Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.56.2.7
      1  1.56.2.7    cherry /*	$NetBSD: cpu.c,v 1.56.2.7 2011/08/20 19:22:47 cherry Exp $	*/
      2       1.2    bouyer /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp  */
      3       1.2    bouyer 
      4       1.2    bouyer /*-
      5       1.2    bouyer  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      6      1.19     joerg  * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
      7       1.2    bouyer  * All rights reserved.
      8       1.2    bouyer  *
      9       1.2    bouyer  * This code is derived from software contributed to The NetBSD Foundation
     10       1.2    bouyer  * by RedBack Networks Inc.
     11       1.2    bouyer  *
     12       1.2    bouyer  * Author: Bill Sommerfeld
     13       1.2    bouyer  *
     14       1.2    bouyer  * Redistribution and use in source and binary forms, with or without
     15       1.2    bouyer  * modification, are permitted provided that the following conditions
     16       1.2    bouyer  * are met:
     17       1.2    bouyer  * 1. Redistributions of source code must retain the above copyright
     18       1.2    bouyer  *    notice, this list of conditions and the following disclaimer.
     19       1.2    bouyer  * 2. Redistributions in binary form must reproduce the above copyright
     20       1.2    bouyer  *    notice, this list of conditions and the following disclaimer in the
     21       1.2    bouyer  *    documentation and/or other materials provided with the distribution.
     22       1.2    bouyer  *
     23       1.2    bouyer  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24       1.2    bouyer  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25       1.2    bouyer  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26       1.2    bouyer  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27       1.2    bouyer  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28       1.2    bouyer  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29       1.2    bouyer  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30       1.2    bouyer  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31       1.2    bouyer  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32       1.2    bouyer  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33       1.2    bouyer  * POSSIBILITY OF SUCH DAMAGE.
     34       1.2    bouyer  */
     35       1.2    bouyer 
     36       1.2    bouyer /*
     37       1.2    bouyer  * Copyright (c) 1999 Stefan Grefen
     38       1.2    bouyer  *
     39       1.2    bouyer  * Redistribution and use in source and binary forms, with or without
     40       1.2    bouyer  * modification, are permitted provided that the following conditions
     41       1.2    bouyer  * are met:
     42       1.2    bouyer  * 1. Redistributions of source code must retain the above copyright
     43       1.2    bouyer  *    notice, this list of conditions and the following disclaimer.
     44       1.2    bouyer  * 2. Redistributions in binary form must reproduce the above copyright
     45       1.2    bouyer  *    notice, this list of conditions and the following disclaimer in the
     46       1.2    bouyer  *    documentation and/or other materials provided with the distribution.
     47       1.2    bouyer  * 3. All advertising materials mentioning features or use of this software
     48       1.2    bouyer  *    must display the following acknowledgement:
     49       1.2    bouyer  *      This product includes software developed by the NetBSD
     50       1.2    bouyer  *      Foundation, Inc. and its contributors.
     51       1.2    bouyer  * 4. Neither the name of The NetBSD Foundation nor the names of its
     52       1.2    bouyer  *    contributors may be used to endorse or promote products derived
     53       1.2    bouyer  *    from this software without specific prior written permission.
     54       1.2    bouyer  *
     55       1.2    bouyer  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     56       1.2    bouyer  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57       1.2    bouyer  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58       1.2    bouyer  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     59       1.2    bouyer  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60       1.2    bouyer  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61       1.2    bouyer  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62       1.2    bouyer  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63       1.2    bouyer  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64       1.2    bouyer  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65       1.2    bouyer  * SUCH DAMAGE.
     66       1.2    bouyer  */
     67       1.2    bouyer 
     68       1.2    bouyer #include <sys/cdefs.h>
     69  1.56.2.7    cherry __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.56.2.7 2011/08/20 19:22:47 cherry Exp $");
     70       1.2    bouyer 
     71       1.2    bouyer #include "opt_ddb.h"
     72       1.2    bouyer #include "opt_multiprocessor.h"
     73       1.2    bouyer #include "opt_mpbios.h"		/* for MPDEBUG */
     74       1.2    bouyer #include "opt_mtrr.h"
     75       1.2    bouyer #include "opt_xen.h"
     76       1.2    bouyer 
     77       1.2    bouyer #include "lapic.h"
     78       1.2    bouyer #include "ioapic.h"
     79       1.2    bouyer 
     80       1.2    bouyer #include <sys/param.h>
     81       1.2    bouyer #include <sys/proc.h>
     82       1.2    bouyer #include <sys/systm.h>
     83       1.2    bouyer #include <sys/device.h>
     84      1.31    cegger #include <sys/kmem.h>
     85      1.11    cegger #include <sys/cpu.h>
     86      1.11    cegger #include <sys/atomic.h>
     87      1.32    cegger #include <sys/reboot.h>
     88  1.56.2.1    cherry #include <sys/idle.h>
     89       1.2    bouyer 
     90      1.51  uebayasi #include <uvm/uvm.h>
     91       1.2    bouyer 
     92       1.2    bouyer #include <machine/cpufunc.h>
     93       1.2    bouyer #include <machine/cpuvar.h>
     94       1.2    bouyer #include <machine/pmap.h>
     95       1.2    bouyer #include <machine/vmparam.h>
     96       1.2    bouyer #include <machine/mpbiosvar.h>
     97       1.2    bouyer #include <machine/pcb.h>
     98       1.2    bouyer #include <machine/specialreg.h>
     99       1.2    bouyer #include <machine/segments.h>
    100       1.2    bouyer #include <machine/gdt.h>
    101       1.2    bouyer #include <machine/mtrr.h>
    102       1.2    bouyer #include <machine/pio.h>
    103  1.56.2.4    cherry 
    104  1.56.2.4    cherry #ifdef i386
    105  1.56.2.4    cherry #include <machine/npx.h>
    106  1.56.2.4    cherry #else
    107  1.56.2.1    cherry #include <machine/fpu.h>
    108  1.56.2.4    cherry #endif
    109       1.2    bouyer 
    110  1.56.2.1    cherry #include <xen/xen.h>
    111  1.56.2.1    cherry #include <xen/xen3-public/vcpu.h>
    112       1.2    bouyer #include <xen/vcpuvar.h>
    113       1.2    bouyer 
    114       1.2    bouyer #if NLAPIC > 0
    115       1.2    bouyer #include <machine/apicvar.h>
    116       1.2    bouyer #include <machine/i82489reg.h>
    117       1.2    bouyer #include <machine/i82489var.h>
    118       1.2    bouyer #endif
    119       1.2    bouyer 
    120       1.2    bouyer #include <dev/ic/mc146818reg.h>
    121       1.2    bouyer #include <dev/isa/isareg.h>
    122       1.2    bouyer 
    123      1.38    cegger #if MAXCPUS > 32
    124      1.38    cegger #error cpu_info contains 32bit bitmasks
    125      1.38    cegger #endif
    126      1.27        ad 
    127      1.56    jruoho static int	cpu_match(device_t, cfdata_t, void *);
    128      1.56    jruoho static void	cpu_attach(device_t, device_t, void *);
    129      1.56    jruoho static void	cpu_defer(device_t);
    130      1.56    jruoho static int	cpu_rescan(device_t, const char *, const int *);
    131      1.56    jruoho static void	cpu_childdetached(device_t, device_t);
    132      1.56    jruoho static int	vcpu_match(device_t, cfdata_t, void *);
    133      1.56    jruoho static void	vcpu_attach(device_t, device_t, void *);
    134      1.56    jruoho static void	cpu_attach_common(device_t, device_t, void *);
    135      1.56    jruoho void		cpu_offline_md(void);
    136       1.2    bouyer 
    137       1.2    bouyer struct cpu_softc {
    138      1.10    cegger 	device_t sc_dev;		/* device tree glue */
    139       1.2    bouyer 	struct cpu_info *sc_info;	/* pointer to CPU info */
    140      1.32    cegger 	bool sc_wasonline;
    141       1.2    bouyer };
    142       1.2    bouyer 
    143  1.56.2.5    cherry int mp_cpu_start(struct cpu_info *, vaddr_t);
    144       1.2    bouyer void mp_cpu_start_cleanup(struct cpu_info *);
    145       1.2    bouyer const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    146       1.2    bouyer 				      mp_cpu_start_cleanup };
    147       1.2    bouyer 
    148      1.53    jruoho CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    149      1.53    jruoho     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    150      1.53    jruoho 
    151      1.10    cegger CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
    152       1.2    bouyer     vcpu_match, vcpu_attach, NULL, NULL);
    153       1.2    bouyer 
    154       1.2    bouyer /*
    155       1.2    bouyer  * Statically-allocated CPU info for the primary CPU (or the only
    156       1.2    bouyer  * CPU, on uniprocessors).  The CPU info list is initialized to
    157       1.2    bouyer  * point at it.
