Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.56.2.11
      1  1.56.2.11    cherry /*	$NetBSD: cpu.c,v 1.56.2.11 2011/09/09 11:53:43 cherry Exp $	*/
      2        1.2    bouyer /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp  */
      3        1.2    bouyer 
      4        1.2    bouyer /*-
      5        1.2    bouyer  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      6       1.19     joerg  * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
      7        1.2    bouyer  * All rights reserved.
      8        1.2    bouyer  *
      9        1.2    bouyer  * This code is derived from software contributed to The NetBSD Foundation
     10        1.2    bouyer  * by RedBack Networks Inc.
     11        1.2    bouyer  *
     12        1.2    bouyer  * Author: Bill Sommerfeld
     13        1.2    bouyer  *
     14        1.2    bouyer  * Redistribution and use in source and binary forms, with or without
     15        1.2    bouyer  * modification, are permitted provided that the following conditions
     16        1.2    bouyer  * are met:
     17        1.2    bouyer  * 1. Redistributions of source code must retain the above copyright
     18        1.2    bouyer  *    notice, this list of conditions and the following disclaimer.
     19        1.2    bouyer  * 2. Redistributions in binary form must reproduce the above copyright
     20        1.2    bouyer  *    notice, this list of conditions and the following disclaimer in the
     21        1.2    bouyer  *    documentation and/or other materials provided with the distribution.
     22        1.2    bouyer  *
     23        1.2    bouyer  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24        1.2    bouyer  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25        1.2    bouyer  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26        1.2    bouyer  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27        1.2    bouyer  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28        1.2    bouyer  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29        1.2    bouyer  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30        1.2    bouyer  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31        1.2    bouyer  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32        1.2    bouyer  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33        1.2    bouyer  * POSSIBILITY OF SUCH DAMAGE.
     34        1.2    bouyer  */
     35        1.2    bouyer 
     36        1.2    bouyer /*
     37        1.2    bouyer  * Copyright (c) 1999 Stefan Grefen
     38        1.2    bouyer  *
     39        1.2    bouyer  * Redistribution and use in source and binary forms, with or without
     40        1.2    bouyer  * modification, are permitted provided that the following conditions
     41        1.2    bouyer  * are met:
     42        1.2    bouyer  * 1. Redistributions of source code must retain the above copyright
     43        1.2    bouyer  *    notice, this list of conditions and the following disclaimer.
     44        1.2    bouyer  * 2. Redistributions in binary form must reproduce the above copyright
     45        1.2    bouyer  *    notice, this list of conditions and the following disclaimer in the
     46        1.2    bouyer  *    documentation and/or other materials provided with the distribution.
     47        1.2    bouyer  * 3. All advertising materials mentioning features or use of this software
     48        1.2    bouyer  *    must display the following acknowledgement:
     49        1.2    bouyer  *      This product includes software developed by the NetBSD
     50        1.2    bouyer  *      Foundation, Inc. and its contributors.
     51        1.2    bouyer  * 4. Neither the name of The NetBSD Foundation nor the names of its
     52        1.2    bouyer  *    contributors may be used to endorse or promote products derived
     53        1.2    bouyer  *    from this software without specific prior written permission.
     54        1.2    bouyer  *
     55        1.2    bouyer  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     56        1.2    bouyer  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57        1.2    bouyer  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58        1.2    bouyer  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     59        1.2    bouyer  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60        1.2    bouyer  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61        1.2    bouyer  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62        1.2    bouyer  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63        1.2    bouyer  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64        1.2    bouyer  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65        1.2    bouyer  * SUCH DAMAGE.
     66        1.2    bouyer  */
     67        1.2    bouyer 
     68        1.2    bouyer #include <sys/cdefs.h>
     69  1.56.2.11    cherry __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.56.2.11 2011/09/09 11:53:43 cherry Exp $");
     70        1.2    bouyer 
     71        1.2    bouyer #include "opt_ddb.h"
     72        1.2    bouyer #include "opt_multiprocessor.h"
     73        1.2    bouyer #include "opt_mpbios.h"		/* for MPDEBUG */
     74        1.2    bouyer #include "opt_mtrr.h"
     75        1.2    bouyer #include "opt_xen.h"
     76        1.2    bouyer 
     77        1.2    bouyer #include "lapic.h"
     78        1.2    bouyer #include "ioapic.h"
     79        1.2    bouyer 
     80        1.2    bouyer #include <sys/param.h>
     81        1.2    bouyer #include <sys/proc.h>
     82        1.2    bouyer #include <sys/systm.h>
     83        1.2    bouyer #include <sys/device.h>
     84       1.31    cegger #include <sys/kmem.h>
     85       1.11    cegger #include <sys/cpu.h>
     86       1.11    cegger #include <sys/atomic.h>
     87       1.32    cegger #include <sys/reboot.h>
     88   1.56.2.1    cherry #include <sys/idle.h>
     89        1.2    bouyer 
     90       1.51  uebayasi #include <uvm/uvm.h>
     91        1.2    bouyer 
     92        1.2    bouyer #include <machine/cpufunc.h>
     93        1.2    bouyer #include <machine/cpuvar.h>
     94        1.2    bouyer #include <machine/pmap.h>
     95        1.2    bouyer #include <machine/vmparam.h>
     96        1.2    bouyer #include <machine/mpbiosvar.h>
     97        1.2    bouyer #include <machine/pcb.h>
     98        1.2    bouyer #include <machine/specialreg.h>
     99        1.2    bouyer #include <machine/segments.h>
    100        1.2    bouyer #include <machine/gdt.h>
    101        1.2    bouyer #include <machine/mtrr.h>
    102        1.2    bouyer #include <machine/pio.h>
    103   1.56.2.4    cherry 
    104   1.56.2.4    cherry #ifdef i386
    105   1.56.2.4    cherry #include <machine/npx.h>
    106   1.56.2.4    cherry #else
    107   1.56.2.1    cherry #include <machine/fpu.h>
    108   1.56.2.4    cherry #endif
    109        1.2    bouyer 
    110   1.56.2.1    cherry #include <xen/xen.h>
    111   1.56.2.1    cherry #include <xen/xen3-public/vcpu.h>
    112        1.2    bouyer #include <xen/vcpuvar.h>
    113        1.2    bouyer 
    114        1.2    bouyer #if NLAPIC > 0
    115        1.2    bouyer #include <machine/apicvar.h>
    116        1.2    bouyer #include <machine/i82489reg.h>
    117        1.2    bouyer #include <machine/i82489var.h>
    118        1.2    bouyer #endif
    119        1.2    bouyer 
    120        1.2    bouyer #include <dev/ic/mc146818reg.h>
    121        1.2    bouyer #include <dev/isa/isareg.h>
    122        1.2    bouyer 
    123       1.38    cegger #if MAXCPUS > 32
    124       1.38    cegger #error cpu_info contains 32bit bitmasks
    125       1.38    cegger #endif
    126       1.27        ad 
    127       1.56    jruoho static int	cpu_match(device_t, cfdata_t, void *);
    128       1.56    jruoho static void	cpu_attach(device_t, device_t, void *);
    129       1.56    jruoho static void	cpu_defer(device_t);
    130       1.56    jruoho static int	cpu_rescan(device_t, const char *, const int *);
    131       1.56    jruoho static void	cpu_childdetached(device_t, device_t);
    132       1.56    jruoho static int	vcpu_match(device_t, cfdata_t, void *);
    133       1.56    jruoho static void	vcpu_attach(device_t, device_t, void *);
    134       1.56    jruoho static void	cpu_attach_common(device_t, device_t, void *);
    135       1.56    jruoho void		cpu_offline_md(void);
    136        1.2    bouyer 
    137        1.2    bouyer struct cpu_softc {
    138       1.10    cegger 	device_t sc_dev;		/* device tree glue */
    139        1.2    bouyer 	struct cpu_info *sc_info;	/* pointer to CPU info */
    140       1.32    cegger 	bool sc_wasonline;
    141        1.2    bouyer };
    142        1.2    bouyer 
    143   1.56.2.5    cherry int mp_cpu_start(struct cpu_info *, vaddr_t);
    144        1.2    bouyer void mp_cpu_start_cleanup(struct cpu_info *);
    145        1.2    bouyer const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    146        1.2    bouyer 				      mp_cpu_start_cleanup };
    147        1.2    bouyer 
    148       1.53    jruoho CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    149       1.53    jruoho     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    150       1.53    jruoho 
    151       1.10    cegger CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
    152        1.2    bouyer     vcpu_match, vcpu_attach, NULL, NULL);
    153        1.2    bouyer 
    154        1.2    bouyer /*
    155        1.2    bouyer  * Statically-allocated CPU info for the primary CPU (or the only
    156        1.2    bouyer  * CPU, on uniprocessors).  The CPU info list is initialized to
    157        1.2    bouyer  * point at it.
