 1.2 bouyer continue;
594 1.2 bouyer if (ci->ci_data.cpu_idlelwp == NULL)
595 1.2 bouyer continue;
596 1.2 bouyer if ((ci->ci_flags & CPUF_PRESENT) == 0)
597 1.2 bouyer continue;
598 1.2 bouyer if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
599 1.2 bouyer continue;
600 1.2 bouyer cpu_boot_secondary(ci);
601 1.123 bouyer kcpuset_set(cpus, cpu_index(ci));
602 1.2 bouyer }
603 1.123 bouyer while (!kcpuset_match(cpus, kcpuset_running))
604 1.123 bouyer ;
605 1.123 bouyer kcpuset_destroy(cpus);
606 1.11 cegger
607 1.11 cegger x86_mp_online = true;
608 1.2 bouyer }
609 1.2 bouyer
610 1.2 bouyer static void
611 1.2 bouyer cpu_init_idle_lwp(struct cpu_info *ci)
612 1.2 bouyer {
613 1.2 bouyer struct lwp *l = ci->ci_data.cpu_idlelwp;
614 1.37 rmind struct pcb *pcb = lwp_getpcb(l);
615 1.2 bouyer
616 1.2 bouyer pcb->pcb_cr0 = rcr0();
617 1.2 bouyer }
618 1.2 bouyer
619 1.2 bouyer void
620 1.10 cegger cpu_init_idle_lwps(void)
621 1.2 bouyer {
622 1.2 bouyer struct cpu_info *ci;
623 1.2 bouyer u_long i;
624 1.2 bouyer
625 1.38 cegger for (i = 0; i < maxcpus; i++) {
626 1.38 cegger ci = cpu_lookup(i);
627 1.2 bouyer if (ci == NULL)
628 1.2 bouyer continue;
629 1.2 bouyer if (ci->ci_data.cpu_idlelwp == NULL)
630 1.2 bouyer continue;
631 1.2 bouyer if ((ci->ci_flags & CPUF_PRESENT) == 0)
632 1.2 bouyer continue;
633 1.2 bouyer cpu_init_idle_lwp(ci);
634 1.2 bouyer }
635 1.2 bouyer }
636 1.2 bouyer
637 1.62 cherry static void
638 1.10 cegger cpu_start_secondary(struct cpu_info *ci)
639 1.2 bouyer {
640 1.2 bouyer int i;
641 1.2 bouyer
642 1.11 cegger aprint_debug_dev(ci->ci_dev, "starting\n");
643 1.2 bouyer
644 1.2 bouyer ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
645 1.62 cherry
646 1.62 cherry if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
647 1.11 cegger return;
648 1.62 cherry }
649 1.2 bouyer
650 1.2 bouyer /*
651 1.2 bouyer * wait for it to become ready
652 1.2 bouyer */
653 1.11 cegger for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
654 1.2 bouyer delay(10);
655 1.2 bouyer }
656 1.11 cegger if ((ci->ci_flags & CPUF_PRESENT) == 0) {
657 1.9 cegger aprint_error_dev(ci->ci_dev, "failed to become ready\n");
658 1.2 bouyer #if defined(MPDEBUG) && defined(DDB)
659 1.2 bouyer printf("dropping into debugger; continue from here to resume boot\n");
660 1.2 bouyer Debugger();
661 1.2 bouyer #endif
662 1.2 bouyer }
663 1.2 bouyer
664 1.2 bouyer CPU_START_CLEANUP(ci);
665 1.2 bouyer }
666 1.2 bouyer
667 1.2 bouyer void
668 1.10 cegger cpu_boot_secondary(struct cpu_info *ci)
669 1.2 bouyer {
670 1.2 bouyer int i;
671 1.11 cegger atomic_or_32(&ci->ci_flags, CPUF_GO);
672 1.11 cegger for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
673 1.2 bouyer delay(10);
674 1.2 bouyer }
675 1.11 cegger if ((ci->ci_flags & CPUF_RUNNING) == 0) {
676 1.11 cegger aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
677 1.2 bouyer #if defined(MPDEBUG) && defined(DDB)
678 1.2 bouyer printf("dropping into debugger; continue from here to resume boot\n");
679 1.2 bouyer Debugger();
680 1.2 bouyer #endif
681 1.2 bouyer }
682 1.2 bouyer }
683 1.2 bouyer
684 1.2 bouyer /*
685 1.62 cherry * APs end up here immediately after initialisation and VCPUOP_up in
686 1.62 cherry * mp_cpu_start().