    158       1.2    bouyer  */
    159       1.2    bouyer #ifdef TRAPLOG
    160       1.2    bouyer #include <machine/tlog.h>
    161       1.2    bouyer struct tlog tlog_primary;
    162       1.2    bouyer #endif
    163      1.38    cegger struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    164       1.7    bouyer 	.ci_dev = 0,
    165       1.2    bouyer 	.ci_self = &cpu_info_primary,
    166       1.4    bouyer 	.ci_idepth = -1,
    167       1.2    bouyer 	.ci_curlwp = &lwp0,
    168      1.25        ad 	.ci_curldt = -1,
    169  1.56.2.2    cherry 	.ci_cpumask = 1,
    170       1.2    bouyer #ifdef TRAPLOG
    171       1.2    bouyer 	.ci_tlog = &tlog_primary,
    172       1.2    bouyer #endif
    173       1.2    bouyer 
    174       1.2    bouyer };
    175      1.38    cegger struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    176       1.7    bouyer 	.ci_dev = 0,
    177       1.2    bouyer 	.ci_self = &phycpu_info_primary,
    178       1.2    bouyer };
    179       1.2    bouyer 
    180       1.2    bouyer struct cpu_info *cpu_info_list = &cpu_info_primary;
    181      1.38    cegger struct cpu_info *phycpu_info_list = &phycpu_info_primary;
    182       1.2    bouyer 
    183  1.56.2.2    cherry uint32_t cpus_attached = 1;
    184      1.11    cegger uint32_t cpus_running = 0;
    185      1.11    cegger 
    186      1.38    cegger uint32_t phycpus_attached = 0;
    187      1.38    cegger uint32_t phycpus_running = 0;
    188      1.38    cegger 
    189      1.43       jym uint32_t cpu_feature[5]; /* X86 CPUID feature bits
    190      1.43       jym 			  *	[0] basic features %edx
    191      1.43       jym 			  *	[1] basic features %ecx
    192      1.43       jym 			  *	[2] extended features %edx
    193      1.43       jym 			  *	[3] extended features %ecx
    194      1.43       jym 			  *	[4] VIA padlock features
    195      1.43       jym 			  */
    196      1.43       jym 
    197      1.11    cegger bool x86_mp_online;
    198      1.11    cegger paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    199       1.2    bouyer 
    200      1.38    cegger #if defined(MULTIPROCESSOR)
    201       1.2    bouyer void    	cpu_hatch(void *);
    202       1.2    bouyer static void    	cpu_boot_secondary(struct cpu_info *ci);
    203       1.2    bouyer static void    	cpu_start_secondary(struct cpu_info *ci);
    204      1.38    cegger #endif	/* MULTIPROCESSOR */
    205       1.2    bouyer 
    206      1.56    jruoho static int
    207      1.10    cegger cpu_match(device_t parent, cfdata_t match, void *aux)
    208       1.2    bouyer {
    209       1.2    bouyer 
    210       1.2    bouyer 	return 1;
    211       1.2    bouyer }
    212       1.2    bouyer 
    213      1.56    jruoho static void
    214      1.10    cegger cpu_attach(device_t parent, device_t self, void *aux)
    215       1.2    bouyer {
    216      1.10    cegger 	struct cpu_softc *sc = device_private(self);
    217       1.2    bouyer 	struct cpu_attach_args *caa = aux;
    218       1.2    bouyer 	struct cpu_info *ci;
    219      1.34    cegger 	uintptr_t ptr;
    220      1.52    bouyer 	static int nphycpu = 0;
    221       1.2    bouyer 
    222      1.10    cegger 	sc->sc_dev = self;
    223      1.10    cegger 
    224      1.38    cegger 	if (phycpus_attached == ~0) {
    225      1.34    cegger 		aprint_error(": increase MAXCPUS\n");
    226      1.34    cegger 		return;
    227      1.34    cegger 	}
    228      1.34    cegger 
    229       1.2    bouyer 	/*
    230       1.2    bouyer 	 * If we're an Application Processor, allocate a cpu_info
    231      1.52    bouyer 	 * If we're the first attached CPU use the primary cpu_info,
    232      1.52    bouyer 	 * otherwise allocate a new one
    233       1.2    bouyer 	 */
    234      1.52    bouyer 	aprint_naive("\n");
    235      1.52    bouyer 	aprint_normal("\n");
    236      1.52    bouyer 	if (nphycpu > 0) {
    237      1.52    bouyer 		struct cpu_info *tmp;
    238      1.34    cegger 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    239      1.34    cegger 		    KM_SLEEP);
    240      1.42       jym 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    241      1.24        ad 		ci->ci_curldt = -1;
    242      1.52    bouyer 
    243      1.52    bouyer 		tmp = phycpu_info_list;
    244      1.52    bouyer 		while (tmp->ci_next)
    245      1.52    bouyer 			tmp = tmp->ci_next;
    246      1.52    bouyer 
    247      1.52    bouyer 		tmp->ci_next = ci;
    248       1.2    bouyer 	} else {
    249       1.2    bouyer 		ci = &phycpu_info_primary;
    250       1.2    bouyer 	}
    251       1.2    bouyer 
    252       1.2    bouyer 	ci->ci_self = ci;
    253       1.2    bouyer 	sc->sc_info = ci;
    254       1.2    bouyer 
    255       1.2    bouyer 	ci->ci_dev = self;
    256      1.50    jruoho 	ci->ci_acpiid = caa->cpu_id;
    257      1.23        ad 	ci->ci_cpuid = caa->cpu_number;
    258      1.16    cegger 	ci->ci_vcpu = NULL;
    259      1.52    bouyer 	ci->ci_index = nphycpu++;
    260      1.52    bouyer 	ci->ci_cpumask = (1 << cpu_index(ci));
    261       1.2    bouyer 
    262      1.52    bouyer 	atomic_or_32(&phycpus_attached, ci->ci_cpumask);
    263      1.38    cegger 
    264      1.52    bouyer 	if (!pmf_device_register(self, NULL, NULL))
    265      1.52    bouyer 		aprint_error_dev(self, "couldn't establish power handler\n");
    266      1.34    cegger 
    267      1.56    jruoho 	(void)config_defer(self, cpu_defer);
    268      1.56    jruoho }
    269      1.56    jruoho 
    270      1.56    jruoho static void
    271      1.56    jruoho cpu_defer(device_t self)
    272      1.56    jruoho {
    273      1.56    jruoho 	cpu_rescan(self, NULL, NULL);
    274       1.2    bouyer }
    275       1.2    bouyer 
    276      1.56    jruoho static int
    277      1.53    jruoho cpu_rescan(device_t self, const char *ifattr, const int *locators)
    278      1.53    jruoho {
    279      1.53    jruoho 	struct cpu_softc *sc = device_private(self);
    280      1.53    jruoho 	struct cpufeature_attach_args cfaa;
    281      1.53    jruoho 	struct cpu_info *ci = sc->sc_info;
    282      1.53    jruoho 
    283      1.53    jruoho 	memset(&cfaa, 0, sizeof(cfaa));
    284      1.53    jruoho 	cfaa.ci = ci;
    285      1.53    jruoho 
    286      1.53    jruoho 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    287      1.53    jruoho 
    288      1.53    jruoho 		if (ci->ci_frequency == NULL) {
    289      1.55    jruoho 			cfaa.name = "frequency";
    290      1.54    jruoho 			ci->ci_frequency = config_found_ia(self,
    291      1.54    jruoho 			    "cpufeaturebus", &cfaa, NULL);
    292      1.54    jruoho 		}
    293      1.53    jruoho 	}
    294      1.53    jruoho 
    295      1.53    jruoho 	return 0;
    296      1.53    jruoho }
    297      1.53    jruoho 
    298      1.56    jruoho static void
    299      1.53    jruoho cpu_childdetached(device_t self, device_t child)
    300      1.53    jruoho {
    301      1.53    jruoho 	struct cpu_softc *sc = device_private(self);
    302      1.53    jruoho 	struct cpu_info *ci = sc->sc_info;
    303      1.53    jruoho 
    304      1.53    jruoho 	if (ci->ci_frequency == child)
    305      1.53    jruoho 		ci->ci_frequency = NULL;
    306      1.53    jruoho }
    307      1.53    jruoho 
    308      1.56    jruoho static int
    309      1.10    cegger vcpu_match(device_t parent, cfdata_t match, void *aux)
    310       1.2    bouyer {
    311       1.2    bouyer 	struct vcpu_attach_args *vcaa = aux;
    312  1.56.2.1    cherry 	struct vcpu_runstate_info vcr;
    313  1.56.2.1    cherry 	int error;
    314  1.56.2.1    cherry 
    315  1.56.2.1    cherry 	if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
    316  1.56.2.1    cherry 		error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
    317  1.56.2.1    cherry 					   vcaa->vcaa_caa.cpu_number,
    318  1.56.2.1    cherry 					   &vcr);
    319  1.56.2.1    cherry 		switch (error) {
    320  1.56.2.1    cherry 		case 0:
    321  1.56.2.1    cherry 			return 1;
    322  1.56.2.1    cherry 		case -ENOENT:
    323  1.56.2.1    cherry 			return 0;
    324  1.56.2.1    cherry 		default:
    325  1.56.2.1    cherry 			panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
    326  1.56.2.1    cherry 		}
    327  1.56.2.1    cherry 	}
    328       1.2    bouyer 
    329       1.2    bouyer 	return 0;
    330       1.2    bouyer }
    331       1.2    bouyer 
    332      1.56    jruoho static void
    333      1.10    cegger vcpu_attach(device_t parent, device_t self, void *aux)
    334       1.2    bouyer {
    335       1.2    bouyer 	struct vcpu_attach_args *vcaa = aux;
    336       1.2    bouyer 
    337  1.56.2.1    cherry 	KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
    338  1.56.2.1    cherry 	vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
    339       1.2    bouyer 	cpu_attach_common(parent, self, &vcaa->vcaa_caa);
    340       1.2    bouyer }
    341       1.2    bouyer 
    342  1.56.2.1    cherry static int
    343  1.56.2.1    cherry vcpu_is_up(struct cpu_info *ci)
    344  1.56.2.1    cherry {
    345  1.56.2.1    cherry 	KASSERT(ci != NULL);
    346  1.56.2.1    cherry 	return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
    347  1.56.2.1    cherry }
    348  1.56.2.1    cherry 
    349       1.2    bouyer static void
    350       1.2    bouyer cpu_vm_init(struct cpu_info *ci)
    351       1.2    bouyer {
    352       1.2    bouyer 	int ncolors = 2, i;
    353       1.2    bouyer 
    354       1.2    bouyer 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    355       1.2    bouyer 		struct x86_cache_info *cai;
    356       1.2    bouyer 		int tcolors;
    357       1.2    bouyer 
    358       1.2    bouyer 		cai = &ci->ci_cinfo[i];
    359       1.2    bouyer 
    360       1.2    bouyer 		tcolors = atop(cai->cai_totalsize);
    361       1.2    bouyer 		switch(cai->cai_associativity) {
    362       1.2    bouyer 		case 0xff:
    363       1.2    bouyer 			tcolors = 1; /* fully associative */
    364       1.2    bouyer 			break;
    365       1.2    bouyer 		case 0:
    366       1.2    bouyer 		case 1:
    367       1.2    bouyer 			break;
    368       1.2    bouyer 		default:
    369       1.2    bouyer 			tcolors /= cai->cai_associativity;
    370       1.2    bouyer 		}
    371       1.2    bouyer 		ncolors = max(ncolors, tcolors);
    372       1.2    bouyer 	}
    373       1.2    bouyer 
    374       1.2    bouyer 	/*
    375       1.2    bouyer 	 * Knowing the size of the largest cache on this CPU, re-color
    376       1.2    bouyer 	 * our pages.
