Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.80.2.5
      1  1.80.2.5       riz /*	$NetBSD: cpu.c,v 1.80.2.5 2012/06/12 19:00:24 riz Exp $	*/
      2       1.2    bouyer /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp  */
      3       1.2    bouyer 
      4       1.2    bouyer /*-
      5       1.2    bouyer  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      6      1.19     joerg  * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
      7       1.2    bouyer  * All rights reserved.
      8       1.2    bouyer  *
      9       1.2    bouyer  * This code is derived from software contributed to The NetBSD Foundation
     10       1.2    bouyer  * by RedBack Networks Inc.
     11       1.2    bouyer  *
     12       1.2    bouyer  * Author: Bill Sommerfeld
     13       1.2    bouyer  *
     14       1.2    bouyer  * Redistribution and use in source and binary forms, with or without
     15       1.2    bouyer  * modification, are permitted provided that the following conditions
     16       1.2    bouyer  * are met:
     17       1.2    bouyer  * 1. Redistributions of source code must retain the above copyright
     18       1.2    bouyer  *    notice, this list of conditions and the following disclaimer.
     19       1.2    bouyer  * 2. Redistributions in binary form must reproduce the above copyright
     20       1.2    bouyer  *    notice, this list of conditions and the following disclaimer in the
     21       1.2    bouyer  *    documentation and/or other materials provided with the distribution.
     22       1.2    bouyer  *
     23       1.2    bouyer  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24       1.2    bouyer  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25       1.2    bouyer  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26       1.2    bouyer  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27       1.2    bouyer  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28       1.2    bouyer  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29       1.2    bouyer  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30       1.2    bouyer  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31       1.2    bouyer  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32       1.2    bouyer  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33       1.2    bouyer  * POSSIBILITY OF SUCH DAMAGE.
     34       1.2    bouyer  */
     35       1.2    bouyer 
     36       1.2    bouyer /*
     37       1.2    bouyer  * Copyright (c) 1999 Stefan Grefen
     38       1.2    bouyer  *
     39       1.2    bouyer  * Redistribution and use in source and binary forms, with or without
     40       1.2    bouyer  * modification, are permitted provided that the following conditions
     41       1.2    bouyer  * are met:
     42       1.2    bouyer  * 1. Redistributions of source code must retain the above copyright
     43       1.2    bouyer  *    notice, this list of conditions and the following disclaimer.
     44       1.2    bouyer  * 2. Redistributions in binary form must reproduce the above copyright
     45       1.2    bouyer  *    notice, this list of conditions and the following disclaimer in the
     46       1.2    bouyer  *    documentation and/or other materials provided with the distribution.
     47       1.2    bouyer  * 3. All advertising materials mentioning features or use of this software
     48       1.2    bouyer  *    must display the following acknowledgement:
     49       1.2    bouyer  *      This product includes software developed by the NetBSD
     50       1.2    bouyer  *      Foundation, Inc. and its contributors.
     51       1.2    bouyer  * 4. Neither the name of The NetBSD Foundation nor the names of its
     52       1.2    bouyer  *    contributors may be used to endorse or promote products derived
     53       1.2    bouyer  *    from this software without specific prior written permission.
     54       1.2    bouyer  *
     55       1.2    bouyer  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     56       1.2    bouyer  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57       1.2    bouyer  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58       1.2    bouyer  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     59       1.2    bouyer  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60       1.2    bouyer  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61       1.2    bouyer  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62       1.2    bouyer  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63       1.2    bouyer  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64       1.2    bouyer  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65       1.2    bouyer  * SUCH DAMAGE.
     66       1.2    bouyer  */
     67       1.2    bouyer 
     68       1.2    bouyer #include <sys/cdefs.h>
     69  1.80.2.5       riz __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.80.2.5 2012/06/12 19:00:24 riz Exp $");
     70       1.2    bouyer 
     71       1.2    bouyer #include "opt_ddb.h"
     72       1.2    bouyer #include "opt_multiprocessor.h"
     73       1.2    bouyer #include "opt_mpbios.h"		/* for MPDEBUG */
     74       1.2    bouyer #include "opt_mtrr.h"
     75       1.2    bouyer #include "opt_xen.h"
     76       1.2    bouyer 
     77       1.2    bouyer #include "lapic.h"
     78       1.2    bouyer #include "ioapic.h"
     79       1.2    bouyer 
     80       1.2    bouyer #include <sys/param.h>
     81       1.2    bouyer #include <sys/proc.h>
     82       1.2    bouyer #include <sys/systm.h>
     83       1.2    bouyer #include <sys/device.h>
     84      1.31    cegger #include <sys/kmem.h>
     85      1.11    cegger #include <sys/cpu.h>
     86      1.66    jruoho #include <sys/cpufreq.h>
     87      1.11    cegger #include <sys/atomic.h>
     88      1.32    cegger #include <sys/reboot.h>
     89      1.62    cherry #include <sys/idle.h>
     90       1.2    bouyer 
     91      1.51  uebayasi #include <uvm/uvm.h>
     92       1.2    bouyer 
     93       1.2    bouyer #include <machine/cpufunc.h>
     94       1.2    bouyer #include <machine/cpuvar.h>
     95       1.2    bouyer #include <machine/pmap.h>
     96       1.2    bouyer #include <machine/vmparam.h>
     97       1.2    bouyer #include <machine/mpbiosvar.h>
     98       1.2    bouyer #include <machine/pcb.h>
     99       1.2    bouyer #include <machine/specialreg.h>
    100       1.2    bouyer #include <machine/segments.h>
    101       1.2    bouyer #include <machine/gdt.h>
    102       1.2    bouyer #include <machine/mtrr.h>
    103       1.2    bouyer #include <machine/pio.h>
    104       1.2    bouyer 
    105      1.62    cherry #ifdef i386
    106      1.62    cherry #include <machine/npx.h>
    107      1.62    cherry #else
    108      1.62    cherry #include <machine/fpu.h>
    109      1.62    cherry #endif
    110      1.62    cherry 
    111      1.62    cherry #include <xen/xen.h>
    112      1.71    cegger #include <xen/xen-public/vcpu.h>
    113       1.2    bouyer #include <xen/vcpuvar.h>
    114       1.2    bouyer 
    115       1.2    bouyer #if NLAPIC > 0
    116       1.2    bouyer #include <machine/apicvar.h>
    117       1.2    bouyer #include <machine/i82489reg.h>
    118       1.2    bouyer #include <machine/i82489var.h>
    119       1.2    bouyer #endif
    120       1.2    bouyer 
    121       1.2    bouyer #include <dev/ic/mc146818reg.h>
    122       1.2    bouyer #include <dev/isa/isareg.h>
    123       1.2    bouyer 
    124      1.56    jruoho static int	cpu_match(device_t, cfdata_t, void *);
    125      1.56    jruoho static void	cpu_attach(device_t, device_t, void *);
    126      1.56    jruoho static void	cpu_defer(device_t);
    127      1.56    jruoho static int	cpu_rescan(device_t, const char *, const int *);
    128      1.56    jruoho static void	cpu_childdetached(device_t, device_t);
    129      1.56    jruoho static int	vcpu_match(device_t, cfdata_t, void *);
    130      1.56    jruoho static void	vcpu_attach(device_t, device_t, void *);
    131      1.56    jruoho static void	cpu_attach_common(device_t, device_t, void *);
    132      1.56    jruoho void		cpu_offline_md(void);
    133       1.2    bouyer 
    134       1.2    bouyer struct cpu_softc {
    135      1.10    cegger 	device_t sc_dev;		/* device tree glue */
    136       1.2    bouyer 	struct cpu_info *sc_info;	/* pointer to CPU info */
    137      1.32    cegger 	bool sc_wasonline;
    138       1.2    bouyer };
    139       1.2    bouyer 
    140      1.62    cherry int mp_cpu_start(struct cpu_info *, vaddr_t);
    141       1.2    bouyer void mp_cpu_start_cleanup(struct cpu_info *);
    142       1.2    bouyer const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    143       1.2    bouyer 				      mp_cpu_start_cleanup };
    144       1.2    bouyer 
    145      1.53    jruoho CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    146      1.53    jruoho     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    147      1.53    jruoho 
    148      1.10    cegger CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
    149       1.2    bouyer     vcpu_match, vcpu_attach, NULL, NULL);
    150       1.2    bouyer 
    151       1.2    bouyer /*
    152       1.2    bouyer  * Statically-allocated CPU info for the primary CPU (or the only
    153       1.2    bouyer  * CPU, on uniprocessors).  The CPU info list is initialized to
    154       1.2    bouyer  * point at it.