687 1.62 cherry * At this point, we are running in the idle pcb/idle stack of the new
688 1.62 cherry * CPU. This function jumps to the idle loop and starts looking for
689 1.62 cherry * work.
690 1.2 bouyer */
691 1.62 cherry extern void x86_64_tls_switch(struct lwp *);
692 1.2 bouyer void
693 1.2 bouyer cpu_hatch(void *v)
694 1.2 bouyer {
695 1.2 bouyer struct cpu_info *ci = (struct cpu_info *)v;
696 1.37 rmind struct pcb *pcb;
697 1.11 cegger int s, i;
698 1.11 cegger
699 1.62 cherry /* Setup TLS and kernel GS/FS */
700 1.62 cherry cpu_init_msrs(ci, true);
701 1.62 cherry cpu_init_idt();
702 1.62 cherry gdt_init_cpu(ci);
703 1.62 cherry
704 1.21 ad cpu_probe(ci);
705 1.11 cegger
706 1.62 cherry atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
707 1.2 bouyer
708 1.11 cegger while ((ci->ci_flags & CPUF_GO) == 0) {
709 1.11 cegger /* Don't use delay, boot CPU may be patching the text. */
710 1.11 cegger for (i = 10000; i != 0; i--)
711 1.11 cegger x86_pause();
712 1.11 cegger }
713 1.2 bouyer
714 1.11 cegger /* Because the text may have been patched in x86_patch(). */
715 1.11 cegger x86_flush();
716 1.58 rmind tlbflushg();
717 1.2 bouyer
718 1.11 cegger KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
719 1.2 bouyer
720 1.132 bouyer KASSERT(ci->ci_curlwp == ci->ci_data.cpu_idlelwp);
721 1.132 bouyer KASSERT(curlwp == ci->ci_data.cpu_idlelwp);
722 1.37 rmind pcb = lwp_getpcb(curlwp);
723 1.85 cherry pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
724 1.37 rmind
725 1.62 cherry xen_ipi_init();
726 1.62 cherry
727 1.136 ad xen_initclocks();
728 1.105 maxv
729 1.62 cherry #ifdef __x86_64__
730 1.12 cegger fpuinit(ci);
731 1.12 cegger #endif
732 1.2 bouyer
733 1.2 bouyer lldt(GSEL(GLDT_SEL, SEL_KPL));
734 1.2 bouyer
735 1.2 bouyer cpu_init(ci);
736 1.11 cegger cpu_get_tsc_freq(ci);
737 1.2 bouyer
738 1.2 bouyer s = splhigh();
739 1.11 cegger x86_enable_intr();
740 1.11 cegger splx(s);
741 1.2 bouyer
742 1.62 cherry aprint_debug_dev(ci->ci_dev, "running\n");
743 1.62 cherry
744 1.132 bouyer KASSERT(ci->ci_curlwp == ci->ci_data.cpu_idlelwp);
745 1.91 rmind idle_loop(NULL);
746 1.91 rmind KASSERT(false);
747 1.2 bouyer }
748 1.2 bouyer
749 1.2 bouyer #if defined(DDB)
750 1.2 bouyer
751 1.2 bouyer #include <ddb/db_output.h>
752 1.2 bouyer #include <machine/db_machdep.h>
753 1.2 bouyer
754 1.2 bouyer /*
755 1.2 bouyer * Dump CPU information from ddb.