    158        1.2    bouyer  */
    159        1.2    bouyer #ifdef TRAPLOG
    160        1.2    bouyer #include <machine/tlog.h>
    161        1.2    bouyer struct tlog tlog_primary;
    162        1.2    bouyer #endif
    163       1.38    cegger struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    164        1.7    bouyer 	.ci_dev = 0,
    165        1.2    bouyer 	.ci_self = &cpu_info_primary,
    166        1.4    bouyer 	.ci_idepth = -1,
    167        1.2    bouyer 	.ci_curlwp = &lwp0,
    168       1.25        ad 	.ci_curldt = -1,
    169   1.56.2.2    cherry 	.ci_cpumask = 1,
    170        1.2    bouyer #ifdef TRAPLOG
    171        1.2    bouyer 	.ci_tlog = &tlog_primary,
    172        1.2    bouyer #endif
    173        1.2    bouyer 
    174        1.2    bouyer };
    175       1.38    cegger struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    176        1.7    bouyer 	.ci_dev = 0,
    177        1.2    bouyer 	.ci_self = &phycpu_info_primary,
    178        1.2    bouyer };
    179        1.2    bouyer 
    180        1.2    bouyer struct cpu_info *cpu_info_list = &cpu_info_primary;
    181       1.38    cegger struct cpu_info *phycpu_info_list = &phycpu_info_primary;
    182        1.2    bouyer 
    183   1.56.2.2    cherry uint32_t cpus_attached = 1;
    184       1.11    cegger uint32_t cpus_running = 0;
    185       1.11    cegger 
    186       1.38    cegger uint32_t phycpus_attached = 0;
    187       1.38    cegger uint32_t phycpus_running = 0;
    188       1.38    cegger 
    189       1.43       jym uint32_t cpu_feature[5]; /* X86 CPUID feature bits
    190       1.43       jym 			  *	[0] basic features %edx
    191       1.43       jym 			  *	[1] basic features %ecx
    192       1.43       jym 			  *	[2] extended features %edx
    193       1.43       jym 			  *	[3] extended features %ecx
    194       1.43       jym 			  *	[4] VIA padlock features
    195       1.43       jym 			  */
    196       1.43       jym 
    197       1.11    cegger bool x86_mp_online;
    198       1.11    cegger paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    199        1.2    bouyer 
    200       1.38    cegger #if defined(MULTIPROCESSOR)
    201        1.2    bouyer void    	cpu_hatch(void *);
    202        1.2    bouyer static void    	cpu_boot_secondary(struct cpu_info *ci);
    203        1.2    bouyer static void    	cpu_start_secondary(struct cpu_info *ci);
    204       1.38    cegger #endif	/* MULTIPROCESSOR */
    205        1.2    bouyer 
    206       1.56    jruoho static int
    207       1.10    cegger cpu_match(device_t parent, cfdata_t match, void *aux)
    208        1.2    bouyer {
    209        1.2    bouyer 
    210        1.2    bouyer 	return 1;
    211        1.2    bouyer }
    212        1.2    bouyer 
    213       1.56    jruoho static void
    214       1.10    cegger cpu_attach(device_t parent, device_t self, void *aux)
    215        1.2    bouyer {
    216       1.10    cegger 	struct cpu_softc *sc = device_private(self);
    217        1.2    bouyer 	struct cpu_attach_args *caa = aux;
    218        1.2    bouyer 	struct cpu_info *ci;
    219       1.34    cegger 	uintptr_t ptr;
    220       1.52    bouyer 	static int nphycpu = 0;
    221        1.2    bouyer 
    222       1.10    cegger 	sc->sc_dev = self;
    223       1.10    cegger 
    224       1.38    cegger 	if (phycpus_attached == ~0) {
    225       1.34    cegger 		aprint_error(": increase MAXCPUS\n");
    226       1.34    cegger 		return;
    227       1.34    cegger 	}
    228       1.34    cegger 
    229        1.2    bouyer 	/*
    230        1.2    bouyer 	 * If we're an Application Processor, allocate a cpu_info
    231       1.52    bouyer 	 * If we're the first attached CPU use the primary cpu_info,
    232       1.52    bouyer 	 * otherwise allocate a new one
    233        1.2    bouyer 	 */
    234       1.52    bouyer 	aprint_naive("\n");
    235       1.52    bouyer 	aprint_normal("\n");
    236       1.52    bouyer 	if (nphycpu > 0) {
    237       1.52    bouyer 		struct cpu_info *tmp;
    238       1.34    cegger 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    239       1.34    cegger 		    KM_SLEEP);
    240       1.42       jym 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    241       1.24        ad 		ci->ci_curldt = -1;
    242       1.52    bouyer 
    243       1.52    bouyer 		tmp = phycpu_info_list;
    244       1.52    bouyer 		while (tmp->ci_next)
    245       1.52    bouyer 			tmp = tmp->ci_next;
    246       1.52    bouyer 
    247       1.52    bouyer 		tmp->ci_next = ci;
    248        1.2    bouyer 	} else {
    249        1.2    bouyer 		ci = &phycpu_info_primary;
    250        1.2    bouyer 	}
    251        1.2    bouyer 
    252        1.2    bouyer 	ci->ci_self = ci;
    253        1.2    bouyer 	sc->sc_info = ci;
    254        1.2    bouyer 
    255        1.2    bouyer 	ci->ci_dev = self;
    256       1.50    jruoho 	ci->ci_acpiid = caa->cpu_id;
    257       1.23        ad 	ci->ci_cpuid = caa->cpu_number;
    258       1.16    cegger 	ci->ci_vcpu = NULL;
    259       1.52    bouyer 	ci->ci_index = nphycpu++;
    260       1.52    bouyer 	ci->ci_cpumask = (1 << cpu_index(ci));
    261        1.2    bouyer 
    262       1.52    bouyer 	atomic_or_32(&phycpus_attached, ci->ci_cpumask);
    263       1.38    cegger 
    264       1.52    bouyer 	if (!pmf_device_register(self, NULL, NULL))
    265       1.52    bouyer 		aprint_error_dev(self, "couldn't establish power handler\n");
    266       1.34    cegger 
    267       1.56    jruoho 	(void)config_defer(self, cpu_defer);
    268       1.56    jruoho }
    269       1.56    jruoho 
    270       1.56    jruoho static void
    271       1.56    jruoho cpu_defer(device_t self)
    272       1.56    jruoho {
    273       1.56    jruoho 	cpu_rescan(self, NULL, NULL);
    274        1.2    bouyer }
    275        1.2    bouyer 
    276       1.56    jruoho static int
    277       1.53    jruoho cpu_rescan(device_t self, const char *ifattr, const int *locators)
    278       1.53    jruoho {
    279       1.53    jruoho 	struct cpu_softc *sc = device_private(self);
    280       1.53    jruoho 	struct cpufeature_attach_args cfaa;
    281       1.53    jruoho 	struct cpu_info *ci = sc->sc_info;
    282       1.53    jruoho 
    283       1.53    jruoho 	memset(&cfaa, 0, sizeof(cfaa));
    284       1.53    jruoho 	cfaa.ci = ci;
    285       1.53    jruoho 
    286       1.53    jruoho 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    287       1.53    jruoho 
    288       1.53    jruoho 		if (ci->ci_frequency == NULL) {
    289       1.55    jruoho 			cfaa.name = "frequency";
    290       1.54    jruoho 			ci->ci_frequency = config_found_ia(self,
    291       1.54    jruoho 			    "cpufeaturebus", &cfaa, NULL);
    292       1.54    jruoho 		}
    293       1.53    jruoho 	}
    294       1.53    jruoho 
    295       1.53    jruoho 	return 0;
    296       1.53    jruoho }
    297       1.53    jruoho 
    298       1.56    jruoho static void
    299       1.53    jruoho cpu_childdetached(device_t self, device_t child)
    300       1.53    jruoho {
    301       1.53    jruoho 	struct cpu_softc *sc = device_private(self);
    302       1.53    jruoho 	struct cpu_info *ci = sc->sc_info;
    303       1.53    jruoho 
    304       1.53    jruoho 	if (ci->ci_frequency == child)
    305       1.53    jruoho 		ci->ci_frequency = NULL;
    306       1.53    jruoho }
    307       1.53    jruoho 
    308       1.56    jruoho static int
    309       1.10    cegger vcpu_match(device_t parent, cfdata_t match, void *aux)
    310        1.2    bouyer {
    311        1.2    bouyer 	struct vcpu_attach_args *vcaa = aux;
    312   1.56.2.1    cherry 	struct vcpu_runstate_info vcr;
    313   1.56.2.1    cherry 	int error;
    314   1.56.2.1    cherry 
    315   1.56.2.1    cherry 	if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
    316   1.56.2.1    cherry 		error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
    317   1.56.2.1    cherry 					   vcaa->vcaa_caa.cpu_number,
    318   1.56.2.1    cherry 					   &vcr);
    319   1.56.2.1    cherry 		switch (error) {
    320   1.56.2.1    cherry 		case 0:
    321   1.56.2.1    cherry 			return 1;
    322   1.56.2.1    cherry 		case -ENOENT:
    323   1.56.2.1    cherry 			return 0;
    324   1.56.2.1    cherry 		default:
    325   1.56.2.1    cherry 			panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
    326   1.56.2.1    cherry 		}
    327   1.56.2.1    cherry 	}
    328        1.2    bouyer 
    329        1.2    bouyer 	return 0;
    330        1.2    bouyer }
    331        1.2    bouyer 
    332       1.56    jruoho static void
    333       1.10    cegger vcpu_attach(device_t parent, device_t self, void *aux)
    334        1.2    bouyer {
    335        1.2    bouyer 	struct vcpu_attach_args *vcaa = aux;
    336        1.2    bouyer 
    337   1.56.2.1    cherry 	KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
    338   1.56.2.1    cherry 	vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
    339        1.2    bouyer 	cpu_attach_common(parent, self, &vcaa->vcaa_caa);
    340        1.2    bouyer }
    341        1.2    bouyer 
    342   1.56.2.1    cherry static int
    343   1.56.2.1    cherry vcpu_is_up(struct cpu_info *ci)
    344   1.56.2.1    cherry {
    345   1.56.2.1    cherry 	KASSERT(ci != NULL);
    346   1.56.2.1    cherry 	return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
    347   1.56.2.1    cherry }
    348   1.56.2.1    cherry 
    349        1.2    bouyer static void
    350        1.2    bouyer cpu_vm_init(struct cpu_info *ci)
    351        1.2    bouyer {
    352        1.2    bouyer 	int ncolors = 2, i;
    353        1.2    bouyer 
    354        1.2    bouyer 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    355        1.2    bouyer 		struct x86_cache_info *cai;
    356        1.2    bouyer 		int tcolors;
    357        1.2    bouyer 
    358        1.2    bouyer 		cai = &ci->ci_cinfo[i];
    359        1.2    bouyer 
    360        1.2    bouyer 		tcolors = atop(cai->cai_totalsize);
    361        1.2    bouyer 		switch(cai->cai_associativity) {
    362        1.2    bouyer 		case 0xff:
    363        1.2    bouyer 			tcolors = 1; /* fully associative */
    364        1.2    bouyer 			break;
    365        1.2    bouyer 		case 0:
    366        1.2    bouyer 		case 1:
    367        1.2    bouyer 			break;
    368        1.2    bouyer 		default:
    369        1.2    bouyer 			tcolors /= cai->cai_associativity;
    370        1.2    bouyer 		}
    371        1.2    bouyer 		ncolors = max(ncolors, tcolors);
    372        1.2    bouyer 	}
    373        1.2    bouyer 
    374        1.2    bouyer 	/*
    375        1.2    bouyer 	 * Knowing the size of the largest cache on this CPU, re-color
    376        1.2    bouyer 	 * our pages.