    155       1.2    bouyer  */
    156       1.2    bouyer #ifdef TRAPLOG
    157       1.2    bouyer #include <machine/tlog.h>
    158       1.2    bouyer struct tlog tlog_primary;
    159       1.2    bouyer #endif
    160      1.38    cegger struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    161       1.7    bouyer 	.ci_dev = 0,
    162       1.2    bouyer 	.ci_self = &cpu_info_primary,
    163       1.4    bouyer 	.ci_idepth = -1,
    164       1.2    bouyer 	.ci_curlwp = &lwp0,
    165      1.25        ad 	.ci_curldt = -1,
    166       1.2    bouyer #ifdef TRAPLOG
    167       1.2    bouyer 	.ci_tlog = &tlog_primary,
    168       1.2    bouyer #endif
    169       1.2    bouyer 
    170       1.2    bouyer };
    171      1.38    cegger struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    172       1.7    bouyer 	.ci_dev = 0,
    173       1.2    bouyer 	.ci_self = &phycpu_info_primary,
    174       1.2    bouyer };
    175       1.2    bouyer 
    176       1.2    bouyer struct cpu_info *cpu_info_list = &cpu_info_primary;
    177      1.38    cegger struct cpu_info *phycpu_info_list = &phycpu_info_primary;
    178       1.2    bouyer 
    179      1.43       jym uint32_t cpu_feature[5]; /* X86 CPUID feature bits
    180      1.43       jym 			  *	[0] basic features %edx
    181      1.43       jym 			  *	[1] basic features %ecx
    182      1.43       jym 			  *	[2] extended features %edx
    183      1.43       jym 			  *	[3] extended features %ecx
    184      1.43       jym 			  *	[4] VIA padlock features
    185      1.43       jym 			  */
    186      1.43       jym 
    187      1.11    cegger bool x86_mp_online;
    188      1.11    cegger paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    189       1.2    bouyer 
    190      1.38    cegger #if defined(MULTIPROCESSOR)
    191       1.2    bouyer void    	cpu_hatch(void *);
    192       1.2    bouyer static void    	cpu_boot_secondary(struct cpu_info *ci);
    193       1.2    bouyer static void    	cpu_start_secondary(struct cpu_info *ci);
    194      1.38    cegger #endif	/* MULTIPROCESSOR */
    195       1.2    bouyer 
    196      1.56    jruoho static int
    197      1.10    cegger cpu_match(device_t parent, cfdata_t match, void *aux)
    198       1.2    bouyer {
    199       1.2    bouyer 
    200       1.2    bouyer 	return 1;
    201       1.2    bouyer }
    202       1.2    bouyer 
    203      1.56    jruoho static void
    204      1.10    cegger cpu_attach(device_t parent, device_t self, void *aux)
    205       1.2    bouyer {
    206      1.10    cegger 	struct cpu_softc *sc = device_private(self);
    207       1.2    bouyer 	struct cpu_attach_args *caa = aux;
    208       1.2    bouyer 	struct cpu_info *ci;
    209      1.34    cegger 	uintptr_t ptr;
    210      1.52    bouyer 	static int nphycpu = 0;
    211       1.2    bouyer 
    212      1.10    cegger 	sc->sc_dev = self;
    213      1.10    cegger 
    214       1.2    bouyer 	/*
    215       1.2    bouyer 	 * If we're an Application Processor, allocate a cpu_info
    216      1.52    bouyer 	 * If we're the first attached CPU use the primary cpu_info,
    217      1.52    bouyer 	 * otherwise allocate a new one
    218       1.2    bouyer 	 */
    219      1.52    bouyer 	aprint_naive("\n");
    220      1.52    bouyer 	aprint_normal("\n");
    221      1.52    bouyer 	if (nphycpu > 0) {
    222      1.52    bouyer 		struct cpu_info *tmp;
    223      1.34    cegger 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    224      1.34    cegger 		    KM_SLEEP);
    225      1.42       jym 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    226      1.24        ad 		ci->ci_curldt = -1;
    227      1.52    bouyer 
    228      1.52    bouyer 		tmp = phycpu_info_list;
    229      1.52    bouyer 		while (tmp->ci_next)
    230      1.52    bouyer 			tmp = tmp->ci_next;
    231      1.52    bouyer 
    232      1.52    bouyer 		tmp->ci_next = ci;
    233       1.2    bouyer 	} else {
    234       1.2    bouyer 		ci = &phycpu_info_primary;
    235       1.2    bouyer 	}
    236       1.2    bouyer 
    237       1.2    bouyer 	ci->ci_self = ci;
    238       1.2    bouyer 	sc->sc_info = ci;
    239       1.2    bouyer 
    240       1.2    bouyer 	ci->ci_dev = self;
    241      1.50    jruoho 	ci->ci_acpiid = caa->cpu_id;
    242      1.23        ad 	ci->ci_cpuid = caa->cpu_number;
    243      1.16    cegger 	ci->ci_vcpu = NULL;
    244      1.52    bouyer 	ci->ci_index = nphycpu++;
    245      1.38    cegger 
    246      1.52    bouyer 	if (!pmf_device_register(self, NULL, NULL))
    247      1.52    bouyer 		aprint_error_dev(self, "couldn't establish power handler\n");
    248      1.34    cegger 
    249      1.56    jruoho 	(void)config_defer(self, cpu_defer);
    250      1.56    jruoho }
    251      1.56    jruoho 
    252      1.56    jruoho static void
    253      1.56    jruoho cpu_defer(device_t self)
    254      1.56    jruoho {
    255      1.56    jruoho 	cpu_rescan(self, NULL, NULL);
    256       1.2    bouyer }
    257       1.2    bouyer 
    258      1.56    jruoho static int
    259      1.53    jruoho cpu_rescan(device_t self, const char *ifattr, const int *locators)
    260      1.53    jruoho {
    261      1.53    jruoho 	struct cpu_softc *sc = device_private(self);
    262      1.53    jruoho 	struct cpufeature_attach_args cfaa;
    263      1.53    jruoho 	struct cpu_info *ci = sc->sc_info;
    264      1.53    jruoho 
    265      1.53    jruoho 	memset(&cfaa, 0, sizeof(cfaa));
    266      1.53    jruoho 	cfaa.ci = ci;
    267      1.53    jruoho 
    268      1.53    jruoho 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    269      1.53    jruoho 
    270      1.53    jruoho 		if (ci->ci_frequency == NULL) {
    271      1.55    jruoho 			cfaa.name = "frequency";
    272      1.54    jruoho 			ci->ci_frequency = config_found_ia(self,
    273      1.54    jruoho 			    "cpufeaturebus", &cfaa, NULL);
    274      1.54    jruoho 		}
    275      1.53    jruoho 	}
    276      1.53    jruoho 
    277      1.53    jruoho 	return 0;
    278      1.53    jruoho }
    279      1.53    jruoho 
    280      1.56    jruoho static void
    281      1.53    jruoho cpu_childdetached(device_t self, device_t child)
    282      1.53    jruoho {
    283      1.53    jruoho 	struct cpu_softc *sc = device_private(self);
    284      1.53    jruoho 	struct cpu_info *ci = sc->sc_info;
    285      1.53    jruoho 
    286      1.53    jruoho 	if (ci->ci_frequency == child)
    287      1.53    jruoho 		ci->ci_frequency = NULL;
    288      1.53    jruoho }
    289      1.53    jruoho 
    290      1.56    jruoho static int
    291      1.10    cegger vcpu_match(device_t parent, cfdata_t match, void *aux)
    292       1.2    bouyer {
    293       1.2    bouyer 	struct vcpu_attach_args *vcaa = aux;
    294      1.62    cherry 	struct vcpu_runstate_info vcr;
    295      1.62    cherry 	int error;
    296      1.62    cherry 