756 1.2 bouyer */
757 1.2 bouyer void
758 1.2 bouyer cpu_debug_dump(void)
759 1.2 bouyer {
760 1.2 bouyer struct cpu_info *ci;
761 1.2 bouyer CPU_INFO_ITERATOR cii;
762 1.2 bouyer
763 1.130 maxv db_printf("addr dev id flags ipis curlwp\n");
764 1.2 bouyer for (CPU_INFO_FOREACH(cii, ci)) {
765 1.130 maxv db_printf("%p %s %ld %x %x %10p\n",
766 1.2 bouyer ci,
767 1.9 cegger ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
768 1.135 bouyer (long)ci->ci_vcpuid,
769 1.2 bouyer ci->ci_flags, ci->ci_ipis,
770 1.130 maxv ci->ci_curlwp);
771 1.2 bouyer }
772 1.2 bouyer }
773 1.38 cegger #endif /* DDB */
774 1.2 bouyer
775 1.62 cherry #endif /* MULTIPROCESSOR */
776 1.62 cherry
777 1.62 cherry extern void hypervisor_callback(void);
778 1.62 cherry extern void failsafe_callback(void);
779 1.62 cherry #ifdef __x86_64__
780 1.62 cherry typedef void (vector)(void);
781 1.62 cherry extern vector Xsyscall, Xsyscall32;
782 1.62 cherry #endif
783 1.62 cherry
784 1.62 cherry /*
785 1.62 cherry * Setup the "trampoline". On Xen, we setup nearly all cpu context
786 1.62 cherry * outside a trampoline, so we prototype and call targetip like so:
787 1.62 cherry * void targetip(struct cpu_info *);
788 1.62 cherry */
789 1.62 cherry
790 1.2 bouyer static void
791 1.62 cherry gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
792 1.2 bouyer {
793 1.104 msaitoh int i;
794 1.111 bouyer for (i = 0; i < entries; i++) {
795 1.105 maxv frames[i] = ((paddr_t)xpmap_ptetomach(
796 1.105 maxv (pt_entry_t *)(base + (i << PAGE_SHIFT)))) >> PAGE_SHIFT;
797 1.62 cherry
798 1.62 cherry /* Mark Read-only */
799 1.62 cherry pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
800 1.129 maxv PTE_W);
801 1.62 cherry }
802 1.62 cherry }
803 1.62 cherry
804 1.62 cherry #ifdef __x86_64__
805 1.85 cherry extern char *ldtstore;
806 1.62 cherry
807 1.62 cherry static void
808 1.105 maxv xen_init_amd64_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
809 1.105 maxv void targetrip(struct cpu_info *))
810 1.62 cherry {
811 1.62 cherry /* page frames to point at GDT */
812 1.62 cherry extern int gdt_size;
813 1.62 cherry paddr_t frames[16];
814 1.62 cherry psize_t gdt_ents;
815 1.62 cherry
816 1.62 cherry struct lwp *l;
817 1.62 cherry struct pcb *pcb;
818 1.62 cherry
819 1.62 cherry volatile struct vcpu_info *vci;
820 1.62 cherry
821 1.62 cherry KASSERT(ci != NULL);
822 1.62 cherry KASSERT(ci != &cpu_info_primary);
823 1.62 cherry KASSERT(initctx != NULL);
824 1.62 cherry KASSERT(targetrip != NULL);
825 1.62 cherry
826 1.105 maxv memset(initctx, 0, sizeof(*initctx));
827 1.62 cherry
828 1.104 msaitoh gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
829 1.62 cherry KASSERT(gdt_ents <= 16);
830 1.62 cherry
831 1.105 maxv gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
832 1.62 cherry
833 1.62 cherry /* Initialise the vcpu context: We use idle_loop()'s pcb context. */
834 1.11 cegger
835 1.62 cherry l = ci->ci_data.cpu_idlelwp;
836 1.11 cegger
837 1.62 cherry KASSERT(l != NULL);
838 1.62 cherry pcb = lwp_getpcb(l);
839 1.62 cherry KASSERT(pcb != NULL);
840 1.11 cegger
841 1.62 cherry /* resume with interrupts off */
842 1.62 cherry vci = ci->ci_vcpu;
843 1.62 cherry vci->evtchn_upcall_mask = 1;
844 1.62 cherry xen_mb();
845 1.2 bouyer
846 1.62 cherry /* resume in kernel-mode */
847 1.62 cherry initctx->flags = VGCF_in_kernel | VGCF_online;
848 1.2 bouyer
849 1.62 cherry /* Stack and entry points:
850 1.62 cherry * We arrange for the stack frame for cpu_hatch() to