    377        1.2    bouyer 	 */
    378        1.2    bouyer 	if (ncolors <= uvmexp.ncolors)
    379        1.2    bouyer 		return;
    380       1.28    bouyer 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    381        1.2    bouyer 	uvm_page_recolor(ncolors);
    382        1.2    bouyer }
    383        1.2    bouyer 
    384       1.56    jruoho static void
    385       1.11    cegger cpu_attach_common(device_t parent, device_t self, void *aux)
    386        1.2    bouyer {
    387       1.10    cegger 	struct cpu_softc *sc = device_private(self);
    388        1.2    bouyer 	struct cpu_attach_args *caa = aux;
    389        1.2    bouyer 	struct cpu_info *ci;
    390       1.12    cegger 	uintptr_t ptr;
    391        1.2    bouyer 	int cpunum = caa->cpu_number;
    392       1.38    cegger 	static bool again = false;
    393        1.2    bouyer 
    394       1.10    cegger 	sc->sc_dev = self;
    395       1.10    cegger 
    396        1.2    bouyer 	/*
    397        1.2    bouyer 	 * If we're an Application Processor, allocate a cpu_info
    398        1.2    bouyer 	 * structure, otherwise use the primary's.
    399        1.2    bouyer 	 */
    400        1.2    bouyer 	if (caa->cpu_role == CPU_ROLE_AP) {
    401       1.12    cegger 		aprint_naive(": Application Processor\n");
    402       1.31    cegger 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    403       1.31    cegger 		    KM_SLEEP);
    404       1.42       jym 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    405       1.12    cegger 		memset(ci, 0, sizeof(*ci));
    406        1.2    bouyer #ifdef TRAPLOG
    407       1.31    cegger 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
    408        1.2    bouyer #endif
    409        1.2    bouyer 	} else {
    410       1.12    cegger 		aprint_naive(": %s Processor\n",
    411       1.12    cegger 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    412        1.2    bouyer 		ci = &cpu_info_primary;
    413        1.2    bouyer 	}
    414        1.2    bouyer 
    415        1.2    bouyer 	ci->ci_self = ci;
    416        1.2    bouyer 	sc->sc_info = ci;
    417        1.2    bouyer 	ci->ci_dev = self;
    418       1.23        ad 	ci->ci_cpuid = cpunum;
    419       1.16    cegger 
    420       1.16    cegger 	KASSERT(HYPERVISOR_shared_info != NULL);
    421       1.16    cegger 	ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
    422       1.16    cegger 
    423   1.56.2.1    cherry 	KASSERT(ci->ci_func == 0);
    424        1.2    bouyer 	ci->ci_func = caa->cpu_func;
    425        1.2    bouyer 
    426       1.38    cegger 	/* Must be called before mi_cpu_attach(). */
    427       1.38    cegger 	cpu_vm_init(ci);
    428       1.38    cegger 
    429        1.2    bouyer 	if (caa->cpu_role == CPU_ROLE_AP) {
    430        1.2    bouyer 		int error;
    431        1.2    bouyer 
    432        1.2    bouyer 		error = mi_cpu_attach(ci);
    433   1.56.2.1    cherry 
    434   1.56.2.1    cherry 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    435        1.2    bouyer 		if (error != 0) {
    436        1.2    bouyer 			aprint_normal("\n");
    437       1.38    cegger 			aprint_error_dev(self,
    438       1.38    cegger 			    "mi_cpu_attach failed with %d\n", error);
    439        1.2    bouyer 			return;
    440        1.2    bouyer 		}
    441   1.56.2.1    cherry 
    442        1.2    bouyer 	} else {
    443        1.2    bouyer 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    444        1.2    bouyer 	}
    445        1.2    bouyer 
    446       1.23        ad 	ci->ci_cpumask = (1 << cpu_index(ci));
    447        1.2    bouyer 	pmap_reference(pmap_kernel());
    448        1.2    bouyer 	ci->ci_pmap = pmap_kernel();
    449        1.2    bouyer 	ci->ci_tlbstate = TLBSTATE_STALE;
    450        1.2    bouyer 
    451       1.38    cegger 	/*
    452       1.38    cegger 	 * Boot processor may not be attached first, but the below
    453       1.38    cegger 	 * must be done to allow booting other processors.
    454       1.38    cegger 	 */
    455       1.38    cegger 	if (!again) {
    456       1.38    cegger 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    457       1.38    cegger 		/* Basic init. */
    458       1.38    cegger 		cpu_intr_init(ci);
    459       1.38    cegger 		cpu_get_tsc_freq(ci);
    460       1.38    cegger 		cpu_init(ci);
    461   1.56.2.3    cherry 		pmap_cpu_init_late(ci); /* XXX: cosmetic */
    462   1.56.2.1    cherry 
    463   1.56.2.1    cherry 		/* Every processor needs to init it's own ipi h/w (similar to lapic) */
    464   1.56.2.1    cherry 		xen_ipi_init();
    465   1.56.2.1    cherry 		/* XXX: clock_init() */
    466   1.56.2.1    cherry 
    467       1.38    cegger 		/* Make sure DELAY() is initialized. */
    468       1.38    cegger 		DELAY(1);
    469       1.38    cegger 		again = true;
    470       1.38    cegger 	}
    471       1.38    cegger 
    472        1.2    bouyer 	/* further PCB init done later. */
    473        1.2    bouyer 
    474        1.2    bouyer 	switch (caa->cpu_role) {
    475        1.2    bouyer 	case CPU_ROLE_SP:
    476       1.38    cegger 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    477       1.21        ad 		cpu_identify(ci);
    478       1.12    cegger #if 0
    479       1.12    cegger 		x86_errata();
    480       1.12    cegger #endif
    481       1.38    cegger 		x86_cpu_idle_init();
    482   1.56.2.1    cherry 
    483        1.2    bouyer 		break;
    484        1.2    bouyer 
    485        1.2    bouyer 	case CPU_ROLE_BP:
    486       1.38    cegger 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    487       1.21        ad 		cpu_identify(ci);
    488        1.2    bouyer 		cpu_init(ci);
    489       1.14    bouyer #if 0
    490       1.12    cegger 		x86_errata();
    491       1.12    cegger #endif
    492       1.38    cegger 		x86_cpu_idle_init();
    493   1.56.2.1    cherry 
    494        1.2    bouyer 		break;
    495        1.2    bouyer 
    496        1.2    bouyer 	case CPU_ROLE_AP:
    497   1.56.2.1    cherry 		atomic_or_32(&ci->ci_flags, CPUF_AP);
    498   1.56.2.1    cherry 
    499        1.2    bouyer 		/*
    500        1.2    bouyer 		 * report on an AP
    501        1.2    bouyer 		 */
    502        1.2    bouyer 
    503        1.2    bouyer #if defined(MULTIPROCESSOR)
    504   1.56.2.1    cherry 		/* interrupt handler stack */
    505        1.2    bouyer 		cpu_intr_init(ci);
    506   1.56.2.1    cherry 
    507   1.56.2.4    cherry 		/* Setup per-cpu memory for gdt */
    508        1.2    bouyer 		gdt_alloc_cpu(ci);
    509   1.56.2.1    cherry 
    510   1.56.2.3    cherry 		pmap_cpu_init_late(ci);
    511        1.2    bouyer 		cpu_start_secondary(ci);
    512   1.56.2.1    cherry 
    513        1.2    bouyer 		if (ci->ci_flags & CPUF_PRESENT) {
    514       1.30    cegger 			struct cpu_info *tmp;
    515       1.30    cegger 
    516   1.56.2.1    cherry 			cpu_identify(ci);
    517       1.30    cegger 			tmp = cpu_info_list;
    518       1.30    cegger 			while (tmp->ci_next)
    519       1.30    cegger 				tmp = tmp->ci_next;
    520       1.30    cegger 
    521       1.30    cegger 			tmp->ci_next = ci;
    522        1.2    bouyer 		}
    523        1.2    bouyer #else
    524   1.56.2.1    cherry 		aprint_error(": not started\n");
    525        1.2    bouyer #endif
    526        1.2    bouyer 		break;
    527        1.2    bouyer 
    528        1.2    bouyer 	default:
    529       1.12    cegger 		aprint_normal("\n");
    530        1.2    bouyer 		panic("unknown processor type??\n");
    531        1.2    bouyer 	}
    532        1.2    bouyer 
    533       1.46    cegger 	pat_init(ci);
    534       1.34    cegger 	atomic_or_32(&cpus_attached, ci->ci_cpumask);
    535        1.2    bouyer 
    536       1.12    cegger #if 0
    537       1.12    cegger 	if (!pmf_device_register(self, cpu_suspend, cpu_resume))
    538       1.12    cegger 		aprint_error_dev(self, "couldn't establish power handler\n");
    539       1.12    cegger #endif
    540       1.12    cegger 
    541   1.56.2.1    cherry #ifdef MPVERBOSE
    542        1.2    bouyer 	if (mp_verbose) {
    543        1.2    bouyer 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    544       1.37     rmind 		struct pcb *pcb = lwp_getpcb(l);
    545        1.2    bouyer 
    546       1.38    cegger 		aprint_verbose_dev(self,
    547       1.38    cegger 		    "idle lwp at %p, idle sp at 0x%p\n",
    548       1.12    cegger 		    l,
    549       1.12    cegger #ifdef i386
    550       1.37     rmind 		    (void *)pcb->pcb_esp
    551   1.56.2.1    cherry #else /* i386 */
    552       1.37     rmind 		    (void *)pcb->pcb_rsp
    553   1.56.2.1    cherry #endif /* i386 */
    554       1.12    cegger 		);
    555       1.12    cegger 
    556        1.2    bouyer 	}
    557   1.56.2.1    cherry #endif /* MPVERBOSE */
    558        1.2    bouyer }
    559        1.2    bouyer 
    560        1.2    bouyer /*
    561        1.2    bouyer  * Initialize the processor appropriately.
    562        1.2    bouyer  */
    563        1.2    bouyer 
    564        1.2    bouyer void
    565       1.10    cegger cpu_init(struct cpu_info *ci)
    566        1.2    bouyer {
    567        1.2    bouyer 
    568        1.2    bouyer 	/*
    569        1.2    bouyer 	 * On a P6 or above, enable global TLB caching if the
    570        1.2    bouyer 	 * hardware supports it.