    297      1.62    cherry 	if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
    298      1.62    cherry 		error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
    299      1.62    cherry 					   vcaa->vcaa_caa.cpu_number,
    300      1.62    cherry 					   &vcr);
    301      1.62    cherry 		switch (error) {
    302      1.62    cherry 		case 0:
    303      1.62    cherry 			return 1;
    304      1.62    cherry 		case -ENOENT:
    305      1.62    cherry 			return 0;
    306      1.62    cherry 		default:
    307      1.62    cherry 			panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
    308      1.62    cherry 		}
    309      1.62    cherry 	}
    310       1.2    bouyer 
    311       1.2    bouyer 	return 0;
    312       1.2    bouyer }
    313       1.2    bouyer 
    314      1.56    jruoho static void
    315      1.10    cegger vcpu_attach(device_t parent, device_t self, void *aux)
    316       1.2    bouyer {
    317       1.2    bouyer 	struct vcpu_attach_args *vcaa = aux;
    318       1.2    bouyer 
    319      1.62    cherry 	KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
    320      1.62    cherry 	vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
    321       1.2    bouyer 	cpu_attach_common(parent, self, &vcaa->vcaa_caa);
    322      1.65       jym 
    323      1.65       jym 	if (!pmf_device_register(self, NULL, NULL))
    324      1.65       jym 		aprint_error_dev(self, "couldn't establish power handler\n");
    325       1.2    bouyer }
    326       1.2    bouyer 
    327      1.62    cherry static int
    328      1.62    cherry vcpu_is_up(struct cpu_info *ci)
    329      1.62    cherry {
    330      1.62    cherry 	KASSERT(ci != NULL);
    331      1.62    cherry 	return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
    332      1.62    cherry }
    333      1.62    cherry 
    334       1.2    bouyer static void
    335       1.2    bouyer cpu_vm_init(struct cpu_info *ci)
    336       1.2    bouyer {
    337       1.2    bouyer 	int ncolors = 2, i;
    338       1.2    bouyer 
    339       1.2    bouyer 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    340       1.2    bouyer 		struct x86_cache_info *cai;
    341       1.2    bouyer 		int tcolors;
    342       1.2    bouyer 
    343       1.2    bouyer 		cai = &ci->ci_cinfo[i];
    344       1.2    bouyer 
    345       1.2    bouyer 		tcolors = atop(cai->cai_totalsize);
    346       1.2    bouyer 		switch(cai->cai_associativity) {
    347       1.2    bouyer 		case 0xff:
    348       1.2    bouyer 			tcolors = 1; /* fully associative */
    349       1.2    bouyer 			break;
    350       1.2    bouyer 		case 0:
    351       1.2    bouyer 		case 1:
    352       1.2    bouyer 			break;
    353       1.2    bouyer 		default:
    354       1.2    bouyer 			tcolors /= cai->cai_associativity;
    355       1.2    bouyer 		}
    356       1.2    bouyer 		ncolors = max(ncolors, tcolors);
    357       1.2    bouyer 	}
    358       1.2    bouyer 
    359       1.2    bouyer 	/*
    360      1.67       mrg 	 * Knowing the size of the largest cache on this CPU, potentially
    361      1.67       mrg 	 * re-color our pages.
    362       1.2    bouyer 	 */
    363      1.28    bouyer 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    364       1.2    bouyer 	uvm_page_recolor(ncolors);
    365  1.80.2.4       riz 	pmap_tlb_cpu_init(ci);
    366       1.2    bouyer }
    367       1.2    bouyer 
    368      1.56    jruoho static void
    369      1.11    cegger cpu_attach_common(device_t parent, device_t self, void *aux)
    370       1.2    bouyer {
    371      1.10    cegger 	struct cpu_softc *sc = device_private(self);
    372       1.2    bouyer 	struct cpu_attach_args *caa = aux;
    373       1.2    bouyer 	struct cpu_info *ci;
    374      1.12    cegger 	uintptr_t ptr;
    375       1.2    bouyer 	int cpunum = caa->cpu_number;
    376      1.38    cegger 	static bool again = false;
    377       1.2    bouyer 
    378      1.10    cegger 	sc->sc_dev = self;
    379      1.10    cegger 
    380       1.2    bouyer 	/*
    381       1.2    bouyer 	 * If we're an Application Processor, allocate a cpu_info
    382       1.2    bouyer 	 * structure, otherwise use the primary's.
    383       1.2    bouyer 	 */
    384       1.2    bouyer 	if (caa->cpu_role == CPU_ROLE_AP) {
    385      1.12    cegger 		aprint_naive(": Application Processor\n");
    386      1.31    cegger 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    387      1.31    cegger 		    KM_SLEEP);
    388      1.42       jym 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    389      1.12    cegger 		memset(ci, 0, sizeof(*ci));
    390       1.2    bouyer #ifdef TRAPLOG
    391      1.31    cegger 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
    392       1.2    bouyer #endif
    393       1.2    bouyer 	} else {
    394      1.12    cegger 		aprint_naive(": %s Processor\n",
    395      1.12    cegger 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    396       1.2    bouyer 		ci = &cpu_info_primary;
    397       1.2    bouyer 	}
    398       1.2    bouyer 
    399       1.2    bouyer 	ci->ci_self = ci;
    400       1.2    bouyer 	sc->sc_info = ci;
    401       1.2    bouyer 	ci->ci_dev = self;
    402      1.23        ad 	ci->ci_cpuid = cpunum;
    403      1.16    cegger 
    404      1.16    cegger 	KASSERT(HYPERVISOR_shared_info != NULL);
    405      1.16    cegger 	ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
    406      1.16    cegger 
    407      1.62    cherry 	KASSERT(ci->ci_func == 0);
    408       1.2    bouyer 	ci->ci_func = caa->cpu_func;
    409       1.2    bouyer 
    410      1.38    cegger 	/* Must be called before mi_cpu_attach(). */
    411      1.38    cegger 	cpu_vm_init(ci);
    412      1.38    cegger 
    413       1.2    bouyer 	if (caa->cpu_role == CPU_ROLE_AP) {
    414       1.2    bouyer 		int error;
    415       1.2    bouyer 
    416       1.2    bouyer 		error = mi_cpu_attach(ci);
    417      1.62    cherry 
    418      1.62    cherry 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    419       1.2    bouyer 		if (error != 0) {
    420       1.2    bouyer 			aprint_normal("\n");
    421      1.38    cegger 			aprint_error_dev(self,
    422      1.38    cegger 			    "mi_cpu_attach failed with %d\n", error);
    423       1.2    bouyer 			return;
    424       1.2    bouyer 		}
    425      1.62    cherry 
    426       1.2    bouyer 	} else {
    427       1.2    bouyer 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    428       1.2    bouyer 	}
    429       1.2    bouyer 
    430       1.2    bouyer 	pmap_reference(pmap_kernel());
    431       1.2    bouyer 	ci->ci_pmap = pmap_kernel();
    432       1.2    bouyer 	ci->ci_tlbstate = TLBSTATE_STALE;
    433       1.2    bouyer 
    434      1.38    cegger 	/*
    435      1.38    cegger 	 * Boot processor may not be attached first, but the below
    436      1.38    cegger 	 * must be done to allow booting other processors.