851 1.62 cherry * appear as a callee frame of lwp_trampoline(). Being a
852 1.62 cherry * leaf frame prevents trampling on any of the MD stack setup
853 1.62 cherry * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
854 1.62 cherry */
855 1.2 bouyer
856 1.62 cherry initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
857 1.62 cherry initctx->user_regs.rip = (vaddr_t) targetrip;
858 1.2 bouyer
859 1.62 cherry initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
860 1.11 cegger
861 1.62 cherry initctx->user_regs.rflags = pcb->pcb_flags;
862 1.62 cherry initctx->user_regs.rsp = pcb->pcb_rsp;
863 1.11 cegger
864 1.62 cherry /* Data segments */
865 1.62 cherry initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
866 1.62 cherry initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
867 1.62 cherry initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
868 1.62 cherry
869 1.62 cherry /* GDT */
870 1.105 maxv memcpy(initctx->gdt_frames, frames, sizeof(frames));
871 1.62 cherry initctx->gdt_ents = gdt_ents;
872 1.62 cherry
873 1.62 cherry /* LDT */
874 1.105 maxv initctx->ldt_base = (unsigned long)ldtstore;
875 1.62 cherry initctx->ldt_ents = LDT_SIZE >> 3;
876 1.62 cherry
877 1.62 cherry /* Kernel context state */
878 1.62 cherry initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
879 1.62 cherry initctx->kernel_sp = pcb->pcb_rsp0;
880 1.62 cherry initctx->ctrlreg[0] = pcb->pcb_cr0;
881 1.62 cherry initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
882 1.105 maxv initctx->ctrlreg[2] = (vaddr_t)targetrip;
883 1.105 maxv /*
884 1.62 cherry * Use pmap_kernel() L4 PD directly, until we setup the
885 1.62 cherry * per-cpu L4 PD in pmap_cpu_init_late()
886 1.2 bouyer */
887 1.70 cherry initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
888 1.62 cherry initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
889 1.2 bouyer
890 1.62 cherry /* Xen callbacks */
891 1.105 maxv initctx->event_callback_eip = (unsigned long)hypervisor_callback;
892 1.105 maxv initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
893 1.105 maxv initctx->syscall_callback_eip = (unsigned long)Xsyscall;
894 1.62 cherry
895 1.62 cherry return;
896 1.2 bouyer }
897 1.62 cherry #else /* i386 */
898 1.108 maxv extern union descriptor *ldtstore;
899 1.62 cherry extern void Xsyscall(void);
900 1.62 cherry
901 1.11 cegger static void
902 1.105 maxv xen_init_i386_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
903 1.105 maxv void targeteip(struct cpu_info *))
904 1.62 cherry {
905 1.62 cherry /* page frames to point at GDT */
906 1.62 cherry extern int gdt_size;
907 1.62 cherry paddr_t frames[16];
908 1.62 cherry psize_t gdt_ents;
909 1.62 cherry
910 1.62 cherry struct lwp *l;
911 1.62 cherry struct pcb *pcb;
912 1.62 cherry
913 1.62 cherry volatile struct vcpu_info *vci;
914 1.62 cherry
915 1.62 cherry KASSERT(ci != NULL);
916 1.62 cherry KASSERT(ci != &cpu_info_primary);
917 1.62 cherry KASSERT(initctx != NULL);
918 1.62 cherry KASSERT(targeteip != NULL);
919 1.62 cherry
920 1.105 maxv memset(initctx, 0, sizeof(*initctx));
921 1.11 cegger
922 1.85 cherry gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
923 1.62 cherry KASSERT(gdt_ents <= 16);
924 1.2 bouyer
925 1.105 maxv gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
926 1.2 bouyer
927 1.62 cherry /*
928 1.62 cherry * Initialise the vcpu context:
929 1.62 cherry * We use this cpu's idle_loop() pcb context.