    571        1.2    bouyer 	 */
    572       1.43       jym 	if (cpu_feature[0] & CPUID_PGE)
    573        1.2    bouyer 		lcr4(rcr4() | CR4_PGE);	/* enable global TLB caching */
    574        1.2    bouyer 
    575        1.2    bouyer #ifdef XXXMTRR
    576        1.2    bouyer 	/*
    577        1.2    bouyer 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    578        1.2    bouyer 	 */
    579       1.43       jym 	if (cpu_feature[0] & CPUID_MTRR) {
    580        1.2    bouyer 		if ((ci->ci_flags & CPUF_AP) == 0)
    581        1.2    bouyer 			i686_mtrr_init_first();
    582        1.2    bouyer 		mtrr_init_cpu(ci);
    583        1.2    bouyer 	}
    584        1.2    bouyer #endif
    585        1.2    bouyer 	/*
    586        1.2    bouyer 	 * If we have FXSAVE/FXRESTOR, use them.
    587        1.2    bouyer 	 */
    588       1.43       jym 	if (cpu_feature[0] & CPUID_FXSR) {
    589        1.2    bouyer 		lcr4(rcr4() | CR4_OSFXSR);
    590        1.2    bouyer 
    591        1.2    bouyer 		/*
    592        1.2    bouyer 		 * If we have SSE/SSE2, enable XMM exceptions.
    593        1.2    bouyer 		 */
    594       1.43       jym 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    595        1.2    bouyer 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    596        1.2    bouyer 	}
    597        1.2    bouyer 
    598       1.47       jym #ifdef __x86_64__
    599       1.47       jym 	/* No user PGD mapped for this CPU yet */
    600       1.47       jym 	ci->ci_xen_current_user_pgd = 0;
    601       1.47       jym #endif
    602       1.47       jym 
    603       1.34    cegger 	atomic_or_32(&cpus_running, ci->ci_cpumask);
    604       1.11    cegger 	atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    605   1.56.2.1    cherry 
    606   1.56.2.1    cherry 	/* XXX: register vcpu_register_runstate_memory_area, and figure out how to make sure this VCPU is running ? */
    607        1.2    bouyer }
    608        1.2    bouyer 
    609        1.2    bouyer 
    610        1.2    bouyer #ifdef MULTIPROCESSOR
    611   1.56.2.1    cherry 
    612        1.2    bouyer void
    613       1.10    cegger cpu_boot_secondary_processors(void)
    614        1.2    bouyer {
    615        1.2    bouyer 	struct cpu_info *ci;
    616        1.2    bouyer 	u_long i;
    617       1.38    cegger 	for (i = 0; i < maxcpus; i++) {
    618       1.38    cegger 		ci = cpu_lookup(i);
    619        1.2    bouyer 		if (ci == NULL)
    620        1.2    bouyer 			continue;
    621        1.2    bouyer 		if (ci->ci_data.cpu_idlelwp == NULL)
    622        1.2    bouyer 			continue;
    623        1.2    bouyer 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    624        1.2    bouyer 			continue;
    625        1.2    bouyer 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    626        1.2    bouyer 			continue;
    627        1.2    bouyer 		cpu_boot_secondary(ci);
    628        1.2    bouyer 	}
    629       1.11    cegger 
    630       1.11    cegger 	x86_mp_online = true;
    631        1.2    bouyer }
    632        1.2    bouyer 
    633        1.2    bouyer static void
    634        1.2    bouyer cpu_init_idle_lwp(struct cpu_info *ci)
    635        1.2    bouyer {
    636        1.2    bouyer 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    637       1.37     rmind 	struct pcb *pcb = lwp_getpcb(l);
    638        1.2    bouyer 
    639        1.2    bouyer 	pcb->pcb_cr0 = rcr0();
    640        1.2    bouyer }
    641        1.2    bouyer 
    642        1.2    bouyer void
    643       1.10    cegger cpu_init_idle_lwps(void)
    644        1.2    bouyer {
    645        1.2    bouyer 	struct cpu_info *ci;
    646        1.2    bouyer 	u_long i;
    647        1.2    bouyer 
    648       1.38    cegger 	for (i = 0; i < maxcpus; i++) {
    649       1.38    cegger 		ci = cpu_lookup(i);
    650        1.2    bouyer 		if (ci == NULL)
    651        1.2    bouyer 			continue;
    652        1.2    bouyer 		if (ci->ci_data.cpu_idlelwp == NULL)
    653        1.2    bouyer 			continue;
    654        1.2    bouyer 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    655        1.2    bouyer 			continue;
    656        1.2    bouyer 		cpu_init_idle_lwp(ci);
    657        1.2    bouyer 	}
    658        1.2    bouyer }
    659        1.2    bouyer 
    660   1.56.2.1    cherry static void
    661       1.10    cegger cpu_start_secondary(struct cpu_info *ci)
    662        1.2    bouyer {
    663        1.2    bouyer 	int i;
    664        1.2    bouyer 
    665       1.11    cegger 	aprint_debug_dev(ci->ci_dev, "starting\n");
    666        1.2    bouyer 
    667        1.2    bouyer 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    668   1.56.2.1    cherry 
    669   1.56.2.1    cherry 	if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
    670       1.11    cegger 		return;
    671   1.56.2.1    cherry 	}
    672        1.2    bouyer 
    673        1.2    bouyer 	/*
    674        1.2    bouyer 	 * wait for it to become ready
    675        1.2    bouyer 	 */
    676       1.11    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    677        1.2    bouyer 		delay(10);
    678        1.2    bouyer 	}
    679       1.11    cegger 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    680        1.9    cegger 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    681        1.2    bouyer #if defined(MPDEBUG) && defined(DDB)
    682        1.2    bouyer 		printf("dropping into debugger; continue from here to resume boot\n");
    683        1.2    bouyer 		Debugger();
    684        1.2    bouyer #endif
    685        1.2    bouyer 	}
    686        1.2    bouyer 
    687        1.2    bouyer 	CPU_START_CLEANUP(ci);
    688        1.2    bouyer }
    689        1.2    bouyer 
    690        1.2    bouyer void
    691       1.10    cegger cpu_boot_secondary(struct cpu_info *ci)
    692        1.2    bouyer {
    693        1.2    bouyer 	int i;
    694       1.11    cegger 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    695       1.11    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    696        1.2    bouyer 		delay(10);
    697        1.2    bouyer 	}
    698       1.11    cegger 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    699       1.11    cegger 		aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
    700        1.2    bouyer #if defined(MPDEBUG) && defined(DDB)
    701        1.2    bouyer 		printf("dropping into debugger; continue from here to resume boot\n");
    702        1.2    bouyer 		Debugger();
    703        1.2    bouyer #endif
    704        1.2    bouyer 	}
    705        1.2    bouyer }
    706        1.2    bouyer 
    707        1.2    bouyer /*
    708   1.56.2.1    cherry  * APs end up here immediately after initialisation and VCPUOP_up in
    709   1.56.2.1    cherry  * mp_cpu_start().
    710   1.56.2.1    cherry  * At this point, we are running in the idle pcb/idle stack of the new
    711   1.56.2.1    cherry  * CPU.  This function jumps to the idle loop and starts looking for
    712   1.56.2.1    cherry  * work.
    713        1.2    bouyer  */
    714   1.56.2.1    cherry extern void x86_64_tls_switch(struct lwp *);
    715  1.56.2.11    cherry 
    716        1.2    bouyer void
    717        1.2    bouyer cpu_hatch(void *v)
    718        1.2    bouyer {
    719        1.2    bouyer 	struct cpu_info *ci = (struct cpu_info *)v;
    720       1.37     rmind 	struct pcb *pcb;
    721       1.11    cegger 	int s, i;
    722       1.11    cegger 
    723   1.56.2.4    cherry 	/* Setup TLS and kernel GS/FS */
    724   1.56.2.1    cherry 	cpu_init_msrs(ci, true);
    725   1.56.2.4    cherry 	cpu_init_idt();
    726   1.56.2.4    cherry 	gdt_init_cpu(ci);
    727   1.56.2.4    cherry 
    728       1.21        ad 	cpu_probe(ci);
    729       1.11    cegger 
    730       1.11    cegger 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    731   1.56.2.1    cherry 
    732       1.11    cegger 	while ((ci->ci_flags & CPUF_GO) == 0) {
    733       1.11    cegger 		/* Don't use delay, boot CPU may be patching the text. */
    734       1.11    cegger 		for (i = 10000; i != 0; i--)
    735       1.11    cegger 			x86_pause();
    736       1.11    cegger 	}
    737        1.2    bouyer 
    738       1.11    cegger 	/* Because the text may have been patched in x86_patch(). */
    739       1.11    cegger 	x86_flush();
    740   1.56.2.2    cherry 	tlbflushg();
    741        1.2    bouyer 
    742       1.11    cegger 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    743        1.2    bouyer 
    744       1.37     rmind 	pcb = lwp_getpcb(curlwp);
    745   1.56.2.1    cherry 	pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0); /* XXX: consider using pmap_load() ? */
    746       1.37     rmind 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    747       1.37     rmind 
    748   1.56.2.1    cherry 	xen_ipi_init();
    749   1.56.2.1    cherry 
    750   1.56.2.1    cherry 	xen_initclocks();
    751   1.56.2.1    cherry 
    752   1.56.2.1    cherry 	/* XXX: lapic_initclocks(); */
    753       1.11    cegger 
    754   1.56.2.4    cherry #ifdef __x86_64__
    755       1.12    cegger 	fpuinit(ci);
    756       1.12    cegger #endif
    757        1.2    bouyer 
    758        1.2    bouyer 	lldt(GSEL(GLDT_SEL, SEL_KPL));
    759        1.2    bouyer 
    760        1.2    bouyer 	cpu_init(ci);
    761       1.11    cegger 	cpu_get_tsc_freq(ci);
    762        1.2    bouyer 
    763        1.2    bouyer 	s = splhigh();
    764       1.11    cegger 	x86_enable_intr();
    765       1.11    cegger 	splx(s);
    766       1.12    cegger #if 0
    767       1.11    cegger 	x86_errata();
    768       1.11    cegger #endif
    769        1.2    bouyer 
    770   1.56.2.1    cherry 	aprint_debug_dev(ci->ci_dev, "running\n");
    771   1.56.2.1    cherry 
    772   1.56.2.1    cherry 	cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
    773   1.56.2.1    cherry 
    774   1.56.2.1    cherry 	panic("switch to idle_loop context returned!\n");
    775   1.56.2.1    cherry 	/* NOTREACHED */
    776        1.2    bouyer }
    777        1.2    bouyer 
    778        1.2    bouyer #if defined(DDB)
    779        1.2    bouyer 
    780        1.2    bouyer #include <ddb/db_output.h>
    781        1.2    bouyer #include <machine/db_machdep.h>
    782        1.2    bouyer 
    783        1.2    bouyer /*
    784        1.2    bouyer  * Dump CPU information from ddb.