    437      1.38    cegger 	 */
    438      1.38    cegger 	if (!again) {
    439      1.38    cegger 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    440      1.38    cegger 		/* Basic init. */
    441      1.38    cegger 		cpu_intr_init(ci);
    442      1.38    cegger 		cpu_get_tsc_freq(ci);
    443      1.38    cegger 		cpu_init(ci);
    444      1.78    cherry 		pmap_cpu_init_late(ci);
    445      1.62    cherry 
    446      1.62    cherry 		/* Every processor needs to init it's own ipi h/w (similar to lapic) */
    447      1.62    cherry 		xen_ipi_init();
    448      1.62    cherry 		/* XXX: clock_init() */
    449      1.62    cherry 
    450      1.38    cegger 		/* Make sure DELAY() is initialized. */
    451      1.38    cegger 		DELAY(1);
    452      1.38    cegger 		again = true;
    453      1.38    cegger 	}
    454      1.38    cegger 
    455       1.2    bouyer 	/* further PCB init done later. */
    456       1.2    bouyer 
    457       1.2    bouyer 	switch (caa->cpu_role) {
    458       1.2    bouyer 	case CPU_ROLE_SP:
    459      1.38    cegger 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    460      1.21        ad 		cpu_identify(ci);
    461      1.12    cegger #if 0
    462      1.12    cegger 		x86_errata();
    463      1.12    cegger #endif
    464      1.38    cegger 		x86_cpu_idle_init();
    465      1.62    cherry 
    466       1.2    bouyer 		break;
    467       1.2    bouyer 
    468       1.2    bouyer 	case CPU_ROLE_BP:
    469      1.38    cegger 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    470      1.21        ad 		cpu_identify(ci);
    471      1.14    bouyer #if 0
    472      1.12    cegger 		x86_errata();
    473      1.12    cegger #endif
    474      1.38    cegger 		x86_cpu_idle_init();
    475      1.62    cherry 
    476       1.2    bouyer 		break;
    477       1.2    bouyer 
    478       1.2    bouyer 	case CPU_ROLE_AP:
    479      1.62    cherry 		atomic_or_32(&ci->ci_flags, CPUF_AP);
    480      1.62    cherry 
    481       1.2    bouyer 		/*
    482       1.2    bouyer 		 * report on an AP
    483       1.2    bouyer 		 */
    484       1.2    bouyer 
    485       1.2    bouyer #if defined(MULTIPROCESSOR)
    486      1.62    cherry 		/* interrupt handler stack */
    487       1.2    bouyer 		cpu_intr_init(ci);
    488      1.62    cherry 
    489      1.62    cherry 		/* Setup per-cpu memory for gdt */
    490       1.2    bouyer 		gdt_alloc_cpu(ci);
    491      1.62    cherry 
    492      1.62    cherry 		pmap_cpu_init_late(ci);
    493       1.2    bouyer 		cpu_start_secondary(ci);
    494      1.62    cherry 
    495       1.2    bouyer 		if (ci->ci_flags & CPUF_PRESENT) {
    496      1.30    cegger 			struct cpu_info *tmp;
    497      1.30    cegger 
    498      1.62    cherry 			cpu_identify(ci);
    499      1.30    cegger 			tmp = cpu_info_list;
    500      1.30    cegger 			while (tmp->ci_next)
    501      1.30    cegger 				tmp = tmp->ci_next;
    502      1.30    cegger 
    503      1.30    cegger 			tmp->ci_next = ci;
    504       1.2    bouyer 		}
    505       1.2    bouyer #else
    506      1.62    cherry 		aprint_error(": not started\n");
    507       1.2    bouyer #endif
    508       1.2    bouyer 		break;
    509       1.2    bouyer 
    510       1.2    bouyer 	default:
    511      1.12    cegger 		aprint_normal("\n");
    512       1.2    bouyer 		panic("unknown processor type??\n");
    513       1.2    bouyer 	}
    514       1.2    bouyer 
    515      1.62    cherry #ifdef MPVERBOSE
    516       1.2    bouyer 	if (mp_verbose) {
    517       1.2    bouyer 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    518      1.37     rmind 		struct pcb *pcb = lwp_getpcb(l);
    519       1.2    bouyer 
    520      1.38    cegger 		aprint_verbose_dev(self,
    521      1.38    cegger 		    "idle lwp at %p, idle sp at 0x%p\n",
    522      1.12    cegger 		    l,
    523      1.12    cegger #ifdef i386
    524      1.37     rmind 		    (void *)pcb->pcb_esp
    525      1.62    cherry #else /* i386 */
    526      1.37     rmind 		    (void *)pcb->pcb_rsp
    527      1.62    cherry #endif /* i386 */
    528      1.12    cegger 		);
    529      1.12    cegger 
    530       1.2    bouyer 	}
    531      1.62    cherry #endif /* MPVERBOSE */
    532       1.2    bouyer }
    533       1.2    bouyer 
    534       1.2    bouyer /*
    535       1.2    bouyer  * Initialize the processor appropriately.
    536       1.2    bouyer  */
    537       1.2    bouyer 
    538       1.2    bouyer void
    539      1.10    cegger cpu_init(struct cpu_info *ci)
    540       1.2    bouyer {
    541       1.2    bouyer 
    542       1.2    bouyer 	/*
    543       1.2    bouyer 	 * On a P6 or above, enable global TLB caching if the
    544       1.2    bouyer 	 * hardware supports it.
    545       1.2    bouyer 	 */
    546      1.43       jym 	if (cpu_feature[0] & CPUID_PGE)
    547       1.2    bouyer 		lcr4(rcr4() | CR4_PGE);	/* enable global TLB caching */
    548       1.2    bouyer 
    549       1.2    bouyer #ifdef XXXMTRR
    550       1.2    bouyer 	/*
    551       1.2    bouyer 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    552       1.2    bouyer 	 */
    553      1.43       jym 	if (cpu_feature[0] & CPUID_MTRR) {
    554       1.2    bouyer 		if ((ci->ci_flags & CPUF_AP) == 0)
    555       1.2    bouyer 			i686_mtrr_init_first();
    556       1.2    bouyer 		mtrr_init_cpu(ci);
    557       1.2    bouyer 	}
    558       1.2    bouyer #endif
    559       1.2    bouyer 	/*
    560       1.2    bouyer 	 * If we have FXSAVE/FXRESTOR, use them.
    561       1.2    bouyer 	 */
    562      1.43       jym 	if (cpu_feature[0] & CPUID_FXSR) {
    563       1.2    bouyer 		lcr4(rcr4() | CR4_OSFXSR);
    564       1.2    bouyer 
    565       1.2    bouyer 		/*
    566       1.2    bouyer 		 * If we have SSE/SSE2, enable XMM exceptions.