    377       1.2    bouyer 	 */
    378       1.2    bouyer 	if (ncolors <= uvmexp.ncolors)
    379       1.2    bouyer 		return;
    380      1.28    bouyer 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    381       1.2    bouyer 	uvm_page_recolor(ncolors);
    382       1.2    bouyer }
    383       1.2    bouyer 
    384      1.56    jruoho static void
    385      1.11    cegger cpu_attach_common(device_t parent, device_t self, void *aux)
    386       1.2    bouyer {
    387      1.10    cegger 	struct cpu_softc *sc = device_private(self);
    388       1.2    bouyer 	struct cpu_attach_args *caa = aux;
    389       1.2    bouyer 	struct cpu_info *ci;
    390      1.12    cegger 	uintptr_t ptr;
    391       1.2    bouyer 	int cpunum = caa->cpu_number;
    392      1.38    cegger 	static bool again = false;
    393       1.2    bouyer 
    394      1.10    cegger 	sc->sc_dev = self;
    395      1.10    cegger 
    396       1.2    bouyer 	/*
    397       1.2    bouyer 	 * If we're an Application Processor, allocate a cpu_info
    398       1.2    bouyer 	 * structure, otherwise use the primary's.
    399       1.2    bouyer 	 */
    400       1.2    bouyer 	if (caa->cpu_role == CPU_ROLE_AP) {
    401      1.12    cegger 		aprint_naive(": Application Processor\n");
    402      1.31    cegger 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    403      1.31    cegger 		    KM_SLEEP);
    404      1.42       jym 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    405      1.12    cegger 		memset(ci, 0, sizeof(*ci));
    406       1.2    bouyer #ifdef TRAPLOG
    407      1.31    cegger 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
    408       1.2    bouyer #endif
    409       1.2    bouyer 	} else {
    410      1.12    cegger 		aprint_naive(": %s Processor\n",
    411      1.12    cegger 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    412       1.2    bouyer 		ci = &cpu_info_primary;
    413       1.2    bouyer 	}
    414       1.2    bouyer 
    415       1.2    bouyer 	ci->ci_self = ci;
    416       1.2    bouyer 	sc->sc_info = ci;
    417       1.2    bouyer 	ci->ci_dev = self;
    418      1.23        ad 	ci->ci_cpuid = cpunum;
    419      1.16    cegger 
    420      1.16    cegger 	KASSERT(HYPERVISOR_shared_info != NULL);
    421      1.16    cegger 	ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
    422      1.16    cegger 
    423  1.56.2.1    cherry 	KASSERT(ci->ci_func == 0);
    424       1.2    bouyer 	ci->ci_func = caa->cpu_func;
    425       1.2    bouyer 
    426      1.38    cegger 	/* Must be called before mi_cpu_attach(). */
    427      1.38    cegger 	cpu_vm_init(ci);
    428      1.38    cegger 
    429       1.2    bouyer 	if (caa->cpu_role == CPU_ROLE_AP) {
    430       1.2    bouyer 		int error;
    431       1.2    bouyer 
    432       1.2    bouyer 		error = mi_cpu_attach(ci);
    433  1.56.2.1    cherry 
    434  1.56.2.1    cherry 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    435       1.2    bouyer 		if (error != 0) {
    436       1.2    bouyer 			aprint_normal("\n");
    437      1.38    cegger 			aprint_error_dev(self,
    438      1.38    cegger 			    "mi_cpu_attach failed with %d\n", error);
    439       1.2    bouyer 			return;
    440       1.2    bouyer 		}
    441  1.56.2.1    cherry 
    442       1.2    bouyer 	} else {
    443       1.2    bouyer 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    444       1.2    bouyer 	}
    445       1.2    bouyer 
    446      1.23        ad 	ci->ci_cpumask = (1 << cpu_index(ci));
    447       1.2    bouyer 	pmap_reference(pmap_kernel());
    448       1.2    bouyer 	ci->ci_pmap = pmap_kernel();
    449       1.2    bouyer 	ci->ci_tlbstate = TLBSTATE_STALE;
    450       1.2    bouyer 
    451      1.38    cegger 	/*
    452      1.38    cegger 	 * Boot processor may not be attached first, but the below
    453      1.38    cegger 	 * must be done to allow booting other processors.
    454      1.38    cegger 	 */
    455      1.38    cegger 	if (!again) {
    456      1.38    cegger 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    457      1.38    cegger 		/* Basic init. */
    458      1.38    cegger 		cpu_intr_init(ci);
    459      1.38    cegger 		cpu_get_tsc_freq(ci);
    460      1.38    cegger 		cpu_init(ci);
    461  1.56.2.3    cherry 		pmap_cpu_init_late(ci); /* XXX: cosmetic */
    462  1.56.2.1    cherry 
    463  1.56.2.1    cherry 		/* Every processor needs to init it's own ipi h/w (similar to lapic) */
    464  1.56.2.1    cherry 		xen_ipi_init();
    465  1.56.2.1    cherry 		/* XXX: clock_init() */
    466  1.56.2.1    cherry 
    467      1.38    cegger 		/* Make sure DELAY() is initialized. */
    468      1.38    cegger 		DELAY(1);
    469      1.38    cegger 		again = true;
    470      1.38    cegger 	}
    471      1.38    cegger 
    472       1.2    bouyer 	/* further PCB init done later. */
    473       1.2    bouyer 
    474       1.2    bouyer 	switch (caa->cpu_role) {
    475       1.2    bouyer 	case CPU_ROLE_SP:
    476      1.38    cegger 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    477      1.21        ad 		cpu_identify(ci);
    478      1.12    cegger #if 0
    479      1.12    cegger 		x86_errata();
    480      1.12    cegger #endif
    481      1.38    cegger 		x86_cpu_idle_init();
    482  1.56.2.1    cherry 
    483       1.2    bouyer 		break;
    484       1.2    bouyer 
    485       1.2    bouyer 	case CPU_ROLE_BP:
    486      1.38    cegger 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    487      1.21        ad 		cpu_identify(ci);
    488       1.2    bouyer 		cpu_init(ci);
    489      1.14    bouyer #if 0
    490      1.12    cegger 		x86_errata();
    491      1.12    cegger #endif
    492      1.38    cegger 		x86_cpu_idle_init();
    493  1.56.2.1    cherry 
    494       1.2    bouyer 		break;
    495       1.2    bouyer 
    496       1.2    bouyer 	case CPU_ROLE_AP:
    497  1.56.2.1    cherry 		atomic_or_32(&ci->ci_flags, CPUF_AP);
    498  1.56.2.1    cherry 
    499       1.2    bouyer 		/*
    500       1.2    bouyer 		 * report on an AP
    501       1.2    bouyer 		 */
    502       1.2    bouyer 
    503       1.2    bouyer #if defined(MULTIPROCESSOR)
    504  1.56.2.1    cherry 		/* interrupt handler stack */
    505       1.2    bouyer 		cpu_intr_init(ci);
    506  1.56.2.1    cherry 
    507  1.56.2.4    cherry 		/* Setup per-cpu memory for gdt */
    508       1.2    bouyer 		gdt_alloc_cpu(ci);
    509  1.56.2.1    cherry 
    510  1.56.2.3    cherry 		pmap_cpu_init_late(ci);
    511       1.2    bouyer 		cpu_start_secondary(ci);
    512  1.56.2.1    cherry 
    513       1.2    bouyer 		if (ci->ci_flags & CPUF_PRESENT) {
    514      1.30    cegger 			struct cpu_info *tmp;
    515      1.30    cegger 
    516  1.56.2.1    cherry 			cpu_identify(ci);
    517      1.30    cegger 			tmp = cpu_info_list;
    518      1.30    cegger 			while (tmp->ci_next)
    519      1.30    cegger 				tmp = tmp->ci_next;
    520      1.30    cegger 
    521      1.30    cegger 			tmp->ci_next = ci;
    522       1.2    bouyer 		}
    523       1.2    bouyer #else
    524  1.56.2.1    cherry 		aprint_error(": not started\n");
    525       1.2    bouyer #endif
    526       1.2    bouyer 		break;
    527       1.2    bouyer 
    528       1.2    bouyer 	default:
    529      1.12    cegger 		aprint_normal("\n");
    530       1.2    bouyer 		panic("unknown processor type??\n");
    531       1.2    bouyer 	}
    532       1.2    bouyer 
    533      1.46    cegger 	pat_init(ci);
    534      1.34    cegger 	atomic_or_32(&cpus_attached, ci->ci_cpumask);
    535       1.2    bouyer 
    536      1.12    cegger #if 0
    537      1.12    cegger 	if (!pmf_device_register(self, cpu_suspend, cpu_resume))
    538      1.12    cegger 		aprint_error_dev(self, "couldn't establish power handler\n");
    539      1.12    cegger #endif
    540      1.12    cegger 
    541  1.56.2.1    cherry #ifdef MPVERBOSE
    542       1.2    bouyer 	if (mp_verbose) {
    543       1.2    bouyer 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    544      1.37     rmind 		struct pcb *pcb = lwp_getpcb(l);
    545       1.2    bouyer 
    546      1.38    cegger 		aprint_verbose_dev(self,
    547      1.38    cegger 		    "idle lwp at %p, idle sp at 0x%p\n",
    548      1.12    cegger 		    l,
    549      1.12    cegger #ifdef i386
    550      1.37     rmind 		    (void *)pcb->pcb_esp
    551  1.56.2.1    cherry #else /* i386 */
    552      1.37     rmind 		    (void *)pcb->pcb_rsp
    553  1.56.2.1    cherry #endif /* i386 */
    554      1.12    cegger 		);
    555      1.12    cegger 
    556       1.2    bouyer 	}
    557  1.56.2.1    cherry #endif /* MPVERBOSE */
    558       1.2    bouyer }
    559       1.2    bouyer 
    560       1.2    bouyer /*
    561       1.2    bouyer  * Initialize the processor appropriately.