930 1.11 cegger */
931 1.11 cegger
932 1.62 cherry l = ci->ci_data.cpu_idlelwp;
933 1.62 cherry
934 1.62 cherry KASSERT(l != NULL);
935 1.62 cherry pcb = lwp_getpcb(l);
936 1.62 cherry KASSERT(pcb != NULL);
937 1.62 cherry
938 1.62 cherry /* resume with interrupts off */
939 1.62 cherry vci = ci->ci_vcpu;
940 1.62 cherry vci->evtchn_upcall_mask = 1;
941 1.62 cherry xen_mb();
942 1.62 cherry
943 1.62 cherry /* resume in kernel-mode */
944 1.62 cherry initctx->flags = VGCF_in_kernel | VGCF_online;
945 1.62 cherry
946 1.62 cherry /* Stack frame setup for cpu_hatch():
947 1.62 cherry * We arrange for the stack frame for cpu_hatch() to
948 1.62 cherry * appear as a callee frame of lwp_trampoline(). Being a
949 1.62 cherry * leaf frame prevents trampling on any of the MD stack setup
950 1.62 cherry * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
951 1.2 bouyer */
952 1.2 bouyer
953 1.62 cherry initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
954 1.62 cherry arg1 */
955 1.105 maxv {
956 1.105 maxv /* targeteip(ci); */
957 1.105 maxv uint32_t *arg = (uint32_t *)initctx->user_regs.esp;
958 1.105 maxv arg[1] = (uint32_t)ci; /* arg1 */
959 1.62 cherry }
960 1.2 bouyer
961 1.105 maxv initctx->user_regs.eip = (vaddr_t)targeteip;
962 1.62 cherry initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
963 1.62 cherry initctx->user_regs.eflags |= pcb->pcb_iopl;
964 1.62 cherry
965 1.62 cherry /* Data segments */
966 1.62 cherry initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
967 1.62 cherry initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
968 1.62 cherry initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
969 1.62 cherry initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
970 1.62 cherry
971 1.62 cherry /* GDT */
972 1.105 maxv memcpy(initctx->gdt_frames, frames, sizeof(frames));
973 1.62 cherry initctx->gdt_ents = gdt_ents;
974 1.62 cherry
975 1.62 cherry /* LDT */
976 1.108 maxv initctx->ldt_base = (unsigned long)ldtstore;
977 1.62 cherry initctx->ldt_ents = NLDT;
978 1.62 cherry
979 1.62 cherry /* Kernel context state */
980 1.62 cherry initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
981 1.62 cherry initctx->kernel_sp = pcb->pcb_esp0;
982 1.62 cherry initctx->ctrlreg[0] = pcb->pcb_cr0;
983 1.62 cherry initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
984 1.105 maxv initctx->ctrlreg[2] = (vaddr_t)targeteip;
985 1.70 cherry initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
986 1.105 maxv initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;
987 1.2 bouyer
988 1.62 cherry /* Xen callbacks */
989 1.105 maxv initctx->event_callback_eip = (unsigned long)hypervisor_callback;
990 1.62 cherry initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
991 1.105 maxv initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
992 1.62 cherry initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
993 1.45 rmind
994 1.62 cherry return;
995 1.62 cherry }
996 1.62 cherry #endif /* __x86_64__ */
997 1.45 rmind
998 1.62 cherry int
999 1.62 cherry mp_cpu_start(struct cpu_info *ci, vaddr_t target)
1000 1.62 cherry {
1001 1.62 cherry int hyperror;
1002 1.62 cherry struct vcpu_guest_context vcpuctx;
1003 1.2 bouyer
1004 1.62 cherry KASSERT(ci != NULL);
1005 1.62 cherry KASSERT(ci != &cpu_info_primary);