    785        1.2    bouyer  */
    786        1.2    bouyer void
    787        1.2    bouyer cpu_debug_dump(void)
    788        1.2    bouyer {
    789        1.2    bouyer 	struct cpu_info *ci;
    790        1.2    bouyer 	CPU_INFO_ITERATOR cii;
    791        1.2    bouyer 
    792       1.13      yamt 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    793        1.2    bouyer 	for (CPU_INFO_FOREACH(cii, ci)) {
    794        1.2    bouyer 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    795        1.2    bouyer 		    ci,
    796        1.9    cegger 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    797       1.12    cegger 		    (long)ci->ci_cpuid,
    798        1.2    bouyer 		    ci->ci_flags, ci->ci_ipis,
    799        1.2    bouyer 		    ci->ci_curlwp,
    800        1.2    bouyer 		    ci->ci_fpcurlwp);
    801        1.2    bouyer 	}
    802        1.2    bouyer }
    803       1.38    cegger #endif /* DDB */
    804        1.2    bouyer 
    805       1.38    cegger #endif /* MULTIPROCESSOR */
    806        1.2    bouyer 
    807   1.56.2.1    cherry extern void hypervisor_callback(void);
    808   1.56.2.1    cherry extern void failsafe_callback(void);
    809   1.56.2.1    cherry #ifdef __x86_64__
    810   1.56.2.1    cherry typedef void (vector)(void);
    811   1.56.2.1    cherry extern vector Xsyscall, Xsyscall32;
    812        1.2    bouyer #endif
    813        1.2    bouyer 
    814   1.56.2.1    cherry /*
    815   1.56.2.1    cherry  * Setup the "trampoline". On Xen, we setup nearly all cpu context
    816   1.56.2.4    cherry  * outside a trampoline, so we prototype and call targetip like so:
    817   1.56.2.4    cherry  * void targetip(struct cpu_info *);
    818   1.56.2.1    cherry  */
    819       1.11    cegger 
    820   1.56.2.1    cherry static void
    821   1.56.2.1    cherry gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
    822   1.56.2.1    cherry {
    823   1.56.2.1    cherry 	int i;
    824   1.56.2.1    cherry 	for (i = 0; i < roundup(entries, PAGE_SIZE) >> PAGE_SHIFT; i++) {
    825        1.2    bouyer 
    826   1.56.2.1    cherry 		frames[i] = ((paddr_t) xpmap_ptetomach(
    827   1.56.2.1    cherry 				(pt_entry_t *) (base + (i << PAGE_SHIFT))))
    828   1.56.2.1    cherry 			>> PAGE_SHIFT;
    829        1.2    bouyer 
    830   1.56.2.1    cherry 		/* Mark Read-only */
    831   1.56.2.1    cherry 		pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
    832   1.56.2.1    cherry 		    PG_RW);
    833   1.56.2.1    cherry 	}
    834   1.56.2.1    cherry }
    835        1.2    bouyer 
    836   1.56.2.4    cherry #ifdef __x86_64__
    837   1.56.2.1    cherry extern char *ldtstore; /* XXX: Xen MP todo */
    838        1.2    bouyer 
    839   1.56.2.1    cherry static void
    840   1.56.2.1    cherry xen_init_amd64_vcpuctxt(struct cpu_info *ci,
    841   1.56.2.1    cherry 			struct vcpu_guest_context *initctx,
    842   1.56.2.1    cherry 			void targetrip(struct cpu_info *))
    843   1.56.2.1    cherry {
    844   1.56.2.1    cherry 	/* page frames to point at GDT */
    845   1.56.2.1    cherry 	extern int gdt_size;
    846   1.56.2.1    cherry 	paddr_t frames[16];
    847   1.56.2.1    cherry 	psize_t gdt_ents;
    848       1.45     rmind 
    849   1.56.2.1    cherry 	struct lwp *l;
    850   1.56.2.1    cherry 	struct pcb *pcb;
    851       1.45     rmind 
    852   1.56.2.1    cherry 	volatile struct vcpu_info *vci;
    853        1.2    bouyer 
    854   1.56.2.1    cherry 	KASSERT(ci != NULL);
    855   1.56.2.1    cherry 	KASSERT(ci != &cpu_info_primary);
    856   1.56.2.1    cherry 	KASSERT(initctx != NULL);
    857   1.56.2.1    cherry 	KASSERT(targetrip != NULL);
    858        1.2    bouyer 
    859   1.56.2.1    cherry 	memset(initctx, 0, sizeof *initctx);
    860   1.56.2.1    cherry 
    861   1.56.2.1    cherry 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT; /* XXX: re-investigate roundup(gdt_size... ) for gdt_ents. */
    862   1.56.2.1    cherry 	KASSERT(gdt_ents <= 16);
    863   1.56.2.1    cherry 
    864   1.56.2.1    cherry 	gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
    865   1.56.2.1    cherry 
    866   1.56.2.1    cherry 	/* XXX: The stuff in here is amd64 specific. move to mptramp.[Sc] ? */
    867   1.56.2.1    cherry 
    868   1.56.2.1    cherry 	/* Initialise the vcpu context: We use idle_loop()'s pcb context. */
    869   1.56.2.1    cherry 
    870   1.56.2.1    cherry 	l = ci->ci_data.cpu_idlelwp;
    871   1.56.2.1    cherry 
    872   1.56.2.1    cherry 	KASSERT(l != NULL);
    873   1.56.2.1    cherry 	pcb = lwp_getpcb(l);
    874   1.56.2.1    cherry 	KASSERT(pcb != NULL);
    875   1.56.2.1    cherry 
    876   1.56.2.1    cherry 	/* resume with interrupts off */
    877   1.56.2.1    cherry 	vci = ci->ci_vcpu;
    878   1.56.2.1    cherry 	vci->evtchn_upcall_mask = 1;
    879   1.56.2.1    cherry 	xen_mb();
    880   1.56.2.1    cherry 
    881   1.56.2.1    cherry 	/* resume in kernel-mode */
    882   1.56.2.1    cherry 	initctx->flags = VGCF_in_kernel | VGCF_online;
    883   1.56.2.1    cherry 
    884   1.56.2.4    cherry 	/* Stack and entry points:
    885   1.56.2.4    cherry 	 * We arrange for the stack frame for cpu_hatch() to
    886   1.56.2.4    cherry 	 * appear as a callee frame of lwp_trampoline(). Being a
    887   1.56.2.4    cherry 	 * leaf frame prevents trampling on any of the MD stack setup
    888   1.56.2.4    cherry 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    889   1.56.2.4    cherry 	 */
    890   1.56.2.4    cherry 
    891   1.56.2.1    cherry 	initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
    892   1.56.2.1    cherry 	initctx->user_regs.rip = (vaddr_t) targetrip;
    893   1.56.2.1    cherry 
    894   1.56.2.1    cherry 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    895   1.56.2.1    cherry 
    896   1.56.2.1    cherry 	initctx->user_regs.rflags = pcb->pcb_flags;
    897   1.56.2.1    cherry 	initctx->user_regs.rsp = pcb->pcb_rsp;
    898   1.56.2.1    cherry 
    899   1.56.2.1    cherry 	/* Data segments */
    900   1.56.2.1    cherry 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
    901   1.56.2.1    cherry 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
    902   1.56.2.1    cherry 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
    903   1.56.2.1    cherry 
    904   1.56.2.1    cherry 	/* GDT */
    905   1.56.2.1    cherry 	memcpy(initctx->gdt_frames, frames, sizeof frames);
    906   1.56.2.1    cherry 	initctx->gdt_ents = gdt_ents;
    907   1.56.2.1    cherry 
    908   1.56.2.1    cherry 	/* LDT */
    909   1.56.2.1    cherry 	initctx->ldt_base = (unsigned long) ldtstore;
    910   1.56.2.1    cherry 	initctx->ldt_ents = LDT_SIZE >> 3;
    911   1.56.2.1    cherry 
    912   1.56.2.1    cherry 	/* Kernel context state */
    913   1.56.2.1    cherry 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
    914   1.56.2.1    cherry 	initctx->kernel_sp = pcb->pcb_rsp0;
    915   1.56.2.1    cherry 	initctx->ctrlreg[0] = pcb->pcb_cr0;
    916   1.56.2.1    cherry 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
    917   1.56.2.1    cherry 	initctx->ctrlreg[2] = pcb->pcb_cr2; /* XXX: */
    918   1.56.2.3    cherry 	/*
    919   1.56.2.3    cherry 	 * Use pmap_kernel() L4 PD directly, until we setup the
    920   1.56.2.3    cherry 	 * per-cpu L4 PD in pmap_cpu_init_late()
    921   1.56.2.3    cherry 	 */
    922  1.56.2.11    cherry 
    923  1.56.2.11    cherry 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
    924   1.56.2.1    cherry 	initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
    925   1.56.2.1    cherry 
    926   1.56.2.1    cherry 
    927   1.56.2.1    cherry 	/* Xen callbacks */
    928   1.56.2.1    cherry 	initctx->event_callback_eip = (unsigned long) hypervisor_callback;
    929   1.56.2.1    cherry 	initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
    930   1.56.2.1    cherry 	initctx->syscall_callback_eip = (unsigned long) Xsyscall;
    931   1.56.2.1    cherry 
    932   1.56.2.1    cherry 	return;
    933   1.56.2.1    cherry }
    934   1.56.2.4    cherry #else /* i386 */
    935   1.56.2.4    cherry extern union descriptor *ldt;
    936   1.56.2.4    cherry extern void Xsyscall(void);
    937   1.56.2.4    cherry 
    938   1.56.2.4    cherry static void
    939   1.56.2.4    cherry xen_init_i386_vcpuctxt(struct cpu_info *ci,
    940   1.56.2.4    cherry 			struct vcpu_guest_context *initctx,
    941   1.56.2.4    cherry 			void targeteip(struct cpu_info *))
    942   1.56.2.4    cherry {
    943   1.56.2.4    cherry 	/* page frames to point at GDT */
    944   1.56.2.4    cherry 	extern int gdt_size;
    945   1.56.2.4    cherry 	paddr_t frames[16];
    946   1.56.2.4    cherry 	psize_t gdt_ents;
    947   1.56.2.4    cherry 
    948   1.56.2.4    cherry 	struct lwp *l;
    949   1.56.2.4    cherry 	struct pcb *pcb;
    950   1.56.2.4    cherry 
    951   1.56.2.4    cherry 	volatile struct vcpu_info *vci;
    952   1.56.2.4    cherry 
    953   1.56.2.4    cherry 	KASSERT(ci != NULL);
    954   1.56.2.4    cherry 	KASSERT(ci != &cpu_info_primary);
    955   1.56.2.4    cherry 	KASSERT(initctx != NULL);
    956   1.56.2.4    cherry 	KASSERT(targeteip != NULL);
    957   1.56.2.4    cherry 
    958   1.56.2.4    cherry 	memset(initctx, 0, sizeof *initctx);
    959   1.56.2.4    cherry 
    960   1.56.2.4    cherry 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT; /* XXX: re-investigate roundup(gdt_size... ) for gdt_ents. */
    961   1.56.2.4    cherry 	KASSERT(gdt_ents <= 16);
    962   1.56.2.4    cherry 
    963   1.56.2.4    cherry 	gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
    964   1.56.2.4    cherry 
    965   1.56.2.4    cherry 	/*
    966   1.56.2.4    cherry 	 * Initialise the vcpu context:
    967   1.56.2.4    cherry 	 * We use this cpu's idle_loop() pcb context.