    562       1.2    bouyer  */
    563       1.2    bouyer 
    564       1.2    bouyer void
    565      1.10    cegger cpu_init(struct cpu_info *ci)
    566       1.2    bouyer {
    567       1.2    bouyer 
    568       1.2    bouyer 	/*
    569       1.2    bouyer 	 * On a P6 or above, enable global TLB caching if the
    570       1.2    bouyer 	 * hardware supports it.
    571       1.2    bouyer 	 */
    572      1.43       jym 	if (cpu_feature[0] & CPUID_PGE)
    573       1.2    bouyer 		lcr4(rcr4() | CR4_PGE);	/* enable global TLB caching */
    574       1.2    bouyer 
    575       1.2    bouyer #ifdef XXXMTRR
    576       1.2    bouyer 	/*
    577       1.2    bouyer 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    578       1.2    bouyer 	 */
    579      1.43       jym 	if (cpu_feature[0] & CPUID_MTRR) {
    580       1.2    bouyer 		if ((ci->ci_flags & CPUF_AP) == 0)
    581       1.2    bouyer 			i686_mtrr_init_first();
    582       1.2    bouyer 		mtrr_init_cpu(ci);
    583       1.2    bouyer 	}
    584       1.2    bouyer #endif
    585       1.2    bouyer 	/*
    586       1.2    bouyer 	 * If we have FXSAVE/FXRESTOR, use them.
    587       1.2    bouyer 	 */
    588      1.43       jym 	if (cpu_feature[0] & CPUID_FXSR) {
    589       1.2    bouyer 		lcr4(rcr4() | CR4_OSFXSR);
    590       1.2    bouyer 
    591       1.2    bouyer 		/*
    592       1.2    bouyer 		 * If we have SSE/SSE2, enable XMM exceptions.
    593       1.2    bouyer 		 */
    594      1.43       jym 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    595       1.2    bouyer 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    596       1.2    bouyer 	}
    597       1.2    bouyer 
    598      1.47       jym #ifdef __x86_64__
    599      1.47       jym 	/* No user PGD mapped for this CPU yet */
    600      1.47       jym 	ci->ci_xen_current_user_pgd = 0;
    601      1.47       jym #endif
    602      1.47       jym 
    603      1.34    cegger 	atomic_or_32(&cpus_running, ci->ci_cpumask);
    604      1.11    cegger 	atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    605  1.56.2.1    cherry 
    606  1.56.2.1    cherry 	/* XXX: register vcpu_register_runstate_memory_area, and figure out how to make sure this VCPU is running ? */
    607       1.2    bouyer }
    608       1.2    bouyer 
    609       1.2    bouyer 
    610       1.2    bouyer #ifdef MULTIPROCESSOR
    611  1.56.2.1    cherry 
    612       1.2    bouyer void
    613      1.10    cegger cpu_boot_secondary_processors(void)
    614       1.2    bouyer {
    615       1.2    bouyer 	struct cpu_info *ci;
    616       1.2    bouyer 	u_long i;
    617      1.38    cegger 	for (i = 0; i < maxcpus; i++) {
    618      1.38    cegger 		ci = cpu_lookup(i);
    619       1.2    bouyer 		if (ci == NULL)
    620       1.2    bouyer 			continue;
    621       1.2    bouyer 		if (ci->ci_data.cpu_idlelwp == NULL)
    622       1.2    bouyer 			continue;
    623       1.2    bouyer 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    624       1.2    bouyer 			continue;
    625       1.2    bouyer 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    626       1.2    bouyer 			continue;
    627       1.2    bouyer 		cpu_boot_secondary(ci);
    628       1.2    bouyer 	}
    629      1.11    cegger 
    630      1.11    cegger 	x86_mp_online = true;
    631       1.2    bouyer }
    632       1.2    bouyer 
    633       1.2    bouyer static void
    634       1.2    bouyer cpu_init_idle_lwp(struct cpu_info *ci)
    635       1.2    bouyer {
    636       1.2    bouyer 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    637      1.37     rmind 	struct pcb *pcb = lwp_getpcb(l);
    638       1.2    bouyer 
    639       1.2    bouyer 	pcb->pcb_cr0 = rcr0();
    640       1.2    bouyer }
    641       1.2    bouyer 
    642       1.2    bouyer void
    643      1.10    cegger cpu_init_idle_lwps(void)
    644       1.2    bouyer {
    645       1.2    bouyer 	struct cpu_info *ci;
    646       1.2    bouyer 	u_long i;
    647       1.2    bouyer 
    648      1.38    cegger 	for (i = 0; i < maxcpus; i++) {
    649      1.38    cegger 		ci = cpu_lookup(i);
    650       1.2    bouyer 		if (ci == NULL)
    651       1.2    bouyer 			continue;
    652       1.2    bouyer 		if (ci->ci_data.cpu_idlelwp == NULL)
    653       1.2    bouyer 			continue;
    654       1.2    bouyer 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    655       1.2    bouyer 			continue;
    656       1.2    bouyer 		cpu_init_idle_lwp(ci);
    657       1.2    bouyer 	}
    658       1.2    bouyer }
    659       1.2    bouyer 
    660  1.56.2.1    cherry static void
    661      1.10    cegger cpu_start_secondary(struct cpu_info *ci)
    662       1.2    bouyer {
    663       1.2    bouyer 	int i;
    664       1.2    bouyer 
    665      1.11    cegger 	aprint_debug_dev(ci->ci_dev, "starting\n");
    666       1.2    bouyer 
    667       1.2    bouyer 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    668  1.56.2.1    cherry 
    669  1.56.2.1    cherry 	if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
    670      1.11    cegger 		return;
    671  1.56.2.1    cherry 	}
    672       1.2    bouyer 
    673       1.2    bouyer 	/*
    674       1.2    bouyer 	 * wait for it to become ready
    675       1.2    bouyer 	 */
    676      1.11    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    677       1.2    bouyer 		delay(10);
    678       1.2    bouyer 	}
    679      1.11    cegger 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    680       1.9    cegger 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    681       1.2    bouyer #if defined(MPDEBUG) && defined(DDB)
    682       1.2    bouyer 		printf("dropping into debugger; continue from here to resume boot\n");
    683       1.2    bouyer 		Debugger();
    684       1.2    bouyer #endif
    685       1.2    bouyer 	}
    686       1.2    bouyer 
    687       1.2    bouyer 	CPU_START_CLEANUP(ci);
    688       1.2    bouyer }
    689       1.2    bouyer 
    690       1.2    bouyer void
    691      1.10    cegger cpu_boot_secondary(struct cpu_info *ci)
    692       1.2    bouyer {
    693       1.2    bouyer 	int i;
    694      1.11    cegger 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    695      1.11    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    696       1.2    bouyer 		delay(10);
    697       1.2    bouyer 	}
    698      1.11    cegger 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    699      1.11    cegger 		aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
    700       1.2    bouyer #if defined(MPDEBUG) && defined(DDB)
    701       1.2    bouyer 		printf("dropping into debugger; continue from here to resume boot\n");
    702       1.2    bouyer 		Debugger();
    703       1.2    bouyer #endif
    704       1.2    bouyer 	}
    705       1.2    bouyer }
    706       1.2    bouyer 
    707       1.2    bouyer /*
    708  1.56.2.1    cherry  * APs end up here immediately after initialisation and VCPUOP_up in
    709  1.56.2.1    cherry  * mp_cpu_start().
    710  1.56.2.1    cherry  * At this point, we are running in the idle pcb/idle stack of the new
    711  1.56.2.1    cherry  * CPU.  This function jumps to the idle loop and starts looking for
    712  1.56.2.1    cherry  * work.
    713       1.2    bouyer  */
    714  1.56.2.1    cherry extern void x86_64_tls_switch(struct lwp *);
    715       1.2    bouyer void
    716       1.2    bouyer cpu_hatch(void *v)
    717       1.2    bouyer {
    718       1.2    bouyer 	struct cpu_info *ci = (struct cpu_info *)v;
    719      1.37     rmind 	struct pcb *pcb;
    720      1.11    cegger 	int s, i;
    721      1.11    cegger 
    722  1.56.2.4    cherry 	/* Setup TLS and kernel GS/FS */
    723  1.56.2.1    cherry 	cpu_init_msrs(ci, true);
    724  1.56.2.4    cherry 	cpu_init_idt();
    725  1.56.2.4    cherry 	gdt_init_cpu(ci);
    726  1.56.2.4    cherry 
    727      1.21        ad 	cpu_probe(ci);
    728      1.11    cegger 
    729      1.11    cegger 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    730  1.56.2.1    cherry 
    731      1.11    cegger 	while ((ci->ci_flags & CPUF_GO) == 0) {
    732      1.11    cegger 		/* Don't use delay, boot CPU may be patching the text. */
    733      1.11    cegger 		for (i = 10000; i != 0; i--)
    734      1.11    cegger 			x86_pause();
    735      1.11    cegger 	}
    736       1.2    bouyer 
    737      1.11    cegger 	/* Because the text may have been patched in x86_patch(). */
    738      1.11    cegger 	x86_flush();
    739  1.56.2.2    cherry 	tlbflushg();
    740       1.2    bouyer 
    741      1.11    cegger 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    742       1.2    bouyer 
    743      1.37     rmind 	pcb = lwp_getpcb(curlwp);
    744  1.56.2.1    cherry 	pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0); /* XXX: consider using pmap_load() ? */
    745      1.37     rmind 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    746      1.37     rmind 
    747  1.56.2.1    cherry 	xen_ipi_init();
    748  1.56.2.1    cherry 
    749  1.56.2.1    cherry 	xen_initclocks();
    750  1.56.2.1    cherry 
    751  1.56.2.1    cherry 	/* XXX: lapic_initclocks(); */
    752      1.11    cegger 
    753  1.56.2.4    cherry #ifdef __x86_64__
    754      1.12    cegger 	fpuinit(ci);
    755      1.12    cegger #endif
    756       1.2    bouyer 
    757       1.2    bouyer 	lldt(GSEL(GLDT_SEL, SEL_KPL));
    758       1.2    bouyer 
    759       1.2    bouyer 	cpu_init(ci);
    760      1.11    cegger 	cpu_get_tsc_freq(ci);
    761       1.2    bouyer 
    762       1.2    bouyer 	s = splhigh();
    763      1.11    cegger 	x86_enable_intr();
    764      1.11    cegger 	splx(s);
    765      1.12    cegger #if 0
    766      1.11    cegger 	x86_errata();
    767      1.11    cegger #endif
    768       1.2    bouyer 
    769  1.56.2.1    cherry 	aprint_debug_dev(ci->ci_dev, "running\n");
    770  1.56.2.1    cherry 
    771  1.56.2.1    cherry 	cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
    772  1.56.2.1    cherry 
    773  1.56.2.1    cherry 	panic("switch to idle_loop context returned!\n");
    774  1.56.2.1    cherry 	/* NOTREACHED */
    775       1.2    bouyer }
    776       1.2    bouyer 
    777       1.2    bouyer #if defined(DDB)
    778       1.2    bouyer 
    779       1.2    bouyer #include <ddb/db_output.h>
    780       1.2    bouyer #include <machine/db_machdep.h>
    781       1.2    bouyer 
    782       1.2    bouyer /*
    783       1.2    bouyer  * Dump CPU information from ddb.