1006 1.62 cherry KASSERT(ci->ci_flags & CPUF_AP);
1007 1.62 cherry
1008 1.62 cherry #ifdef __x86_64__
1009 1.62 cherry xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
1010 1.105 maxv #else
1011 1.62 cherry xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
1012 1.105 maxv #endif
1013 1.62 cherry
1014 1.62 cherry /* Initialise the given vcpu to execute cpu_hatch(ci); */
1015 1.135 bouyer if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_vcpuid, &vcpuctx))) {
1016 1.62 cherry aprint_error(": context initialisation failed. errno = %d\n", hyperror);
1017 1.62 cherry return hyperror;
1018 1.62 cherry }
1019 1.62 cherry
1020 1.62 cherry /* Start it up */
1021 1.62 cherry
1022 1.70 cherry /* First bring it down */
1023 1.135 bouyer if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_vcpuid, NULL))) {
1024 1.62 cherry aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
1025 1.62 cherry return hyperror;
1026 1.62 cherry }
1027 1.62 cherry
1028 1.135 bouyer if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_vcpuid, NULL))) {
1029 1.62 cherry aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
1030 1.62 cherry return hyperror;
1031 1.62 cherry }
1032 1.2 bouyer
1033 1.62 cherry if (!vcpu_is_up(ci)) {
1034 1.62 cherry aprint_error(": did not come up\n");
1035 1.62 cherry return -1;
1036 1.2 bouyer }
1037 1.62 cherry
1038 1.2 bouyer return 0;
1039 1.2 bouyer }
1040 1.2 bouyer
1041 1.2 bouyer void
1042 1.2 bouyer mp_cpu_start_cleanup(struct cpu_info *ci)
1043 1.2 bouyer {
1044 1.62 cherry if (vcpu_is_up(ci)) {
1045 1.62 cherry aprint_debug_dev(ci->ci_dev, "is started.\n");
1046 1.105 maxv } else {
1047 1.62 cherry aprint_error_dev(ci->ci_dev, "did not start up.\n");
1048 1.62 cherry }
1049 1.2 bouyer }
1050 1.2 bouyer
1051 1.2 bouyer void
1052 1.3 bouyer cpu_init_msrs(struct cpu_info *ci, bool full)
1053 1.2 bouyer {
1054 1.43 jym #ifdef __x86_64__
1055 1.3 bouyer if (full) {
1056 1.105 maxv HYPERVISOR_set_segment_base(SEGBASE_FS, 0);
1057 1.105 maxv HYPERVISOR_set_segment_base(SEGBASE_GS_KERNEL, (uint64_t)ci);
1058 1.105 maxv HYPERVISOR_set_segment_base(SEGBASE_GS_USER, 0);
1059 1.3 bouyer }
1060 1.105 maxv #endif
1061 1.44 jym
1062 1.44 jym if (cpu_feature[2] & CPUID_NOX)
1063 1.44 jym wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1064 1.2 bouyer }
1065 1.2 bouyer
1066 1.95 christos void
1067 1.95 christos cpu_offline_md(void)
1068 1.95 christos {
1069 1.130 maxv return;
1070 1.95 christos }
1071 1.95 christos
1072 1.105 maxv void
1073 1.2 bouyer cpu_get_tsc_freq(struct cpu_info *ci)
1074 1.2 bouyer {
1075 1.62 cherry uint32_t vcpu_tversion;
1076 1.16 cegger const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1077 1.62 cherry
1078 1.62 cherry vcpu_tversion = tinfo->version;
1079 1.62 cherry while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
1080 1.62 cherry
1081 1.2 bouyer uint64_t freq = 1000000000ULL << 32;
1082 1.2 bouyer freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1083 1.105 maxv if (tinfo->tsc_shift < 0)
1084 1.2 bouyer freq = freq << -tinfo->tsc_shift;
1085 1.2 bouyer else
1086 1.2 bouyer freq = freq >> tinfo->tsc_shift;
1087 1.20 ad ci->ci_data.cpu_cc_freq = freq;
1088 1.2 bouyer }
1089 1.19 joerg
1090 1.47 jym /*
1091 1.47 jym * Loads pmap for the current CPU.