    968   1.56.2.4    cherry 	 */
    969   1.56.2.4    cherry 
    970   1.56.2.4    cherry 	l = ci->ci_data.cpu_idlelwp;
    971   1.56.2.4    cherry 
    972   1.56.2.4    cherry 	KASSERT(l != NULL);
    973   1.56.2.4    cherry 	pcb = lwp_getpcb(l);
    974   1.56.2.4    cherry 	KASSERT(pcb != NULL);
    975   1.56.2.4    cherry 
    976   1.56.2.4    cherry 	/* resume with interrupts off */
    977   1.56.2.4    cherry 	vci = ci->ci_vcpu;
    978   1.56.2.4    cherry 	vci->evtchn_upcall_mask = 1;
    979   1.56.2.4    cherry 	xen_mb();
    980   1.56.2.4    cherry 
    981   1.56.2.4    cherry 	/* resume in kernel-mode */
    982   1.56.2.4    cherry 	initctx->flags = VGCF_in_kernel | VGCF_online;
    983   1.56.2.4    cherry 
    984   1.56.2.4    cherry 	/* Stack frame setup for cpu_hatch():
    985   1.56.2.4    cherry 	 * We arrange for the stack frame for cpu_hatch() to
    986   1.56.2.4    cherry 	 * appear as a callee frame of lwp_trampoline(). Being a
    987   1.56.2.4    cherry 	 * leaf frame prevents trampling on any of the MD stack setup
    988   1.56.2.4    cherry 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    989   1.56.2.4    cherry 	 */
    990   1.56.2.4    cherry 
    991   1.56.2.4    cherry 	initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
    992   1.56.2.4    cherry 						      arg1 */
    993   1.56.2.4    cherry 	{ /* targeteip(ci); */
    994   1.56.2.4    cherry 		uint32_t *arg = (uint32_t *) initctx->user_regs.esp;
    995   1.56.2.4    cherry 		arg[1] = (uint32_t) ci; /* arg1 */
    996   1.56.2.4    cherry 
    997   1.56.2.4    cherry 	}
    998   1.56.2.4    cherry 
    999   1.56.2.4    cherry 	initctx->user_regs.eip = (vaddr_t) targeteip;
   1000   1.56.2.4    cherry 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
   1001   1.56.2.4    cherry 	initctx->user_regs.eflags |= pcb->pcb_iopl;
   1002   1.56.2.4    cherry 
   1003   1.56.2.4    cherry 	/* Data segments */
   1004   1.56.2.4    cherry 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
   1005   1.56.2.4    cherry 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
   1006   1.56.2.4    cherry 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
   1007   1.56.2.4    cherry 	initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
   1008   1.56.2.4    cherry 
   1009   1.56.2.4    cherry 	/* GDT */
   1010   1.56.2.4    cherry 	memcpy(initctx->gdt_frames, frames, sizeof frames);
   1011   1.56.2.4    cherry 	initctx->gdt_ents = gdt_ents;
   1012   1.56.2.4    cherry 
   1013   1.56.2.4    cherry 	/* LDT */
   1014   1.56.2.4    cherry 	initctx->ldt_base = (unsigned long) ldt;
   1015   1.56.2.4    cherry 	initctx->ldt_ents = NLDT;
   1016   1.56.2.4    cherry 
   1017   1.56.2.4    cherry 	/* Kernel context state */
   1018   1.56.2.4    cherry 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
   1019   1.56.2.4    cherry 	initctx->kernel_sp = pcb->pcb_esp0;
   1020   1.56.2.4    cherry 	initctx->ctrlreg[0] = pcb->pcb_cr0;
   1021   1.56.2.4    cherry 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
   1022   1.56.2.4    cherry 	initctx->ctrlreg[2] = pcb->pcb_cr2; /* XXX: */
   1023   1.56.2.4    cherry 	/*
   1024   1.56.2.4    cherry 	 * Use pmap_kernel() L4 PD directly, until we setup the
   1025   1.56.2.4    cherry 	 * per-cpu L4 PD in pmap_cpu_init_late()
   1026   1.56.2.4    cherry 	 */
   1027   1.56.2.7    cherry #ifdef PAE
   1028  1.56.2.10    cherry 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
   1029   1.56.2.7    cherry #else /* PAE */
   1030  1.56.2.10    cherry 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
   1031   1.56.2.7    cherry #endif /* PAE */
   1032   1.56.2.4    cherry 	initctx->ctrlreg[4] = /* CR4_PAE |  */CR4_OSFXSR | CR4_OSXMMEXCPT;
   1033   1.56.2.4    cherry 
   1034   1.56.2.4    cherry 
   1035   1.56.2.4    cherry 	/* Xen callbacks */
   1036   1.56.2.4    cherry 	initctx->event_callback_eip = (unsigned long) hypervisor_callback;
   1037   1.56.2.4    cherry 	initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
   1038   1.56.2.4    cherry 	initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
   1039   1.56.2.4    cherry 	initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
   1040   1.56.2.4    cherry 
   1041   1.56.2.4    cherry 	return;
   1042   1.56.2.4    cherry }
   1043   1.56.2.4    cherry #endif /* __x86_64__ */
   1044   1.56.2.1    cherry 
   1045   1.56.2.1    cherry int
   1046   1.56.2.1    cherry mp_cpu_start(struct cpu_info *ci, vaddr_t target)
   1047   1.56.2.1    cherry {
   1048   1.56.2.1    cherry 
   1049   1.56.2.1    cherry 	int hyperror;
   1050   1.56.2.1    cherry 	struct vcpu_guest_context vcpuctx;
   1051   1.56.2.1    cherry 
   1052   1.56.2.1    cherry 	KASSERT(ci != NULL);
   1053   1.56.2.1    cherry 	KASSERT(ci != &cpu_info_primary);
   1054   1.56.2.1    cherry 	KASSERT(ci->ci_flags & CPUF_AP);
   1055   1.56.2.1    cherry 
   1056   1.56.2.4    cherry #ifdef __x86_64__
   1057   1.56.2.1    cherry 	xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
   1058   1.56.2.4    cherry #else  /* i386 */
   1059   1.56.2.4    cherry 	xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
   1060   1.56.2.4    cherry #endif /* __x86_64__ */
   1061   1.56.2.1    cherry 
   1062   1.56.2.1    cherry 	/* Initialise the given vcpu to execute cpu_hatch(ci); */
   1063   1.56.2.1    cherry 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
   1064   1.56.2.1    cherry 		aprint_error(": context initialisation failed. errno = %d\n", hyperror);
   1065   1.56.2.1    cherry 		return hyperror;
   1066        1.2    bouyer 	}
   1067   1.56.2.1    cherry 
   1068   1.56.2.1    cherry 	/* Start it up */
   1069   1.56.2.1    cherry 
   1070   1.56.2.1    cherry 	/* First bring it down - yay, thanks Xen documentation for omitting this slight detail - lost only about 1 week reading through crap */
   1071   1.56.2.1    cherry 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
   1072   1.56.2.1    cherry 		aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
   1073   1.56.2.1    cherry 		return hyperror;
   1074   1.56.2.1    cherry 	}
   1075   1.56.2.1    cherry 
   1076   1.56.2.1    cherry 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
   1077   1.56.2.1    cherry 		aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
   1078   1.56.2.1    cherry 		return hyperror;
   1079   1.56.2.1    cherry 	}
   1080   1.56.2.1    cherry 
   1081   1.56.2.1    cherry 	if (!vcpu_is_up(ci)) {
   1082   1.56.2.1    cherry 		aprint_error(": did not come up\n");
   1083   1.56.2.1    cherry 		return -1;
   1084   1.56.2.1    cherry 	}
   1085   1.56.2.1    cherry 
   1086        1.2    bouyer 	return 0;
   1087        1.2    bouyer }
   1088        1.2    bouyer 
   1089        1.2    bouyer void
   1090        1.2    bouyer mp_cpu_start_cleanup(struct cpu_info *ci)
   1091        1.2    bouyer {
   1092        1.2    bouyer #if 0
   1093        1.2    bouyer 	/*
   1094        1.2    bouyer 	 * Ensure the NVRAM reset byte contains something vaguely sane.