    567       1.2    bouyer 		 */
    568      1.43       jym 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    569       1.2    bouyer 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    570       1.2    bouyer 	}
    571       1.2    bouyer 
    572      1.47       jym #ifdef __x86_64__
    573      1.47       jym 	/* No user PGD mapped for this CPU yet */
    574      1.47       jym 	ci->ci_xen_current_user_pgd = 0;
    575      1.47       jym #endif
    576  1.80.2.1       riz #if defined(__x86_64__) || defined(PAE)
    577  1.80.2.1       riz 	mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
    578  1.80.2.1       riz #endif
    579      1.47       jym 
    580      1.11    cegger 	atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    581      1.62    cherry 
    582      1.62    cherry 	/* XXX: register vcpu_register_runstate_memory_area, and figure out how to make sure this VCPU is running ? */
    583       1.2    bouyer }
    584       1.2    bouyer 
    585       1.2    bouyer 
    586       1.2    bouyer #ifdef MULTIPROCESSOR
    587      1.62    cherry 
    588       1.2    bouyer void
    589      1.10    cegger cpu_boot_secondary_processors(void)
    590       1.2    bouyer {
    591       1.2    bouyer 	struct cpu_info *ci;
    592       1.2    bouyer 	u_long i;
    593      1.38    cegger 	for (i = 0; i < maxcpus; i++) {
    594      1.38    cegger 		ci = cpu_lookup(i);
    595       1.2    bouyer 		if (ci == NULL)
    596       1.2    bouyer 			continue;
    597       1.2    bouyer 		if (ci->ci_data.cpu_idlelwp == NULL)
    598       1.2    bouyer 			continue;
    599       1.2    bouyer 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    600       1.2    bouyer 			continue;
    601       1.2    bouyer 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    602       1.2    bouyer 			continue;
    603       1.2    bouyer 		cpu_boot_secondary(ci);
    604       1.2    bouyer 	}
    605      1.11    cegger 
    606      1.11    cegger 	x86_mp_online = true;
    607       1.2    bouyer }
    608       1.2    bouyer 
    609       1.2    bouyer static void
    610       1.2    bouyer cpu_init_idle_lwp(struct cpu_info *ci)
    611       1.2    bouyer {
    612       1.2    bouyer 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    613      1.37     rmind 	struct pcb *pcb = lwp_getpcb(l);
    614       1.2    bouyer 
    615       1.2    bouyer 	pcb->pcb_cr0 = rcr0();
    616       1.2    bouyer }
    617       1.2    bouyer 
    618       1.2    bouyer void
    619      1.10    cegger cpu_init_idle_lwps(void)
    620       1.2    bouyer {
    621       1.2    bouyer 	struct cpu_info *ci;
    622       1.2    bouyer 	u_long i;
    623       1.2    bouyer 
    624      1.38    cegger 	for (i = 0; i < maxcpus; i++) {
    625      1.38    cegger 		ci = cpu_lookup(i);
    626       1.2    bouyer 		if (ci == NULL)
    627       1.2    bouyer 			continue;
    628       1.2    bouyer 		if (ci->ci_data.cpu_idlelwp == NULL)
    629       1.2    bouyer 			continue;
    630       1.2    bouyer 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    631       1.2    bouyer 			continue;
    632       1.2    bouyer 		cpu_init_idle_lwp(ci);
    633       1.2    bouyer 	}
    634       1.2    bouyer }
    635       1.2    bouyer 
    636      1.62    cherry static void
    637      1.10    cegger cpu_start_secondary(struct cpu_info *ci)
    638       1.2    bouyer {
    639       1.2    bouyer 	int i;
    640       1.2    bouyer 
    641      1.11    cegger 	aprint_debug_dev(ci->ci_dev, "starting\n");
    642       1.2    bouyer 
    643       1.2    bouyer 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    644      1.62    cherry 
    645      1.62    cherry 	if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
    646      1.11    cegger 		return;
    647      1.62    cherry 	}
    648       1.2    bouyer 
    649       1.2    bouyer 	/*
    650       1.2    bouyer 	 * wait for it to become ready
    651       1.2    bouyer 	 */
    652      1.11    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    653       1.2    bouyer 		delay(10);
    654       1.2    bouyer 	}
    655      1.11    cegger 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    656       1.9    cegger 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    657       1.2    bouyer #if defined(MPDEBUG) && defined(DDB)
    658       1.2    bouyer 		printf("dropping into debugger; continue from here to resume boot\n");
    659       1.2    bouyer 		Debugger();
    660       1.2    bouyer #endif
    661       1.2    bouyer 	}
    662       1.2    bouyer 
    663       1.2    bouyer 	CPU_START_CLEANUP(ci);
    664       1.2    bouyer }
    665       1.2    bouyer 
    666       1.2    bouyer void
    667      1.10    cegger cpu_boot_secondary(struct cpu_info *ci)
    668       1.2    bouyer {
    669       1.2    bouyer 	int i;
    670      1.11    cegger 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    671      1.11    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    672       1.2    bouyer 		delay(10);
    673       1.2    bouyer 	}
    674      1.11    cegger 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    675      1.11    cegger 		aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
    676       1.2    bouyer #if defined(MPDEBUG) && defined(DDB)
    677       1.2    bouyer 		printf("dropping into debugger; continue from here to resume boot\n");
    678       1.2    bouyer 		Debugger();
    679       1.2    bouyer #endif
    680       1.2    bouyer 	}
    681       1.2    bouyer }
    682       1.2    bouyer 
    683       1.2    bouyer /*
    684      1.62    cherry  * APs end up here immediately after initialisation and VCPUOP_up in
    685      1.62    cherry  * mp_cpu_start().
    686      1.62    cherry  * At this point, we are running in the idle pcb/idle stack of the new
    687      1.62    cherry  * CPU.  This function jumps to the idle loop and starts looking for
    688      1.62    cherry  * work.
    689       1.2    bouyer  */
    690      1.62    cherry extern void x86_64_tls_switch(struct lwp *);
    691       1.2    bouyer void
    692       1.2    bouyer cpu_hatch(void *v)
    693       1.2    bouyer {
    694       1.2    bouyer 	struct cpu_info *ci = (struct cpu_info *)v;
    695      1.37     rmind 	struct pcb *pcb;
    696      1.11    cegger 	int s, i;
    697      1.11    cegger 
    698      1.62    cherry 	/* Setup TLS and kernel GS/FS */
    699      1.62    cherry 	cpu_init_msrs(ci, true);
    700      1.62    cherry 	cpu_init_idt();
    701      1.62    cherry 	gdt_init_cpu(ci);
    702      1.62    cherry 
    703      1.21        ad 	cpu_probe(ci);
    704      1.11    cegger 
    705      1.62    cherry 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    706       1.2    bouyer 
    707      1.11    cegger 	while ((ci->ci_flags & CPUF_GO) == 0) {
    708      1.11    cegger 		/* Don't use delay, boot CPU may be patching the text. */
    709      1.11    cegger 		for (i = 10000; i != 0; i--)
    710      1.11    cegger 			x86_pause();
    711      1.11    cegger 	}
    712       1.2    bouyer 
    713      1.11    cegger 	/* Because the text may have been patched in x86_patch(). */
    714      1.11    cegger 	x86_flush();
    715      1.58     rmind 	tlbflushg();
    716       1.2    bouyer 
    717      1.11    cegger 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    718       1.2    bouyer 
    719      1.37     rmind 	pcb = lwp_getpcb(curlwp);
    720      1.62    cherry 	pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0); /* XXX: consider using pmap_load() ? */
    721      1.37     rmind 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    722      1.37     rmind 
    723      1.62    cherry 	xen_ipi_init();
    724      1.62    cherry 
    725      1.62    cherry 	xen_initclocks();
    726      1.62    cherry 
    727      1.62    cherry 	/* XXX: lapic_initclocks(); */
    728      1.11    cegger 
    729      1.62    cherry #ifdef __x86_64__
    730      1.12    cegger 	fpuinit(ci);
    731      1.12    cegger #endif
    732       1.2    bouyer 
    733       1.2    bouyer 	lldt(GSEL(GLDT_SEL, SEL_KPL));
    734       1.2    bouyer 
    735       1.2    bouyer 	cpu_init(ci);
    736      1.11    cegger 	cpu_get_tsc_freq(ci);
    737       1.2    bouyer 
    738       1.2    bouyer 	s = splhigh();
    739      1.11    cegger 	x86_enable_intr();
    740      1.11    cegger 	splx(s);
    741      1.12    cegger #if 0
    742      1.11    cegger 	x86_errata();
    743      1.11    cegger #endif
    744       1.2    bouyer 
    745      1.62    cherry 	aprint_debug_dev(ci->ci_dev, "running\n");
    746      1.62    cherry 
    747      1.62    cherry 	cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
    748      1.62    cherry 
    749  1.80.2.4       riz 	idle_loop(NULL);
    750  1.80.2.4       riz 	KASSERT(false);
    751       1.2    bouyer }
    752       1.2    bouyer 
    753       1.2    bouyer #if defined(DDB)
    754       1.2    bouyer 
    755       1.2    bouyer #include <ddb/db_output.h>
    756       1.2    bouyer #include <machine/db_machdep.h>
    757       1.2    bouyer 
    758       1.2    bouyer /*
    759       1.2    bouyer  * Dump CPU information from ddb.