1092 1.47 jym */
1093 1.47 jym void
1094 1.81 bouyer cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1095 1.47 jym {
1096 1.81 bouyer struct cpu_info *ci = curcpu();
1097 1.92 rmind cpuid_t cid = cpu_index(ci);
1098 1.125 maxv int i;
1099 1.81 bouyer
1100 1.124 maxv KASSERT(pmap != pmap_kernel());
1101 1.124 maxv
1102 1.81 bouyer mutex_enter(&ci->ci_kpm_mtx);
1103 1.93 jym /* make new pmap visible to xen_kpm_sync() */
1104 1.92 rmind kcpuset_atomic_set(pmap->pm_xen_ptp_cpus, cid);
1105 1.105 maxv
1106 1.47 jym #ifdef __x86_64__
1107 1.125 maxv pd_entry_t *new_pgd;
1108 1.125 maxv paddr_t l4_pd_ma;
1109 1.81 bouyer
1110 1.125 maxv l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
1111 1.47 jym
1112 1.125 maxv /*
1113 1.125 maxv * Map user space address in kernel space and load
1114 1.125 maxv * user cr3
1115 1.125 maxv */
1116 1.125 maxv new_pgd = pmap->pm_pdir;
1117 1.125 maxv KASSERT(pmap == ci->ci_pmap);
1118 1.70 cherry
1119 1.125 maxv /* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
1120 1.126 maxv for (i = 0; i < PDIR_SLOT_USERLIM; i++) {
1121 1.125 maxv KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
1122 1.125 maxv if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
1123 1.125 maxv xpq_queue_pte_update(l4_pd_ma + i * sizeof(pd_entry_t),
1124 1.125 maxv new_pgd[i]);
1125 1.81 bouyer }
1126 1.125 maxv }
1127 1.70 cherry
1128 1.125 maxv xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1129 1.125 maxv ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1130 1.125 maxv #else
1131 1.125 maxv paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1132 1.125 maxv /* don't update the kernel L3 slot */
1133 1.125 maxv for (i = 0; i < PDP_SIZE - 1; i++) {
1134 1.125 maxv xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1135 1.129 maxv xpmap_ptom(pmap->pm_pdirpa[i]) | PTE_P);
1136 1.70 cherry }
1137 1.124 maxv #endif
1138 1.70 cherry
1139 1.125 maxv tlbflush();
1140 1.125 maxv
1141 1.93 jym /* old pmap no longer visible to xen_kpm_sync() */
1142 1.92 rmind if (oldpmap != pmap_kernel()) {
1143 1.92 rmind kcpuset_atomic_clear(oldpmap->pm_xen_ptp_cpus, cid);
1144 1.92 rmind }
1145 1.81 bouyer mutex_exit(&ci->ci_kpm_mtx);
1146 1.47 jym }
1147 1.61 cherry
1148 1.105 maxv /*
1149 1.105 maxv * pmap_cpu_init_late: perform late per-CPU initialization.
1150 1.105 maxv *
1151 1.105 maxv * Short note about percpu PDIR pages. Both the PAE and __x86_64__ architectures
1152 1.105 maxv * have per-cpu PDIR tables, for two different reasons:
1153 1.105 maxv * - on PAE, this is to get around Xen's pagetable setup constraints (multiple
1154 1.105 maxv * L3[3]s cannot point to the same L2 - Xen will refuse to pin a table set up
1155 1.105 maxv * this way).
1156 1.105 maxv * - on __x86_64__, this is for multiple CPUs to map in different user pmaps
1157 1.105 maxv * (see cpu_load_pmap()).
1158 1.105 maxv *
1159 1.105 maxv * What this means for us is that the PDIR of the pmap_kernel() is considered
1160 1.105 maxv * to be a canonical "SHADOW" PDIR with the following properties:
1161 1.105 maxv * - its recursive mapping points to itself
1162 1.105 maxv * - per-cpu recursive mappings point to themselves on __x86_64__
1163 1.105 maxv * - per-cpu L4 pages' kernel entries are expected to be in sync with
1164 1.105 maxv * the shadow
1165 1.105 maxv */
1166 1.70 cherry
1167 1.70 cherry void
1168 1.70 cherry pmap_cpu_init_late(struct cpu_info *ci)
1169 1.70 cherry {
1170 1.125 maxv int i;
1171 1.125 maxv
1172 1.70 cherry /*
1173 1.70 cherry * The BP has already its own PD page allocated during early
1174 1.70 cherry * MD startup.