    784       1.2    bouyer  */
    785       1.2    bouyer void
    786       1.2    bouyer cpu_debug_dump(void)
    787       1.2    bouyer {
    788       1.2    bouyer 	struct cpu_info *ci;
    789       1.2    bouyer 	CPU_INFO_ITERATOR cii;
    790       1.2    bouyer 
    791      1.13      yamt 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    792       1.2    bouyer 	for (CPU_INFO_FOREACH(cii, ci)) {
    793       1.2    bouyer 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    794       1.2    bouyer 		    ci,
    795       1.9    cegger 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    796      1.12    cegger 		    (long)ci->ci_cpuid,
    797       1.2    bouyer 		    ci->ci_flags, ci->ci_ipis,
    798       1.2    bouyer 		    ci->ci_curlwp,
    799       1.2    bouyer 		    ci->ci_fpcurlwp);
    800       1.2    bouyer 	}
    801       1.2    bouyer }
    802      1.38    cegger #endif /* DDB */
    803       1.2    bouyer 
    804      1.38    cegger #endif /* MULTIPROCESSOR */
    805       1.2    bouyer 
    806  1.56.2.1    cherry extern void hypervisor_callback(void);
    807  1.56.2.1    cherry extern void failsafe_callback(void);
    808  1.56.2.1    cherry #ifdef __x86_64__
    809  1.56.2.1    cherry typedef void (vector)(void);
    810  1.56.2.1    cherry extern vector Xsyscall, Xsyscall32;
    811       1.2    bouyer #endif
    812       1.2    bouyer 
    813  1.56.2.1    cherry /*
    814  1.56.2.1    cherry  * Setup the "trampoline". On Xen, we setup nearly all cpu context
    815  1.56.2.4    cherry  * outside a trampoline, so we prototype and call targetip like so:
    816  1.56.2.4    cherry  * void targetip(struct cpu_info *);
    817  1.56.2.1    cherry  */
    818      1.11    cegger 
    819  1.56.2.1    cherry static void
    820  1.56.2.1    cherry gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
    821  1.56.2.1    cherry {
    822  1.56.2.1    cherry 	int i;
    823  1.56.2.1    cherry 	for (i = 0; i < roundup(entries, PAGE_SIZE) >> PAGE_SHIFT; i++) {
    824       1.2    bouyer 
    825  1.56.2.1    cherry 		frames[i] = ((paddr_t) xpmap_ptetomach(
    826  1.56.2.1    cherry 				(pt_entry_t *) (base + (i << PAGE_SHIFT))))
    827  1.56.2.1    cherry 			>> PAGE_SHIFT;
    828       1.2    bouyer 
    829  1.56.2.1    cherry 		/* Mark Read-only */
    830  1.56.2.1    cherry 		pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
    831  1.56.2.1    cherry 		    PG_RW);
    832  1.56.2.1    cherry 	}
    833  1.56.2.1    cherry }
    834       1.2    bouyer 
    835  1.56.2.4    cherry #ifdef __x86_64__
    836  1.56.2.1    cherry extern char *ldtstore; /* XXX: Xen MP todo */
    837       1.2    bouyer 
    838  1.56.2.1    cherry static void
    839  1.56.2.1    cherry xen_init_amd64_vcpuctxt(struct cpu_info *ci,
    840  1.56.2.1    cherry 			struct vcpu_guest_context *initctx,
    841  1.56.2.1    cherry 			void targetrip(struct cpu_info *))
    842  1.56.2.1    cherry {
    843  1.56.2.1    cherry 	/* page frames to point at GDT */
    844  1.56.2.1    cherry 	extern int gdt_size;
    845  1.56.2.1    cherry 	paddr_t frames[16];
    846  1.56.2.1    cherry 	psize_t gdt_ents;
    847      1.45     rmind 
    848  1.56.2.1    cherry 	struct lwp *l;
    849  1.56.2.1    cherry 	struct pcb *pcb;
    850      1.45     rmind 
    851  1.56.2.1    cherry 	volatile struct vcpu_info *vci;
    852       1.2    bouyer 
    853  1.56.2.1    cherry 	KASSERT(ci != NULL);
    854  1.56.2.1    cherry 	KASSERT(ci != &cpu_info_primary);
    855  1.56.2.1    cherry 	KASSERT(initctx != NULL);
    856  1.56.2.1    cherry 	KASSERT(targetrip != NULL);
    857       1.2    bouyer 
    858  1.56.2.1    cherry 	memset(initctx, 0, sizeof *initctx);
    859  1.56.2.1    cherry 
    860  1.56.2.1    cherry 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT; /* XXX: re-investigate roundup(gdt_size... ) for gdt_ents. */
    861  1.56.2.1    cherry 	KASSERT(gdt_ents <= 16);
    862  1.56.2.1    cherry 
    863  1.56.2.1    cherry 	gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
    864  1.56.2.1    cherry 
    865  1.56.2.1    cherry 	/* XXX: The stuff in here is amd64 specific. move to mptramp.[Sc] ? */
    866  1.56.2.1    cherry 
    867  1.56.2.1    cherry 	/* Initialise the vcpu context: We use idle_loop()'s pcb context. */
    868  1.56.2.1    cherry 
    869  1.56.2.1    cherry 	l = ci->ci_data.cpu_idlelwp;
    870  1.56.2.1    cherry 
    871  1.56.2.1    cherry 	KASSERT(l != NULL);
    872  1.56.2.1    cherry 	pcb = lwp_getpcb(l);
    873  1.56.2.1    cherry 	KASSERT(pcb != NULL);
    874  1.56.2.1    cherry 
    875  1.56.2.1    cherry 	/* resume with interrupts off */
    876  1.56.2.1    cherry 	vci = ci->ci_vcpu;
    877  1.56.2.1    cherry 	vci->evtchn_upcall_mask = 1;
    878  1.56.2.1    cherry 	xen_mb();
    879  1.56.2.1    cherry 
    880  1.56.2.1    cherry 	/* resume in kernel-mode */
    881  1.56.2.1    cherry 	initctx->flags = VGCF_in_kernel | VGCF_online;
    882  1.56.2.1    cherry 
    883  1.56.2.4    cherry 	/* Stack and entry points:
    884  1.56.2.4    cherry 	 * We arrange for the stack frame for cpu_hatch() to
    885  1.56.2.4    cherry 	 * appear as a callee frame of lwp_trampoline(). Being a
    886  1.56.2.4    cherry 	 * leaf frame prevents trampling on any of the MD stack setup
    887  1.56.2.4    cherry 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    888  1.56.2.4    cherry 	 */
    889  1.56.2.4    cherry 
    890  1.56.2.1    cherry 	initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
    891  1.56.2.1    cherry 	initctx->user_regs.rip = (vaddr_t) targetrip;
    892  1.56.2.1    cherry 
    893  1.56.2.1    cherry 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    894  1.56.2.1    cherry 
    895  1.56.2.1    cherry 	initctx->user_regs.rflags = pcb->pcb_flags;
    896  1.56.2.1    cherry 	initctx->user_regs.rsp = pcb->pcb_rsp;
    897  1.56.2.1    cherry 
    898  1.56.2.1    cherry 	/* Data segments */
    899  1.56.2.1    cherry 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
    900  1.56.2.1    cherry 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
    901  1.56.2.1    cherry 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
    902  1.56.2.1    cherry 
    903  1.56.2.1    cherry 	/* GDT */
    904  1.56.2.1    cherry 	memcpy(initctx->gdt_frames, frames, sizeof frames);
    905  1.56.2.1    cherry 	initctx->gdt_ents = gdt_ents;
    906  1.56.2.1    cherry 
    907  1.56.2.1    cherry 	/* LDT */
    908  1.56.2.1    cherry 	initctx->ldt_base = (unsigned long) ldtstore;
    909  1.56.2.1    cherry 	initctx->ldt_ents = LDT_SIZE >> 3;
    910  1.56.2.1    cherry 
    911  1.56.2.1    cherry 	/* Kernel context state */
    912  1.56.2.1    cherry 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
    913  1.56.2.1    cherry 	initctx->kernel_sp = pcb->pcb_rsp0;
    914  1.56.2.1    cherry 	initctx->ctrlreg[0] = pcb->pcb_cr0;
    915  1.56.2.1    cherry 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
    916  1.56.2.1    cherry 	initctx->ctrlreg[2] = pcb->pcb_cr2; /* XXX: */
    917  1.56.2.3    cherry 	/*
    918  1.56.2.3    cherry 	 * Use pmap_kernel() L4 PD directly, until we setup the
    919  1.56.2.3    cherry 	 * per-cpu L4 PD in pmap_cpu_init_late()
    920  1.56.2.3    cherry 	 */
    921  1.56.2.1    cherry 	initctx->ctrlreg[3] = xpmap_ptom(pcb->pcb_cr3);
    922  1.56.2.1    cherry 	initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
    923  1.56.2.1    cherry 
    924  1.56.2.1    cherry 
    925  1.56.2.1    cherry 	/* Xen callbacks */
    926  1.56.2.1    cherry 	initctx->event_callback_eip = (unsigned long) hypervisor_callback;
    927  1.56.2.1    cherry 	initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
    928  1.56.2.1    cherry 	initctx->syscall_callback_eip = (unsigned long) Xsyscall;
    929  1.56.2.1    cherry 
    930  1.56.2.1    cherry 	return;
    931  1.56.2.1    cherry }
    932  1.56.2.4    cherry #else /* i386 */
    933  1.56.2.4    cherry extern union descriptor *ldt;
    934  1.56.2.4    cherry extern void Xsyscall(void);
    935  1.56.2.4    cherry 
    936  1.56.2.4    cherry static void
    937  1.56.2.4    cherry xen_init_i386_vcpuctxt(struct cpu_info *ci,
    938  1.56.2.4    cherry 			struct vcpu_guest_context *initctx,
    939  1.56.2.4    cherry 			void targeteip(struct cpu_info *))
    940  1.56.2.4    cherry {
    941  1.56.2.4    cherry 	/* page frames to point at GDT */
    942  1.56.2.4    cherry 	extern int gdt_size;
    943  1.56.2.4    cherry 	paddr_t frames[16];
    944  1.56.2.4    cherry 	psize_t gdt_ents;
    945  1.56.2.4    cherry 
    946  1.56.2.4    cherry 	struct lwp *l;
    947  1.56.2.4    cherry 	struct pcb *pcb;
    948  1.56.2.4    cherry 
    949  1.56.2.4    cherry 	volatile struct vcpu_info *vci;
    950  1.56.2.4    cherry 
    951  1.56.2.4    cherry 	KASSERT(ci != NULL);
    952  1.56.2.4    cherry 	KASSERT(ci != &cpu_info_primary);
    953  1.56.2.4    cherry 	KASSERT(initctx != NULL);
    954  1.56.2.4    cherry 	KASSERT(targeteip != NULL);
    955  1.56.2.4    cherry 
    956  1.56.2.4    cherry 	memset(initctx, 0, sizeof *initctx);
    957  1.56.2.4    cherry 
    958  1.56.2.4    cherry 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT; /* XXX: re-investigate roundup(gdt_size... ) for gdt_ents. */
    959  1.56.2.4    cherry 	KASSERT(gdt_ents <= 16);
    960  1.56.2.4    cherry 
    961  1.56.2.4    cherry 	gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
    962  1.56.2.4    cherry 
    963  1.56.2.4    cherry 	/*
    964  1.56.2.4    cherry 	 * Initialise the vcpu context:
    965  1.56.2.4    cherry 	 * We use this cpu's idle_loop() pcb context.