    760       1.2    bouyer  */
    761       1.2    bouyer void
    762       1.2    bouyer cpu_debug_dump(void)
    763       1.2    bouyer {
    764       1.2    bouyer 	struct cpu_info *ci;
    765       1.2    bouyer 	CPU_INFO_ITERATOR cii;
    766       1.2    bouyer 
    767      1.13      yamt 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    768       1.2    bouyer 	for (CPU_INFO_FOREACH(cii, ci)) {
    769       1.2    bouyer 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    770       1.2    bouyer 		    ci,
    771       1.9    cegger 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    772      1.12    cegger 		    (long)ci->ci_cpuid,
    773       1.2    bouyer 		    ci->ci_flags, ci->ci_ipis,
    774       1.2    bouyer 		    ci->ci_curlwp,
    775       1.2    bouyer 		    ci->ci_fpcurlwp);
    776       1.2    bouyer 	}
    777       1.2    bouyer }
    778      1.38    cegger #endif /* DDB */
    779       1.2    bouyer 
    780      1.62    cherry #endif /* MULTIPROCESSOR */
    781      1.62    cherry 
    782      1.62    cherry extern void hypervisor_callback(void);
    783      1.62    cherry extern void failsafe_callback(void);
    784      1.62    cherry #ifdef __x86_64__
    785      1.62    cherry typedef void (vector)(void);
    786      1.62    cherry extern vector Xsyscall, Xsyscall32;
    787      1.62    cherry #endif
    788      1.62    cherry 
    789      1.62    cherry /*
    790      1.62    cherry  * Setup the "trampoline". On Xen, we setup nearly all cpu context
    791      1.62    cherry  * outside a trampoline, so we prototype and call targetip like so:
    792      1.62    cherry  * void targetip(struct cpu_info *);
    793      1.62    cherry  */
    794      1.62    cherry 
    795       1.2    bouyer static void
    796      1.62    cherry gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
    797       1.2    bouyer {
    798      1.62    cherry 	int i;
    799      1.62    cherry 	for (i = 0; i < roundup(entries, PAGE_SIZE) >> PAGE_SHIFT; i++) {
    800      1.62    cherry 
    801      1.62    cherry 		frames[i] = ((paddr_t) xpmap_ptetomach(
    802      1.62    cherry 				(pt_entry_t *) (base + (i << PAGE_SHIFT))))
    803      1.62    cherry 			>> PAGE_SHIFT;
    804      1.62    cherry 
    805      1.62    cherry 		/* Mark Read-only */
    806      1.62    cherry 		pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
    807      1.62    cherry 		    PG_RW);
    808      1.62    cherry 	}
    809      1.62    cherry }
    810      1.62    cherry 
    811      1.62    cherry #ifdef __x86_64__
    812      1.62    cherry extern char *ldtstore; /* XXX: Xen MP todo */
    813      1.62    cherry 
    814      1.62    cherry static void
    815      1.62    cherry xen_init_amd64_vcpuctxt(struct cpu_info *ci,
    816      1.62    cherry 			struct vcpu_guest_context *initctx,
    817      1.62    cherry 			void targetrip(struct cpu_info *))
    818      1.62    cherry {
    819      1.62    cherry 	/* page frames to point at GDT */
    820      1.62    cherry 	extern int gdt_size;
    821      1.62    cherry 	paddr_t frames[16];
    822      1.62    cherry 	psize_t gdt_ents;
    823      1.62    cherry 
    824      1.62    cherry 	struct lwp *l;
    825      1.62    cherry 	struct pcb *pcb;
    826      1.62    cherry 
    827      1.62    cherry 	volatile struct vcpu_info *vci;
    828      1.62    cherry 
    829      1.62    cherry 	KASSERT(ci != NULL);
    830      1.62    cherry 	KASSERT(ci != &cpu_info_primary);
    831      1.62    cherry 	KASSERT(initctx != NULL);
    832      1.62    cherry 	KASSERT(targetrip != NULL);
    833      1.62    cherry 
    834      1.62    cherry 	memset(initctx, 0, sizeof *initctx);
    835      1.62    cherry 
    836      1.62    cherry 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT; /* XXX: re-investigate roundup(gdt_size... ) for gdt_ents. */
    837      1.62    cherry 	KASSERT(gdt_ents <= 16);
    838      1.62    cherry 
    839      1.62    cherry 	gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
    840      1.62    cherry 
    841      1.62    cherry 	/* XXX: The stuff in here is amd64 specific. move to mptramp.[Sc] ? */
    842      1.62    cherry 
    843      1.62    cherry 	/* Initialise the vcpu context: We use idle_loop()'s pcb context. */
    844      1.11    cegger 
    845      1.62    cherry 	l = ci->ci_data.cpu_idlelwp;
    846      1.11    cegger 
    847      1.62    cherry 	KASSERT(l != NULL);
    848      1.62    cherry 	pcb = lwp_getpcb(l);
    849      1.62    cherry 	KASSERT(pcb != NULL);
    850      1.11    cegger 
    851      1.62    cherry 	/* resume with interrupts off */
    852      1.62    cherry 	vci = ci->ci_vcpu;
    853      1.62    cherry 	vci->evtchn_upcall_mask = 1;
    854      1.62    cherry 	xen_mb();
    855       1.2    bouyer 
    856      1.62    cherry 	/* resume in kernel-mode */
    857      1.62    cherry 	initctx->flags = VGCF_in_kernel | VGCF_online;
    858       1.2    bouyer 
    859      1.62    cherry 	/* Stack and entry points:
    860      1.62    cherry 	 * We arrange for the stack frame for cpu_hatch() to
    861      1.62    cherry 	 * appear as a callee frame of lwp_trampoline(). Being a
    862      1.62    cherry 	 * leaf frame prevents trampling on any of the MD stack setup
    863      1.62    cherry 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    864      1.62    cherry 	 */
    865       1.2    bouyer 
    866      1.62    cherry 	initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
    867      1.62    cherry 	initctx->user_regs.rip = (vaddr_t) targetrip;
    868       1.2    bouyer 
    869      1.62    cherry 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    870      1.11    cegger 
    871      1.62    cherry 	initctx->user_regs.rflags = pcb->pcb_flags;
    872      1.62    cherry 	initctx->user_regs.rsp = pcb->pcb_rsp;
    873      1.11    cegger 
    874      1.62    cherry 	/* Data segments */
    875      1.62    cherry 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
    876      1.62    cherry 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
    877      1.62    cherry 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
    878      1.62    cherry 
    879      1.62    cherry 	/* GDT */
    880      1.62    cherry 	memcpy(initctx->gdt_frames, frames, sizeof frames);
    881      1.62    cherry 	initctx->gdt_ents = gdt_ents;
    882      1.62    cherry 
    883      1.62    cherry 	/* LDT */
    884      1.62    cherry 	initctx->ldt_base = (unsigned long) ldtstore;
    885      1.62    cherry 	initctx->ldt_ents = LDT_SIZE >> 3;
    886      1.62    cherry 
    887      1.62    cherry 	/* Kernel context state */
    888      1.62    cherry 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
    889      1.62    cherry 	initctx->kernel_sp = pcb->pcb_rsp0;
    890      1.62    cherry 	initctx->ctrlreg[0] = pcb->pcb_cr0;
    891      1.62    cherry 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
    892      1.62    cherry 	initctx->ctrlreg[2] = pcb->pcb_cr2; /* XXX: */
    893      1.62    cherry 	/*
    894      1.62    cherry 	 * Use pmap_kernel() L4 PD directly, until we setup the
    895      1.62    cherry 	 * per-cpu L4 PD in pmap_cpu_init_late()
    896       1.2    bouyer 	 */
    897      1.70    cherry 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
    898      1.62    cherry 	initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
    899       1.2    bouyer 
    900      1.62    cherry 
    901      1.62    cherry 	/* Xen callbacks */
    902      1.62    cherry 	initctx->event_callback_eip = (unsigned long) hypervisor_callback;
    903      1.62    cherry 	initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
    904      1.62    cherry 	initctx->syscall_callback_eip = (unsigned long) Xsyscall;
    905      1.62    cherry 
    906      1.62    cherry 	return;
    907       1.2    bouyer }
    908      1.62    cherry #else /* i386 */
    909      1.62    cherry extern union descriptor *ldt;
    910      1.62    cherry extern void Xsyscall(void);
    911      1.62    cherry 
    912      1.11    cegger static void
    913      1.62    cherry xen_init_i386_vcpuctxt(struct cpu_info *ci,
    914      1.62    cherry 			struct vcpu_guest_context *initctx,
    915      1.62    cherry 			void targeteip(struct cpu_info *))
    916      1.62    cherry {
    917      1.62    cherry 	/* page frames to point at GDT */
    918      1.62    cherry 	extern int gdt_size;
    919      1.62    cherry 	paddr_t frames[16];
    920      1.62    cherry 	psize_t gdt_ents;
    921      1.62    cherry 
    922      1.62    cherry 	struct lwp *l;
    923      1.62    cherry 	struct pcb *pcb;
    924      1.62    cherry 
    925      1.62    cherry 	volatile struct vcpu_info *vci;
    926      1.62    cherry 
    927      1.62    cherry 	KASSERT(ci != NULL);
    928      1.62    cherry 	KASSERT(ci != &cpu_info_primary);
    929      1.62    cherry 	KASSERT(initctx != NULL);
    930      1.62    cherry 	KASSERT(targeteip != NULL);
    931      1.62    cherry 
    932      1.62    cherry 	memset(initctx, 0, sizeof *initctx);
    933      1.11    cegger 
    934      1.62    cherry 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT; /* XXX: re-investigate roundup(gdt_size... ) for gdt_ents. */
    935      1.62    cherry 	KASSERT(gdt_ents <= 16);
    936       1.2    bouyer 
    937      1.62    cherry 	gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
    938       1.2    bouyer 
    939      1.62    cherry 	/*
    940      1.62    cherry 	 * Initialise the vcpu context:
    941      1.62    cherry 	 * We use this cpu's idle_loop() pcb context.