1175 1.70 cherry */
1176 1.70 cherry
1177 1.124 maxv #ifdef __x86_64__
1178 1.78 cherry /* Setup per-cpu normal_pdes */
1179 1.78 cherry extern pd_entry_t * const normal_pdes[];
1180 1.78 cherry for (i = 0;i < PTP_LEVELS - 1;i++) {
1181 1.78 cherry ci->ci_normal_pdes[i] = normal_pdes[i];
1182 1.78 cherry }
1183 1.124 maxv #endif
1184 1.78 cherry
1185 1.70 cherry if (ci == &cpu_info_primary)
1186 1.70 cherry return;
1187 1.70 cherry
1188 1.70 cherry KASSERT(ci != NULL);
1189 1.70 cherry
1190 1.124 maxv #if defined(i386)
1191 1.73 cherry cpu_alloc_l3_page(ci);
1192 1.70 cherry KASSERT(ci->ci_pae_l3_pdirpa != 0);
1193 1.70 cherry
1194 1.70 cherry /* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
1195 1.125 maxv for (i = 0; i < PDP_SIZE - 1; i++) {
1196 1.73 cherry ci->ci_pae_l3_pdir[i] =
1197 1.129 maxv xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PTE_P;
1198 1.73 cherry }
1199 1.124 maxv #endif
1200 1.70 cherry
1201 1.70 cherry ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1202 1.70 cherry UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
1203 1.70 cherry
1204 1.70 cherry if (ci->ci_kpm_pdir == NULL) {
1205 1.70 cherry panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
1206 1.105 maxv __func__, cpu_index(ci));
1207 1.70 cherry }
1208 1.105 maxv ci->ci_kpm_pdirpa = vtophys((vaddr_t)ci->ci_kpm_pdir);
1209 1.70 cherry KASSERT(ci->ci_kpm_pdirpa != 0);
1210 1.70 cherry
1211 1.124 maxv #ifdef __x86_64__
1212 1.106 maxv extern pt_entry_t xpmap_pg_nx;
1213 1.70 cherry
1214 1.106 maxv /* Copy over the pmap_kernel() shadow L4 entries */
1215 1.70 cherry memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
1216 1.70 cherry
1217 1.70 cherry /* Recursive kernel mapping */
1218 1.105 maxv ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa)
1219 1.129 maxv | PTE_P | xpmap_pg_nx;
1220 1.124 maxv #else
1221 1.106 maxv /* Copy over the pmap_kernel() shadow L2 entries */
1222 1.105 maxv memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN,
1223 1.105 maxv nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
1224 1.106 maxv #endif
1225 1.70 cherry
1226 1.105 maxv /* Xen wants a RO pdir. */
1227 1.83 bouyer pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
1228 1.83 bouyer (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
1229 1.83 bouyer pmap_update(pmap_kernel());
1230 1.124 maxv
1231 1.124 maxv #ifdef __x86_64__
1232 1.124 maxv xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
1233 1.124 maxv #else
1234 1.105 maxv /*
1235 1.105 maxv * Initialize L3 entry 3. This mapping is shared across all pmaps and is
1236 1.105 maxv * static, ie: loading a new pmap will not update this entry.
1237 1.70 cherry */
1238 1.129 maxv ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PTE_P;
1239 1.70 cherry
1240 1.105 maxv /* Xen wants a RO L3. */
1241 1.83 bouyer pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
1242 1.83 bouyer (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
1243 1.83 bouyer pmap_update(pmap_kernel());
1244 1.70 cherry
1245 1.70 cherry xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
1246 1.124 maxv #endif
1247 1.70 cherry }
1248 1.70 cherry
1249 1.61 cherry /*
1250 1.61 cherry * Notify all other cpus to halt.
1251 1.61 cherry */
1252 1.61 cherry
1253 1.61 cherry void
1254 1.61 cherry cpu_broadcast_halt(void)
1255 1.61 cherry {
1256 1.61 cherry xen_broadcast_ipi(XEN_IPI_HALT);
1257 1.61 cherry }
1258 1.61 cherry
1259 1.61 cherry /*
1260 1.131 ad * Send a dummy ipi to a cpu, and raise an AST on the running LWP.
1261 1.61 cherry */
1262 1.61 cherry
1263 1.61 cherry void
1264 1.61 cherry cpu_kick(struct cpu_info *ci)
1265 1.61 cherry {
1266 1.131 ad (void)xen_send_ipi(ci, XEN_IPI_AST);
1267 1.61 cherry }
1268