   1095        1.2    bouyer 	 */
   1096        1.2    bouyer 
   1097        1.2    bouyer 	outb(IO_RTC, NVRAM_RESET);
   1098        1.2    bouyer 	outb(IO_RTC+1, NVRAM_RESET_RST);
   1099        1.2    bouyer #endif
   1100   1.56.2.1    cherry 	if (vcpu_is_up(ci)) {
   1101   1.56.2.1    cherry 		aprint_debug_dev(ci->ci_dev, "is started.\n");
   1102   1.56.2.1    cherry 	}
   1103   1.56.2.1    cherry 	else {
   1104   1.56.2.1    cherry 		aprint_error_dev(ci->ci_dev, "did not start up.\n");
   1105   1.56.2.1    cherry 	}
   1106   1.56.2.1    cherry 
   1107        1.2    bouyer }
   1108        1.2    bouyer 
   1109   1.56.2.9    cherry /* curcpu() uses %fs - shim for until cpu_init_msrs(), below */
   1110   1.56.2.9    cherry static struct cpu_info *cpu_primary(void)
   1111   1.56.2.9    cherry {
   1112   1.56.2.9    cherry 	return &cpu_info_primary;
   1113   1.56.2.9    cherry }
   1114   1.56.2.9    cherry struct cpu_info	* (*xpq_cpu)(void) = cpu_primary;
   1115   1.56.2.9    cherry 
   1116   1.56.2.9    cherry 	void
   1117        1.3    bouyer cpu_init_msrs(struct cpu_info *ci, bool full)
   1118        1.2    bouyer {
   1119       1.43       jym #ifdef __x86_64__
   1120        1.3    bouyer 	if (full) {
   1121        1.3    bouyer 		HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
   1122       1.11    cegger 		HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
   1123        1.3    bouyer 		HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
   1124   1.56.2.9    cherry 		xpq_cpu = x86_curcpu;
   1125        1.3    bouyer 	}
   1126       1.43       jym #endif	/* __x86_64__ */
   1127       1.44       jym 
   1128       1.44       jym 	if (cpu_feature[2] & CPUID_NOX)
   1129       1.44       jym 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1130   1.56.2.1    cherry 
   1131        1.2    bouyer }
   1132        1.2    bouyer 
   1133       1.11    cegger void
   1134       1.11    cegger cpu_offline_md(void)
   1135       1.11    cegger {
   1136       1.11    cegger         int s;
   1137       1.11    cegger 
   1138       1.11    cegger         s = splhigh();
   1139       1.11    cegger #ifdef __i386__
   1140       1.11    cegger         npxsave_cpu(true);
   1141       1.11    cegger #else
   1142       1.11    cegger         fpusave_cpu(true);
   1143       1.11    cegger #endif
   1144       1.11    cegger         splx(s);
   1145       1.11    cegger }
   1146       1.11    cegger 
   1147       1.11    cegger #if 0
   1148       1.11    cegger /* XXX joerg restructure and restart CPUs individually */
   1149       1.11    cegger static bool
   1150       1.41    dyoung cpu_suspend(device_t dv, const pmf_qual_t *qual)
   1151       1.11    cegger {
   1152       1.11    cegger 	struct cpu_softc *sc = device_private(dv);
   1153       1.11    cegger 	struct cpu_info *ci = sc->sc_info;
   1154       1.11    cegger 	int err;
   1155       1.11    cegger 
   1156       1.11    cegger 	if (ci->ci_flags & CPUF_PRIMARY)
   1157       1.11    cegger 		return true;
   1158       1.11    cegger 	if (ci->ci_data.cpu_idlelwp == NULL)
   1159       1.11    cegger 		return true;
   1160       1.11    cegger 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1161       1.11    cegger 		return true;
   1162       1.11    cegger 
   1163       1.11    cegger 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1164       1.11    cegger 
   1165       1.11    cegger 	if (sc->sc_wasonline) {
   1166       1.11    cegger 		mutex_enter(&cpu_lock);
   1167       1.29     rmind 		err = cpu_setstate(ci, false);
   1168       1.11    cegger 		mutex_exit(&cpu_lock);
   1169       1.11    cegger 
   1170       1.11    cegger 		if (err)
   1171       1.11    cegger 			return false;
   1172       1.11    cegger 	}
   1173       1.11    cegger 
   1174       1.11    cegger 	return true;
   1175       1.11    cegger }
   1176       1.11    cegger 
   1177       1.11    cegger static bool
   1178       1.41    dyoung cpu_resume(device_t dv, const pmf_qual_t *qual)
   1179       1.11    cegger {
   1180       1.11    cegger 	struct cpu_softc *sc = device_private(dv);
   1181       1.11    cegger 	struct cpu_info *ci = sc->sc_info;
   1182       1.11    cegger 	int err = 0;
   1183       1.11    cegger 
   1184       1.11    cegger 	if (ci->ci_flags & CPUF_PRIMARY)
   1185       1.11    cegger 		return true;
   1186       1.11    cegger 	if (ci->ci_data.cpu_idlelwp == NULL)
   1187       1.11    cegger 		return true;
   1188       1.11    cegger 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1189       1.11    cegger 		return true;
   1190       1.11    cegger 
   1191       1.11    cegger 	if (sc->sc_wasonline) {
   1192       1.11    cegger 		mutex_enter(&cpu_lock);
   1193       1.29     rmind 		err = cpu_setstate(ci, true);
   1194       1.11    cegger 		mutex_exit(&cpu_lock);
   1195       1.11    cegger 	}
   1196       1.11    cegger 
   1197       1.11    cegger 	return err == 0;
   1198       1.11    cegger }
   1199       1.11    cegger #endif
   1200       1.11    cegger 
   1201        1.2    bouyer void
   1202        1.2    bouyer cpu_get_tsc_freq(struct cpu_info *ci)
   1203        1.2    bouyer {
   1204   1.56.2.1    cherry 	uint32_t vcpu_tversion;
   1205       1.16    cegger 	const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
   1206   1.56.2.1    cherry 
   1207   1.56.2.1    cherry 	vcpu_tversion = tinfo->version;
   1208   1.56.2.1    cherry 	while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
   1209   1.56.2.1    cherry 
   1210        1.2    bouyer 	uint64_t freq = 1000000000ULL << 32;
   1211        1.2    bouyer 	freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
   1212        1.2    bouyer 	if ( tinfo->tsc_shift < 0 )
   1213        1.2    bouyer 		freq = freq << -tinfo->tsc_shift;
   1214        1.2    bouyer 	else
   1215        1.2    bouyer 		freq = freq >> tinfo->tsc_shift;
   1216       1.20        ad 	ci->ci_data.cpu_cc_freq = freq;
   1217        1.2    bouyer }
   1218       1.19     joerg 
   1219       1.19     joerg void
   1220       1.19     joerg x86_cpu_idle_xen(void)
   1221       1.19     joerg {
   1222       1.19     joerg 	struct cpu_info *ci = curcpu();
   1223   1.56.2.1    cherry 
   1224       1.19     joerg 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1225       1.19     joerg 
   1226       1.19     joerg 	x86_disable_intr();
   1227       1.19     joerg 	if (!__predict_false(ci->ci_want_resched)) {
   1228       1.19     joerg 		idle_block();
   1229       1.19     joerg 	} else {
   1230       1.19     joerg 		x86_enable_intr();
   1231       1.19     joerg 	}
   1232       1.19     joerg }
   1233       1.47       jym 
   1234       1.47       jym /*
   1235       1.47       jym  * Loads pmap for the current CPU.
   1236       1.47       jym  */
   1237       1.47       jym void
   1238       1.47       jym cpu_load_pmap(struct pmap *pmap)
   1239       1.47       jym {
   1240       1.47       jym #ifdef i386
   1241       1.47       jym #ifdef PAE
   1242       1.47       jym 	int i, s;
   1243       1.47       jym 	struct cpu_info *ci;
   1244       1.47       jym 
   1245       1.47       jym 	s = splvm(); /* just to be safe */
   1246   1.56.2.1    cherry 	xpq_queue_lock();
   1247       1.47       jym 	ci = curcpu();
   1248       1.47       jym 	paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
   1249       1.47       jym 	/* don't update the kernel L3 slot */
   1250       1.47       jym 	for (i = 0 ; i < PDP_SIZE - 1; i++) {
   1251       1.47       jym 		xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
   1252       1.47       jym 		    xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
   1253       1.47       jym 	}
   1254   1.56.2.1    cherry 	xpq_queue_unlock();
   1255       1.47       jym 	splx(s);
   1256       1.47       jym 	tlbflush();
   1257       1.47       jym #else /* PAE */
   1258       1.47       jym 	lcr3(pmap_pdirpa(pmap, 0));
   1259       1.47       jym #endif /* PAE */
   1260       1.47       jym #endif /* i386 */
   1261       1.47       jym 
   1262       1.47       jym #ifdef __x86_64__
   1263       1.47       jym 	int i, s;
   1264   1.56.2.3    cherry 	pd_entry_t *new_pgd;
   1265       1.47       jym 	struct cpu_info *ci;
   1266   1.56.2.8    cherry 	paddr_t l4_pd_ma;
   1267       1.47       jym 
   1268   1.56.2.3    cherry 	ci = curcpu();
   1269   1.56.2.8    cherry 	l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
   1270   1.56.2.3    cherry 
   1271   1.56.2.3    cherry 	/*
   1272   1.56.2.3    cherry 	 * Map user space address in kernel space and load
   1273   1.56.2.3    cherry 	 * user cr3
   1274   1.56.2.3    cherry 	 */
   1275   1.56.2.3    cherry 	s = splvm();
   1276   1.56.2.3    cherry 	new_pgd = pmap->pm_pdir;
   1277   1.56.2.3    cherry 
   1278   1.56.2.3    cherry 	xpq_queue_lock();
   1279   1.56.2.3    cherry 
   1280   1.56.2.7    cherry 	/* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
   1281   1.56.2.7    cherry 	for (i = 0; i < PDIR_SLOT_PTE; i++) {
   1282   1.56.2.8    cherry 		xpq_queue_pte_update(l4_pd_ma + i * sizeof(pd_entry_t), new_pgd[i]);
   1283   1.56.2.3    cherry 	}
   1284   1.56.2.3    cherry 
   1285   1.56.2.3    cherry 	if (__predict_true(pmap != pmap_kernel())) {
   1286  1.56.2.11    cherry 		xen_set_user_pgd(pmap_pdirpa(pmap, 0));
   1287       1.47       jym 		ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
   1288       1.47       jym 	}
   1289   1.56.2.3    cherry 	else {
   1290   1.56.2.8    cherry 		xpq_queue_pt_switch(l4_pd_ma);
   1291   1.56.2.3    cherry 		ci->ci_xen_current_user_pgd = 0;
   1292   1.56.2.3    cherry 	}
   1293   1.56.2.3    cherry 	xpq_queue_unlock();
   1294   1.56.2.7    cherry 
   1295   1.56.2.7    cherry 	tlbflush();
   1296   1.56.2.7    cherry 
   1297   1.56.2.3    cherry 	splx(s);
   1298   1.56.2.3    cherry 
   1299       1.47       jym #endif /* __x86_64__ */
   1300       1.47       jym }
   1301   1.56.2.6    cherry 
   1302   1.56.2.6    cherry /*
   1303   1.56.2.7    cherry  * pmap_cpu_init_late: perform late per-CPU initialization.