    942      1.11    cegger 	 */
    943      1.11    cegger 
    944      1.62    cherry 	l = ci->ci_data.cpu_idlelwp;
    945      1.62    cherry 
    946      1.62    cherry 	KASSERT(l != NULL);
    947      1.62    cherry 	pcb = lwp_getpcb(l);
    948      1.62    cherry 	KASSERT(pcb != NULL);
    949      1.62    cherry 
    950      1.62    cherry 	/* resume with interrupts off */
    951      1.62    cherry 	vci = ci->ci_vcpu;
    952      1.62    cherry 	vci->evtchn_upcall_mask = 1;
    953      1.62    cherry 	xen_mb();
    954      1.62    cherry 
    955      1.62    cherry 	/* resume in kernel-mode */
    956      1.62    cherry 	initctx->flags = VGCF_in_kernel | VGCF_online;
    957      1.62    cherry 
    958      1.62    cherry 	/* Stack frame setup for cpu_hatch():
    959      1.62    cherry 	 * We arrange for the stack frame for cpu_hatch() to
    960      1.62    cherry 	 * appear as a callee frame of lwp_trampoline(). Being a
    961      1.62    cherry 	 * leaf frame prevents trampling on any of the MD stack setup
    962      1.62    cherry 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    963       1.2    bouyer 	 */
    964       1.2    bouyer 
    965      1.62    cherry 	initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
    966      1.62    cherry 						      arg1 */
    967      1.62    cherry 	{ /* targeteip(ci); */
    968      1.62    cherry 		uint32_t *arg = (uint32_t *) initctx->user_regs.esp;
    969      1.62    cherry 		arg[1] = (uint32_t) ci; /* arg1 */
    970      1.62    cherry 
    971      1.62    cherry 	}
    972       1.2    bouyer 
    973      1.62    cherry 	initctx->user_regs.eip = (vaddr_t) targeteip;
    974      1.62    cherry 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    975      1.62    cherry 	initctx->user_regs.eflags |= pcb->pcb_iopl;
    976      1.62    cherry 
    977      1.62    cherry 	/* Data segments */
    978      1.62    cherry 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
    979      1.62    cherry 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
    980      1.62    cherry 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
    981      1.62    cherry 	initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
    982      1.62    cherry 
    983      1.62    cherry 	/* GDT */
    984      1.62    cherry 	memcpy(initctx->gdt_frames, frames, sizeof frames);
    985      1.62    cherry 	initctx->gdt_ents = gdt_ents;
    986      1.62    cherry 
    987      1.62    cherry 	/* LDT */
    988      1.62    cherry 	initctx->ldt_base = (unsigned long) ldt;
    989      1.62    cherry 	initctx->ldt_ents = NLDT;
    990      1.62    cherry 
    991      1.62    cherry 	/* Kernel context state */
    992      1.62    cherry 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
    993      1.62    cherry 	initctx->kernel_sp = pcb->pcb_esp0;
    994      1.62    cherry 	initctx->ctrlreg[0] = pcb->pcb_cr0;
    995      1.62    cherry 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
    996      1.62    cherry 	initctx->ctrlreg[2] = pcb->pcb_cr2; /* XXX: */
    997      1.70    cherry #ifdef PAE
    998      1.70    cherry 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
    999      1.70    cherry #else /* PAE */
   1000      1.70    cherry 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
   1001      1.70    cherry #endif /* PAE */
   1002      1.62    cherry 	initctx->ctrlreg[4] = /* CR4_PAE |  */CR4_OSFXSR | CR4_OSXMMEXCPT;
   1003       1.2    bouyer 
   1004       1.2    bouyer 
   1005      1.62    cherry 	/* Xen callbacks */
   1006      1.62    cherry 	initctx->event_callback_eip = (unsigned long) hypervisor_callback;
   1007      1.62    cherry 	initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
   1008      1.62    cherry 	initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
   1009      1.62    cherry 	initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
   1010      1.45     rmind 
   1011      1.62    cherry 	return;
   1012      1.62    cherry }
   1013      1.62    cherry #endif /* __x86_64__ */
   1014      1.45     rmind 
   1015      1.62    cherry int
   1016      1.62    cherry mp_cpu_start(struct cpu_info *ci, vaddr_t target)
   1017      1.62    cherry {
   1018      1.62    cherry 
   1019      1.62    cherry 	int hyperror;
   1020      1.62    cherry 	struct vcpu_guest_context vcpuctx;
   1021       1.2    bouyer 
   1022      1.62    cherry 	KASSERT(ci != NULL);
   1023      1.62    cherry 	KASSERT(ci != &cpu_info_primary);
   1024      1.62    cherry 	KASSERT(ci->ci_flags & CPUF_AP);
   1025      1.62    cherry 
   1026      1.62    cherry #ifdef __x86_64__
   1027      1.62    cherry 	xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
   1028      1.62    cherry #else  /* i386 */
   1029      1.62    cherry 	xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
   1030      1.62    cherry #endif /* __x86_64__ */
   1031      1.62    cherry 
   1032      1.62    cherry 	/* Initialise the given vcpu to execute cpu_hatch(ci); */
   1033      1.62    cherry 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
   1034      1.62    cherry 		aprint_error(": context initialisation failed. errno = %d\n", hyperror);
   1035      1.62    cherry 		return hyperror;
   1036      1.62    cherry 	}
   1037      1.62    cherry 
   1038      1.62    cherry 	/* Start it up */
   1039      1.62    cherry 
   1040      1.70    cherry 	/* First bring it down */
   1041      1.62    cherry 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
   1042      1.62    cherry 		aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
   1043      1.62    cherry 		return hyperror;
   1044      1.62    cherry 	}
   1045      1.62    cherry 
   1046      1.62    cherry 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
   1047      1.62    cherry 		aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
   1048      1.62    cherry 		return hyperror;
   1049      1.62    cherry 	}
   1050       1.2    bouyer 
   1051      1.62    cherry 	if (!vcpu_is_up(ci)) {
   1052      1.62    cherry 		aprint_error(": did not come up\n");
   1053      1.62    cherry 		return -1;
   1054       1.2    bouyer 	}
   1055      1.62    cherry 
   1056       1.2    bouyer 	return 0;
   1057       1.2    bouyer }
   1058       1.2    bouyer 
   1059       1.2    bouyer void
   1060       1.2    bouyer mp_cpu_start_cleanup(struct cpu_info *ci)
   1061       1.2    bouyer {
   1062       1.2    bouyer #if 0
   1063       1.2    bouyer 	/*
   1064       1.2    bouyer 	 * Ensure the NVRAM reset byte contains something vaguely sane.