    966  1.56.2.4    cherry 	 */
    967  1.56.2.4    cherry 
    968  1.56.2.4    cherry 	l = ci->ci_data.cpu_idlelwp;
    969  1.56.2.4    cherry 
    970  1.56.2.4    cherry 	KASSERT(l != NULL);
    971  1.56.2.4    cherry 	pcb = lwp_getpcb(l);
    972  1.56.2.4    cherry 	KASSERT(pcb != NULL);
    973  1.56.2.4    cherry 
    974  1.56.2.4    cherry 	/* resume with interrupts off */
    975  1.56.2.4    cherry 	vci = ci->ci_vcpu;
    976  1.56.2.4    cherry 	vci->evtchn_upcall_mask = 1;
    977  1.56.2.4    cherry 	xen_mb();
    978  1.56.2.4    cherry 
    979  1.56.2.4    cherry 	/* resume in kernel-mode */
    980  1.56.2.4    cherry 	initctx->flags = VGCF_in_kernel | VGCF_online;
    981  1.56.2.4    cherry 
    982  1.56.2.4    cherry 	/* Stack frame setup for cpu_hatch():
    983  1.56.2.4    cherry 	 * We arrange for the stack frame for cpu_hatch() to
    984  1.56.2.4    cherry 	 * appear as a callee frame of lwp_trampoline(). Being a
    985  1.56.2.4    cherry 	 * leaf frame prevents trampling on any of the MD stack setup
    986  1.56.2.4    cherry 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    987  1.56.2.4    cherry 	 */
    988  1.56.2.4    cherry 
    989  1.56.2.4    cherry 	initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
    990  1.56.2.4    cherry 						      arg1 */
    991  1.56.2.4    cherry 	{ /* targeteip(ci); */
    992  1.56.2.4    cherry 		uint32_t *arg = (uint32_t *) initctx->user_regs.esp;
    993  1.56.2.4    cherry 		arg[1] = (uint32_t) ci; /* arg1 */
    994  1.56.2.4    cherry 
    995  1.56.2.4    cherry 	}
    996  1.56.2.4    cherry 
    997  1.56.2.4    cherry 	initctx->user_regs.eip = (vaddr_t) targeteip;
    998  1.56.2.4    cherry 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    999  1.56.2.4    cherry 	initctx->user_regs.eflags |= pcb->pcb_iopl;
   1000  1.56.2.4    cherry 
   1001  1.56.2.4    cherry 	/* Data segments */
   1002  1.56.2.4    cherry 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
   1003  1.56.2.4    cherry 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
   1004  1.56.2.4    cherry 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
   1005  1.56.2.4    cherry 	initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
   1006  1.56.2.4    cherry 
   1007  1.56.2.4    cherry 	/* GDT */
   1008  1.56.2.4    cherry 	memcpy(initctx->gdt_frames, frames, sizeof frames);
   1009  1.56.2.4    cherry 	initctx->gdt_ents = gdt_ents;
   1010  1.56.2.4    cherry 
   1011  1.56.2.4    cherry 	/* LDT */
   1012  1.56.2.4    cherry 	initctx->ldt_base = (unsigned long) ldt;
   1013  1.56.2.4    cherry 	initctx->ldt_ents = NLDT;
   1014  1.56.2.4    cherry 
   1015  1.56.2.4    cherry 	/* Kernel context state */
   1016  1.56.2.4    cherry 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
   1017  1.56.2.4    cherry 	initctx->kernel_sp = pcb->pcb_esp0;
   1018  1.56.2.4    cherry 	initctx->ctrlreg[0] = pcb->pcb_cr0;
   1019  1.56.2.4    cherry 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
   1020  1.56.2.4    cherry 	initctx->ctrlreg[2] = pcb->pcb_cr2; /* XXX: */
   1021  1.56.2.4    cherry 	/*
   1022  1.56.2.4    cherry 	 * Use pmap_kernel() L4 PD directly, until we setup the
   1023  1.56.2.4    cherry 	 * per-cpu L4 PD in pmap_cpu_init_late()
   1024  1.56.2.4    cherry 	 */
   1025  1.56.2.7    cherry #ifdef PAE
   1026  1.56.2.7    cherry 	initctx->ctrlreg[3] = xpmap_ptom(ci->ci_pae_l3_pdirpa);
   1027  1.56.2.7    cherry #else /* PAE */
   1028  1.56.2.4    cherry 	initctx->ctrlreg[3] = xpmap_ptom(pcb->pcb_cr3);
   1029  1.56.2.7    cherry #endif /* PAE */
   1030  1.56.2.4    cherry 	initctx->ctrlreg[4] = /* CR4_PAE |  */CR4_OSFXSR | CR4_OSXMMEXCPT;
   1031  1.56.2.4    cherry 
   1032  1.56.2.4    cherry 
   1033  1.56.2.4    cherry 	/* Xen callbacks */
   1034  1.56.2.4    cherry 	initctx->event_callback_eip = (unsigned long) hypervisor_callback;
   1035  1.56.2.4    cherry 	initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
   1036  1.56.2.4    cherry 	initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
   1037  1.56.2.4    cherry 	initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
   1038  1.56.2.4    cherry 
   1039  1.56.2.4    cherry 	return;
   1040  1.56.2.4    cherry }
   1041  1.56.2.4    cherry #endif /* __x86_64__ */
   1042  1.56.2.1    cherry 
   1043  1.56.2.1    cherry int
   1044  1.56.2.1    cherry mp_cpu_start(struct cpu_info *ci, vaddr_t target)
   1045  1.56.2.1    cherry {
   1046  1.56.2.1    cherry 
   1047  1.56.2.1    cherry 	int hyperror;
   1048  1.56.2.1    cherry 	struct vcpu_guest_context vcpuctx;
   1049  1.56.2.1    cherry 
   1050  1.56.2.1    cherry 	KASSERT(ci != NULL);
   1051  1.56.2.1    cherry 	KASSERT(ci != &cpu_info_primary);
   1052  1.56.2.1    cherry 	KASSERT(ci->ci_flags & CPUF_AP);
   1053  1.56.2.1    cherry 
   1054  1.56.2.4    cherry #ifdef __x86_64__
   1055  1.56.2.1    cherry 	xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
   1056  1.56.2.4    cherry #else  /* i386 */
   1057  1.56.2.4    cherry 	xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
   1058  1.56.2.4    cherry #endif /* __x86_64__ */
   1059  1.56.2.1    cherry 
   1060  1.56.2.1    cherry 	/* Initialise the given vcpu to execute cpu_hatch(ci); */
   1061  1.56.2.1    cherry 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
   1062  1.56.2.1    cherry 		aprint_error(": context initialisation failed. errno = %d\n", hyperror);
   1063  1.56.2.1    cherry 		return hyperror;
   1064       1.2    bouyer 	}
   1065  1.56.2.1    cherry 
   1066  1.56.2.1    cherry 	/* Start it up */
   1067  1.56.2.1    cherry 
   1068  1.56.2.1    cherry 	/* First bring it down - yay, thanks Xen documentation for omitting this slight detail - lost only about 1 week reading through crap */
   1069  1.56.2.1    cherry 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
   1070  1.56.2.1    cherry 		aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
   1071  1.56.2.1    cherry 		return hyperror;
   1072  1.56.2.1    cherry 	}
   1073  1.56.2.1    cherry 
   1074  1.56.2.1    cherry 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
   1075  1.56.2.1    cherry 		aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
   1076  1.56.2.1    cherry 		return hyperror;
   1077  1.56.2.1    cherry 	}
   1078  1.56.2.1    cherry 
   1079  1.56.2.1    cherry 	if (!vcpu_is_up(ci)) {
   1080  1.56.2.1    cherry 		aprint_error(": did not come up\n");
   1081  1.56.2.1    cherry 		return -1;
   1082  1.56.2.1    cherry 	}
   1083  1.56.2.1    cherry 
   1084       1.2    bouyer 	return 0;
   1085       1.2    bouyer }
   1086       1.2    bouyer 
   1087       1.2    bouyer void
   1088       1.2    bouyer mp_cpu_start_cleanup(struct cpu_info *ci)
   1089       1.2    bouyer {
   1090       1.2    bouyer #if 0
   1091       1.2    bouyer 	/*
   1092       1.2    bouyer 	 * Ensure the NVRAM reset byte contains something vaguely sane.