   1304  1.56.2.11    cherry  * Short note about percpu PDIR pages:
   1305  1.56.2.11    cherry  * Both the PAE and __x86_64__ architectures have per-cpu PDIR
   1306  1.56.2.11    cherry  * tables. This is to get around Xen's pagetable setup constraints for
   1307  1.56.2.11    cherry  * PAE (multiple L3[3]s cannot point to the same L2 - Xen
   1308  1.56.2.11    cherry  * will refuse to pin a table setup this way.) and for multiple cpus
   1309  1.56.2.11    cherry  * to map in different user pmaps on __x86_64__ (see: cpu_load_pmap())
   1310  1.56.2.11    cherry  *
   1311  1.56.2.11    cherry  * What this means for us is that the PDIR of the pmap_kernel() is
   1312  1.56.2.11    cherry  * considered to be a canonical "SHADOW" PDIR with the following
   1313  1.56.2.11    cherry  * properties:
   1314  1.56.2.11    cherry  * - Its recursive mapping points to itself
   1315  1.56.2.11    cherry  * - per-cpu recurseive mappings point to themselves
   1316  1.56.2.11    cherry  * - per-cpu L4 pages' kernel entries are expected to be in sync with
   1317  1.56.2.11    cherry  *   the shadow
   1318  1.56.2.11    cherry  * - APDP_PDE_SHADOW accesses the shadow pdir
   1319  1.56.2.11    cherry  * - APDP_PDE accesses the per-cpu pdir
   1320  1.56.2.11    cherry  * - alternate mappings are considered per-cpu - however, x86 pmap
   1321  1.56.2.11    cherry  *   currently partially consults the shadow - this works because the
   1322  1.56.2.11    cherry  *   shadow PDE is updated together with the per-cpu entry (see:
   1323  1.56.2.11    cherry  *   xen_pmap.c: pmap_map_ptes(), and the pmap is locked while the
   1324  1.56.2.11    cherry  * alternate ptes are mapped in.
   1325   1.56.2.7    cherry  */
   1326   1.56.2.7    cherry 
   1327   1.56.2.7    cherry void
   1328   1.56.2.7    cherry pmap_cpu_init_late(struct cpu_info *ci)
   1329   1.56.2.7    cherry {
   1330   1.56.2.7    cherry #if defined(PAE) || defined(__x86_64__)
   1331   1.56.2.7    cherry 	/*
   1332   1.56.2.7    cherry 	 * The BP has already its own PD page allocated during early
   1333   1.56.2.7    cherry 	 * MD startup.
   1334   1.56.2.7    cherry 	 */
   1335   1.56.2.7    cherry 
   1336   1.56.2.7    cherry 	if (ci == &cpu_info_primary)
   1337   1.56.2.7    cherry 		return;
   1338   1.56.2.7    cherry 
   1339   1.56.2.7    cherry 	KASSERT(ci != NULL);
   1340   1.56.2.7    cherry 
   1341  1.56.2.11    cherry #if defined(PAE)
   1342  1.56.2.10    cherry 	ci->ci_pae_l3_pdir = (paddr_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1343  1.56.2.10    cherry 	    UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
   1344   1.56.2.7    cherry 
   1345  1.56.2.10    cherry 	if (ci->ci_pae_l3_pdir == NULL) {
   1346  1.56.2.10    cherry 		panic("%s: failed to allocate L3 per-cpu PD for CPU %d\n",
   1347  1.56.2.10    cherry 		      __func__, cpu_index(ci));
   1348   1.56.2.7    cherry 	}
   1349  1.56.2.10    cherry 	ci->ci_pae_l3_pdirpa = vtophys((vaddr_t) ci->ci_pae_l3_pdir);
   1350  1.56.2.10    cherry 	KASSERT(ci->ci_pae_l3_pdirpa != 0);
   1351  1.56.2.10    cherry 
   1352   1.56.2.7    cherry 	/* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
   1353   1.56.2.7    cherry 	ci->ci_pae_l3_pdir[0] =
   1354   1.56.2.7    cherry 	    xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[0]) | PG_V;
   1355   1.56.2.7    cherry 	ci->ci_pae_l3_pdir[1] =
   1356   1.56.2.7    cherry 	    xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[1]) | PG_V;
   1357   1.56.2.7    cherry 	ci->ci_pae_l3_pdir[2] =
   1358   1.56.2.7    cherry 	    xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[2]) | PG_V;
   1359   1.56.2.7    cherry #endif /* PAE */
   1360   1.56.2.7    cherry 
   1361   1.56.2.7    cherry 	ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1362   1.56.2.7    cherry 	    UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
   1363   1.56.2.7    cherry 
   1364   1.56.2.7    cherry 	if (ci->ci_kpm_pdir == NULL) {
   1365   1.56.2.7    cherry 		panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
   1366   1.56.2.7    cherry 		      __func__, cpu_index(ci));
   1367   1.56.2.7    cherry 	}
   1368   1.56.2.7    cherry 	ci->ci_kpm_pdirpa = vtophys((vaddr_t) ci->ci_kpm_pdir);
   1369   1.56.2.7    cherry 	KASSERT(ci->ci_kpm_pdirpa != 0);
   1370  1.56.2.11    cherry 
   1371  1.56.2.11    cherry #if defined(__x86_64__)
   1372   1.56.2.7    cherry 	/*
   1373  1.56.2.11    cherry 	 * Copy over the pmap_kernel() shadow L4 entries
   1374   1.56.2.7    cherry 	 */
   1375   1.56.2.7    cherry 
   1376  1.56.2.11    cherry 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
   1377  1.56.2.11    cherry 
   1378  1.56.2.11    cherry 	/* Recursive kernel mapping */
   1379  1.56.2.11    cherry 	ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
   1380  1.56.2.11    cherry #elif defined(PAE)
   1381  1.56.2.11    cherry 	/* Copy over the pmap_kernel() shadow L2 entries that map the kernel */
   1382  1.56.2.11    cherry 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN, nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
   1383  1.56.2.11    cherry #endif /* __x86_64__ else PAE */
   1384   1.56.2.7    cherry 
   1385   1.56.2.7    cherry 	/* Xen wants R/O */
   1386   1.56.2.7    cherry 	pmap_kenter_pa((vaddr_t)ci->ci_kpm_pdir, ci->ci_kpm_pdirpa,
   1387   1.56.2.7    cherry 	    VM_PROT_READ, 0);
   1388   1.56.2.7    cherry 
   1389  1.56.2.11    cherry #if defined(PAE)
   1390   1.56.2.7    cherry 	/* Initialise L3 entry 3. This mapping is shared across all
   1391   1.56.2.7    cherry 	 * pmaps and is static, ie; loading a new pmap will not update
   1392   1.56.2.7    cherry 	 * this entry.
   1393   1.56.2.7    cherry 	 */
   1394   1.56.2.7    cherry 
   1395  1.56.2.11    cherry 	ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
   1396   1.56.2.7    cherry 
   1397   1.56.2.7    cherry 	/* Mark L3 R/O (Xen wants this) */
   1398   1.56.2.7    cherry 	pmap_kenter_pa((vaddr_t)ci->ci_pae_l3_pdir, ci->ci_pae_l3_pdirpa,
   1399   1.56.2.7    cherry 		VM_PROT_READ, 0);
   1400   1.56.2.7    cherry 
   1401   1.56.2.7    cherry 	xpq_queue_lock();
   1402   1.56.2.7    cherry 	xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
   1403   1.56.2.7    cherry 	xpq_queue_unlock();
   1404   1.56.2.7    cherry 
   1405   1.56.2.7    cherry #elif defined(__x86_64__)
   1406   1.56.2.7    cherry 	xpq_queue_lock();
   1407   1.56.2.7    cherry 	xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
   1408   1.56.2.7    cherry 	xpq_queue_unlock();
   1409   1.56.2.7    cherry #endif /* PAE */
   1410   1.56.2.7    cherry #endif /* defined(PAE) || defined(__x86_64__) */
   1411   1.56.2.7    cherry }
   1412   1.56.2.7    cherry 
   1413   1.56.2.7    cherry 
   1414   1.56.2.7    cherry 
   1415   1.56.2.7    cherry /*
   1416   1.56.2.6    cherry  * Notify all other cpus to halt.
   1417   1.56.2.6    cherry  */
   1418   1.56.2.6    cherry 
   1419   1.56.2.6    cherry void
   1420   1.56.2.6    cherry cpu_broadcast_halt(void)
   1421   1.56.2.6    cherry {
   1422   1.56.2.6    cherry 	xen_broadcast_ipi(XEN_IPI_HALT);
   1423   1.56.2.6    cherry }
   1424   1.56.2.6    cherry 
   1425   1.56.2.6    cherry /*
   1426   1.56.2.6    cherry  * Send a dummy ipi to a cpu.
   1427   1.56.2.6    cherry  */
   1428   1.56.2.6    cherry 
   1429   1.56.2.6    cherry void
   1430   1.56.2.6    cherry cpu_kick(struct cpu_info *ci)
   1431   1.56.2.6    cherry {
   1432   1.56.2.7    cherry 	(void)xen_send_ipi(ci, XEN_IPI_KICK);
   1433   1.56.2.6    cherry }
   1434