   1093       1.2    bouyer 	 */
   1094       1.2    bouyer 
   1095       1.2    bouyer 	outb(IO_RTC, NVRAM_RESET);
   1096       1.2    bouyer 	outb(IO_RTC+1, NVRAM_RESET_RST);
   1097       1.2    bouyer #endif
   1098  1.56.2.1    cherry 	if (vcpu_is_up(ci)) {
   1099  1.56.2.1    cherry 		aprint_debug_dev(ci->ci_dev, "is started.\n");
   1100  1.56.2.1    cherry 	}
   1101  1.56.2.1    cherry 	else {
   1102  1.56.2.1    cherry 		aprint_error_dev(ci->ci_dev, "did not start up.\n");
   1103  1.56.2.1    cherry 	}
   1104  1.56.2.1    cherry 
   1105       1.2    bouyer }
   1106       1.2    bouyer 
   1107       1.2    bouyer void
   1108       1.3    bouyer cpu_init_msrs(struct cpu_info *ci, bool full)
   1109       1.2    bouyer {
   1110      1.43       jym #ifdef __x86_64__
   1111       1.3    bouyer 	if (full) {
   1112       1.3    bouyer 		HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
   1113      1.11    cegger 		HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
   1114       1.3    bouyer 		HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
   1115       1.3    bouyer 	}
   1116      1.43       jym #endif	/* __x86_64__ */
   1117      1.44       jym 
   1118      1.44       jym 	if (cpu_feature[2] & CPUID_NOX)
   1119      1.44       jym 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1120  1.56.2.1    cherry 
   1121       1.2    bouyer }
   1122       1.2    bouyer 
   1123      1.11    cegger void
   1124      1.11    cegger cpu_offline_md(void)
   1125      1.11    cegger {
   1126      1.11    cegger         int s;
   1127      1.11    cegger 
   1128      1.11    cegger         s = splhigh();
   1129      1.11    cegger #ifdef __i386__
   1130      1.11    cegger         npxsave_cpu(true);
   1131      1.11    cegger #else
   1132      1.11    cegger         fpusave_cpu(true);
   1133      1.11    cegger #endif
   1134      1.11    cegger         splx(s);
   1135      1.11    cegger }
   1136      1.11    cegger 
   1137      1.11    cegger #if 0
   1138      1.11    cegger /* XXX joerg restructure and restart CPUs individually */
   1139      1.11    cegger static bool
   1140      1.41    dyoung cpu_suspend(device_t dv, const pmf_qual_t *qual)
   1141      1.11    cegger {
   1142      1.11    cegger 	struct cpu_softc *sc = device_private(dv);
   1143      1.11    cegger 	struct cpu_info *ci = sc->sc_info;
   1144      1.11    cegger 	int err;
   1145      1.11    cegger 
   1146      1.11    cegger 	if (ci->ci_flags & CPUF_PRIMARY)
   1147      1.11    cegger 		return true;
   1148      1.11    cegger 	if (ci->ci_data.cpu_idlelwp == NULL)
   1149      1.11    cegger 		return true;
   1150      1.11    cegger 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1151      1.11    cegger 		return true;
   1152      1.11    cegger 
   1153      1.11    cegger 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1154      1.11    cegger 
   1155      1.11    cegger 	if (sc->sc_wasonline) {
   1156      1.11    cegger 		mutex_enter(&cpu_lock);
   1157      1.29     rmind 		err = cpu_setstate(ci, false);
   1158      1.11    cegger 		mutex_exit(&cpu_lock);
   1159      1.11    cegger 
   1160      1.11    cegger 		if (err)
   1161      1.11    cegger 			return false;
   1162      1.11    cegger 	}
   1163      1.11    cegger 
   1164      1.11    cegger 	return true;
   1165      1.11    cegger }
   1166      1.11    cegger 
   1167      1.11    cegger static bool
   1168      1.41    dyoung cpu_resume(device_t dv, const pmf_qual_t *qual)
   1169      1.11    cegger {
   1170      1.11    cegger 	struct cpu_softc *sc = device_private(dv);
   1171      1.11    cegger 	struct cpu_info *ci = sc->sc_info;
   1172      1.11    cegger 	int err = 0;
   1173      1.11    cegger 
   1174      1.11    cegger 	if (ci->ci_flags & CPUF_PRIMARY)
   1175      1.11    cegger 		return true;
   1176      1.11    cegger 	if (ci->ci_data.cpu_idlelwp == NULL)
   1177      1.11    cegger 		return true;
   1178      1.11    cegger 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1179      1.11    cegger 		return true;
   1180      1.11    cegger 
   1181      1.11    cegger 	if (sc->sc_wasonline) {
   1182      1.11    cegger 		mutex_enter(&cpu_lock);
   1183      1.29     rmind 		err = cpu_setstate(ci, true);
   1184      1.11    cegger 		mutex_exit(&cpu_lock);
   1185      1.11    cegger 	}
   1186      1.11    cegger 
   1187      1.11    cegger 	return err == 0;
   1188      1.11    cegger }
   1189      1.11    cegger #endif
   1190      1.11    cegger 
   1191       1.2    bouyer void
   1192       1.2    bouyer cpu_get_tsc_freq(struct cpu_info *ci)
   1193       1.2    bouyer {
   1194  1.56.2.1    cherry 	uint32_t vcpu_tversion;
   1195      1.16    cegger 	const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
   1196  1.56.2.1    cherry 
   1197  1.56.2.1    cherry 	vcpu_tversion = tinfo->version;
   1198  1.56.2.1    cherry 	while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
   1199  1.56.2.1    cherry 
   1200       1.2    bouyer 	uint64_t freq = 1000000000ULL << 32;
   1201       1.2    bouyer 	freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
   1202       1.2    bouyer 	if ( tinfo->tsc_shift < 0 )
   1203       1.2    bouyer 		freq = freq << -tinfo->tsc_shift;
   1204       1.2    bouyer 	else
   1205       1.2    bouyer 		freq = freq >> tinfo->tsc_shift;
   1206      1.20        ad 	ci->ci_data.cpu_cc_freq = freq;
   1207       1.2    bouyer }
   1208      1.19     joerg 
   1209      1.19     joerg void
   1210      1.19     joerg x86_cpu_idle_xen(void)
   1211      1.19     joerg {
   1212      1.19     joerg 	struct cpu_info *ci = curcpu();
   1213  1.56.2.1    cherry 
   1214      1.19     joerg 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1215      1.19     joerg 
   1216      1.19     joerg 	x86_disable_intr();
   1217      1.19     joerg 	if (!__predict_false(ci->ci_want_resched)) {
   1218      1.19     joerg 		idle_block();
   1219      1.19     joerg 	} else {
   1220      1.19     joerg 		x86_enable_intr();
   1221      1.19     joerg 	}
   1222      1.19     joerg }
   1223      1.47       jym 
   1224      1.47       jym /*
   1225      1.47       jym  * Loads pmap for the current CPU.
   1226      1.47       jym  */
   1227      1.47       jym void
   1228      1.47       jym cpu_load_pmap(struct pmap *pmap)
   1229      1.47       jym {
   1230      1.47       jym #ifdef i386
   1231      1.47       jym #ifdef PAE
   1232      1.47       jym 	int i, s;
   1233      1.47       jym 	struct cpu_info *ci;
   1234      1.47       jym 
   1235      1.47       jym 	s = splvm(); /* just to be safe */
   1236  1.56.2.1    cherry 	xpq_queue_lock();
   1237      1.47       jym 	ci = curcpu();
   1238      1.47       jym 	paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
   1239      1.47       jym 	/* don't update the kernel L3 slot */
   1240      1.47       jym 	for (i = 0 ; i < PDP_SIZE - 1; i++) {
   1241      1.47       jym 		xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
   1242      1.47       jym 		    xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
   1243      1.47       jym 	}
   1244  1.56.2.1    cherry 	xpq_queue_unlock();
   1245      1.47       jym 	splx(s);
   1246      1.47       jym 	tlbflush();
   1247      1.47       jym #else /* PAE */
   1248      1.47       jym 	lcr3(pmap_pdirpa(pmap, 0));
   1249      1.47       jym #endif /* PAE */
   1250      1.47       jym #endif /* i386 */
   1251      1.47       jym 
   1252      1.47       jym #ifdef __x86_64__
   1253      1.47       jym 	int i, s;
   1254  1.56.2.3    cherry 	pd_entry_t *new_pgd;
   1255      1.47       jym 	struct cpu_info *ci;
   1256  1.56.2.3    cherry 	paddr_t l3_shadow_pa;
   1257      1.47       jym 
   1258  1.56.2.3    cherry 	ci = curcpu();
   1259  1.56.2.3    cherry 	l3_shadow_pa = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
   1260  1.56.2.3    cherry 
   1261  1.56.2.3    cherry 	/*
   1262  1.56.2.3    cherry 	 * Map user space address in kernel space and load
   1263  1.56.2.3    cherry 	 * user cr3
   1264  1.56.2.3    cherry 	 */
   1265  1.56.2.3    cherry 	s = splvm();
   1266  1.56.2.3    cherry 	new_pgd = pmap->pm_pdir;
   1267  1.56.2.3    cherry 
   1268  1.56.2.3    cherry 	xpq_queue_lock();
   1269  1.56.2.3    cherry 
   1270  1.56.2.7    cherry 	/* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
   1271  1.56.2.7    cherry 	for (i = 0; i < PDIR_SLOT_PTE; i++) {
   1272  1.56.2.3    cherry 		xpq_queue_pte_update(l3_shadow_pa + i * sizeof(pd_entry_t), new_pgd[i]);
   1273  1.56.2.3    cherry 	}
   1274  1.56.2.3    cherry 
   1275  1.56.2.3    cherry 	if (__predict_true(pmap != pmap_kernel())) {
   1276      1.47       jym 		xen_set_user_pgd(pmap_pdirpa(pmap, 0));
   1277      1.47       jym 		ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
   1278      1.47       jym 	}
   1279  1.56.2.3    cherry 	else {
   1280  1.56.2.3    cherry 		xpq_queue_pt_switch(l3_shadow_pa);
   1281  1.56.2.3    cherry 		ci->ci_xen_current_user_pgd = 0;
   1282  1.56.2.3    cherry 	}
   1283  1.56.2.3    cherry 	xpq_queue_unlock();
   1284  1.56.2.7    cherry 
   1285  1.56.2.7    cherry 	tlbflush();
   1286  1.56.2.7    cherry 
   1287  1.56.2.3    cherry 	splx(s);
   1288  1.56.2.3    cherry 
   1289      1.47       jym #endif /* __x86_64__ */
   1290      1.47       jym }
   1291  1.56.2.6    cherry 
   1292  1.56.2.6    cherry /*
   1293  1.56.2.7    cherry  * pmap_cpu_init_late: perform late per-CPU initialization.
   1294  1.56.2.7    cherry  */
   1295  1.56.2.7    cherry 
   1296  1.56.2.7    cherry void
   1297  1.56.2.7    cherry pmap_cpu_init_late(struct cpu_info *ci)
   1298  1.56.2.7    cherry {
   1299  1.56.2.7    cherry #if defined(PAE) || defined(__x86_64__)
   1300  1.56.2.7    cherry 	/*
   1301  1.56.2.7    cherry 	 * The BP has already its own PD page allocated during early
   1302  1.56.2.7    cherry 	 * MD startup.
   1303  1.56.2.7    cherry 	 */
   1304  1.56.2.7    cherry 
   1305  1.56.2.7    cherry 	if (ci == &cpu_info_primary)
   1306  1.56.2.7    cherry 		return;
   1307  1.56.2.7    cherry 
   1308  1.56.2.7    cherry 	KASSERT(ci != NULL);
   1309  1.56.2.7    cherry 
   1310  1.56.2.7    cherry #ifdef PAE
   1311  1.56.2.7    cherry 	{
   1312  1.56.2.7    cherry 		int ret;
   1313  1.56.2.7    cherry 		struct pglist pg;
   1314  1.56.2.7    cherry 		struct vm_page *vmap;
   1315  1.56.2.7    cherry 
   1316  1.56.2.7    cherry 		/*
   1317  1.56.2.7    cherry 		 * Allocate a page for the per-CPU L3 PD. cr3 being 32 bits, PA musts
   1318  1.56.2.7    cherry 		 * resides below the 4GB boundary.
   1319  1.56.2.7    cherry 		 */
   1320  1.56.2.7    cherry 		ret = uvm_pglistalloc(PAGE_SIZE, 0,
   1321  1.56.2.7    cherry 		    0x100000000ULL, 32, 0, &pg, 1, 0);
   1322  1.56.2.7    cherry 
   1323  1.56.2.7    cherry 		vmap = TAILQ_FIRST(&pg);
   1324  1.56.2.7    cherry 
   1325  1.56.2.7    cherry 		if (ret != 0 || vmap == NULL)
   1326  1.56.2.7    cherry 			panic("%s: failed to allocate L3 pglist for CPU %d (ret %d)\n",
   1327  1.56.2.7    cherry 			    __func__, cpu_index(ci), ret);
   1328  1.56.2.7    cherry 
   1329  1.56.2.7    cherry 		ci->ci_pae_l3_pdirpa = vmap->phys_addr;
   1330  1.56.2.7    cherry 
   1331  1.56.2.7    cherry 		ci->ci_pae_l3_pdir = (paddr_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1332  1.56.2.7    cherry 		    UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
   1333  1.56.2.7    cherry 
   1334  1.56.2.7    cherry 		if (ci->ci_pae_l3_pdir == NULL)
   1335  1.56.2.7    cherry 			panic("%s: failed to allocate L3 PD for CPU %d\n",
   1336  1.56.2.7    cherry 			    __func__, cpu_index(ci));
   1337  1.56.2.7    cherry 		pmap_kenter_pa((vaddr_t)ci->ci_pae_l3_pdir, ci->ci_pae_l3_pdirpa,
   1338  1.56.2.7    cherry 		    VM_PROT_READ | VM_PROT_WRITE, 0);
   1339  1.56.2.7    cherry 	}
   1340  1.56.2.7    cherry 	/* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
   1341  1.56.2.7    cherry 	ci->ci_pae_l3_pdir[0] =
   1342  1.56.2.7    cherry 	    xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[0]) | PG_V;
   1343  1.56.2.7    cherry 	ci->ci_pae_l3_pdir[1] =
   1344  1.56.2.7    cherry 	    xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[1]) | PG_V;
   1345  1.56.2.7    cherry 	ci->ci_pae_l3_pdir[2] =
   1346  1.56.2.7    cherry 	    xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[2]) | PG_V;
   1347  1.56.2.7    cherry #endif /* PAE */
   1348  1.56.2.7    cherry 
   1349  1.56.2.7    cherry 	ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1350  1.56.2.7    cherry 	    UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
   1351  1.56.2.7    cherry 
   1352  1.56.2.7    cherry 	if (ci->ci_kpm_pdir == NULL) {
   1353  1.56.2.7    cherry 		panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
   1354  1.56.2.7    cherry 		      __func__, cpu_index(ci));
   1355  1.56.2.7    cherry 	}
   1356  1.56.2.7    cherry 	ci->ci_kpm_pdirpa = vtophys((vaddr_t) ci->ci_kpm_pdir);
   1357  1.56.2.7    cherry 	KASSERT(ci->ci_kpm_pdirpa != 0);
   1358  1.56.2.7    cherry 	/*
   1359  1.56.2.7    cherry 	 * Copy over kernel pmd entries from boot
   1360  1.56.2.7    cherry 	 * cpu. XXX:locking/races
   1361  1.56.2.7    cherry 	 */
   1362  1.56.2.7    cherry 
   1363  1.56.2.7    cherry 	memcpy(ci->ci_kpm_pdir,
   1364  1.56.2.7    cherry 	    &pmap_kernel()->pm_pdir[PDIR_SLOT_KERN],
   1365  1.56.2.7    cherry 	    nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
   1366  1.56.2.7    cherry 
   1367  1.56.2.7    cherry 	/* Xen wants R/O */
   1368  1.56.2.7    cherry 	pmap_kenter_pa((vaddr_t)ci->ci_kpm_pdir, ci->ci_kpm_pdirpa,
   1369  1.56.2.7    cherry 	    VM_PROT_READ, 0);
   1370  1.56.2.7    cherry 
   1371  1.56.2.7    cherry #ifdef PAE
   1372  1.56.2.7    cherry 	/* Initialise L3 entry 3. This mapping is shared across all
   1373  1.56.2.7    cherry 	 * pmaps and is static, ie; loading a new pmap will not update
   1374  1.56.2.7    cherry 	 * this entry.
   1375  1.56.2.7    cherry 	 */
   1376  1.56.2.7    cherry 
   1377  1.56.2.7    cherry 	ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_V;
   1378  1.56.2.7    cherry 
   1379  1.56.2.7    cherry 	/* Mark L3 R/O (Xen wants this) */
   1380  1.56.2.7    cherry 	pmap_kenter_pa((vaddr_t)ci->ci_pae_l3_pdir, ci->ci_pae_l3_pdirpa,
   1381  1.56.2.7    cherry 		VM_PROT_READ, 0);
   1382  1.56.2.7    cherry 
   1383  1.56.2.7    cherry 	xpq_queue_lock();
   1384  1.56.2.7    cherry 	xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
   1385  1.56.2.7    cherry 	xpq_queue_unlock();
   1386  1.56.2.7    cherry 
   1387  1.56.2.7    cherry #elif defined(__x86_64__)
   1388  1.56.2.7    cherry 	xpq_queue_lock();
   1389  1.56.2.7    cherry 	xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
   1390  1.56.2.7    cherry 	xpq_queue_unlock();
   1391  1.56.2.7    cherry #endif /* PAE */
   1392  1.56.2.7    cherry #endif /* defined(PAE) || defined(__x86_64__) */
   1393  1.56.2.7    cherry }
   1394  1.56.2.7    cherry 
   1395  1.56.2.7    cherry 
   1396  1.56.2.7    cherry 
   1397  1.56.2.7    cherry /*
   1398  1.56.2.6    cherry  * Notify all other cpus to halt.
   1399  1.56.2.6    cherry  */
   1400  1.56.2.6    cherry 
   1401  1.56.2.6    cherry void
   1402  1.56.2.6    cherry cpu_broadcast_halt(void)
   1403  1.56.2.6    cherry {
   1404  1.56.2.6    cherry 	xen_broadcast_ipi(XEN_IPI_HALT);
   1405  1.56.2.6    cherry }
   1406  1.56.2.6    cherry 
   1407  1.56.2.6    cherry /*
   1408  1.56.2.6    cherry  * Send a dummy ipi to a cpu.
   1409  1.56.2.6    cherry  */
   1410  1.56.2.6    cherry 
   1411  1.56.2.6    cherry void
   1412  1.56.2.6    cherry cpu_kick(struct cpu_info *ci)
   1413  1.56.2.6    cherry {
   1414  1.56.2.7    cherry 	(void)xen_send_ipi(ci, XEN_IPI_KICK);
   1415  1.56.2.6    cherry }
   1416