   1065       1.2    bouyer 	 */
   1066       1.2    bouyer 
   1067       1.2    bouyer 	outb(IO_RTC, NVRAM_RESET);
   1068       1.2    bouyer 	outb(IO_RTC+1, NVRAM_RESET_RST);
   1069       1.2    bouyer #endif
   1070      1.62    cherry 	if (vcpu_is_up(ci)) {
   1071      1.62    cherry 		aprint_debug_dev(ci->ci_dev, "is started.\n");
   1072      1.62    cherry 	}
   1073      1.62    cherry 	else {
   1074      1.62    cherry 		aprint_error_dev(ci->ci_dev, "did not start up.\n");
   1075      1.62    cherry 	}
   1076      1.62    cherry 
   1077       1.2    bouyer }
   1078       1.2    bouyer 
   1079      1.69    cherry /* curcpu() uses %fs - shim for until cpu_init_msrs(), below */
   1080      1.69    cherry static struct cpu_info *cpu_primary(void)
   1081      1.69    cherry {
   1082      1.69    cherry 	return &cpu_info_primary;
   1083      1.69    cherry }
   1084      1.72    cherry /* XXX: rename to something more generic. users other than xpq exist */
   1085      1.69    cherry struct cpu_info	* (*xpq_cpu)(void) = cpu_primary;
   1086      1.69    cherry 
   1087       1.2    bouyer void
   1088       1.3    bouyer cpu_init_msrs(struct cpu_info *ci, bool full)
   1089       1.2    bouyer {
   1090      1.43       jym #ifdef __x86_64__
   1091       1.3    bouyer 	if (full) {
   1092       1.3    bouyer 		HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
   1093      1.11    cegger 		HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
   1094       1.3    bouyer 		HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
   1095      1.69    cherry 		xpq_cpu = x86_curcpu;
   1096       1.3    bouyer 	}
   1097      1.43       jym #endif	/* __x86_64__ */
   1098      1.44       jym 
   1099      1.44       jym 	if (cpu_feature[2] & CPUID_NOX)
   1100      1.44       jym 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1101      1.62    cherry 
   1102       1.2    bouyer }
   1103       1.2    bouyer 
   1104      1.11    cegger void
   1105      1.11    cegger cpu_offline_md(void)
   1106      1.11    cegger {
   1107      1.11    cegger         int s;
   1108      1.11    cegger 
   1109      1.11    cegger         s = splhigh();
   1110      1.11    cegger #ifdef __i386__
   1111      1.11    cegger         npxsave_cpu(true);
   1112      1.11    cegger #else
   1113      1.11    cegger         fpusave_cpu(true);
   1114      1.11    cegger #endif
   1115      1.11    cegger         splx(s);
   1116      1.11    cegger }
   1117      1.11    cegger 
   1118       1.2    bouyer void
   1119       1.2    bouyer cpu_get_tsc_freq(struct cpu_info *ci)
   1120       1.2    bouyer {
   1121      1.62    cherry 	uint32_t vcpu_tversion;
   1122      1.16    cegger 	const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
   1123      1.62    cherry 
   1124      1.62    cherry 	vcpu_tversion = tinfo->version;
   1125      1.62    cherry 	while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
   1126      1.62    cherry 
   1127       1.2    bouyer 	uint64_t freq = 1000000000ULL << 32;
   1128       1.2    bouyer 	freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
   1129       1.2    bouyer 	if ( tinfo->tsc_shift < 0 )
   1130       1.2    bouyer 		freq = freq << -tinfo->tsc_shift;
   1131       1.2    bouyer 	else
   1132       1.2    bouyer 		freq = freq >> tinfo->tsc_shift;
   1133      1.20        ad 	ci->ci_data.cpu_cc_freq = freq;
   1134       1.2    bouyer }
   1135      1.19     joerg 
   1136      1.19     joerg void
   1137      1.19     joerg x86_cpu_idle_xen(void)
   1138      1.19     joerg {
   1139      1.19     joerg 	struct cpu_info *ci = curcpu();
   1140      1.62    cherry 
   1141      1.19     joerg 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1142      1.19     joerg 
   1143      1.19     joerg 	x86_disable_intr();
   1144      1.19     joerg 	if (!__predict_false(ci->ci_want_resched)) {
   1145      1.19     joerg 		idle_block();
   1146      1.19     joerg 	} else {
   1147      1.19     joerg 		x86_enable_intr();
   1148      1.19     joerg 	}
   1149      1.19     joerg }
   1150      1.47       jym 
   1151      1.47       jym /*
   1152      1.47       jym  * Loads pmap for the current CPU.
   1153      1.47       jym  */
   1154      1.47       jym void
   1155  1.80.2.1       riz cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
   1156      1.47       jym {
   1157  1.80.2.1       riz #if defined(__x86_64__) || defined(PAE)
   1158  1.80.2.1       riz 	struct cpu_info *ci = curcpu();
   1159  1.80.2.5       riz 	cpuid_t cid = cpu_index(ci);
   1160  1.80.2.1       riz 
   1161  1.80.2.1       riz 	mutex_enter(&ci->ci_kpm_mtx);
   1162  1.80.2.1       riz 	/* make new pmap visible to pmap_kpm_sync_xcall() */
   1163  1.80.2.5       riz 	kcpuset_atomic_set(pmap->pm_xen_ptp_cpus, cid);
   1164  1.80.2.1       riz #endif
   1165      1.47       jym #ifdef i386
   1166      1.47       jym #ifdef PAE
   1167  1.80.2.1       riz 	{
   1168  1.80.2.1       riz 		int i;
   1169  1.80.2.1       riz 		paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
   1170  1.80.2.1       riz 		/* don't update the kernel L3 slot */
   1171  1.80.2.1       riz 		for (i = 0 ; i < PDP_SIZE - 1; i++) {
   1172  1.80.2.1       riz 			xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
   1173  1.80.2.1       riz 			    xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
   1174  1.80.2.1       riz 		}
   1175  1.80.2.1       riz 		tlbflush();
   1176      1.47       jym 	}
   1177      1.47       jym #else /* PAE */
   1178      1.47       jym 	lcr3(pmap_pdirpa(pmap, 0));
   1179      1.47       jym #endif /* PAE */
   1180      1.47       jym #endif /* i386 */
   1181      1.47       jym 
   1182      1.47       jym #ifdef __x86_64__
   1183  1.80.2.1       riz 	{
   1184  1.80.2.1       riz 		int i;
   1185  1.80.2.1       riz 		pd_entry_t *new_pgd;
   1186  1.80.2.1       riz 		paddr_t l4_pd_ma;
   1187      1.47       jym 
   1188  1.80.2.1       riz 		l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
   1189      1.70    cherry 
   1190  1.80.2.1       riz 		/*
   1191  1.80.2.1       riz 		 * Map user space address in kernel space and load
   1192  1.80.2.1       riz 		 * user cr3
   1193  1.80.2.1       riz 		 */
   1194  1.80.2.1       riz 		new_pgd = pmap->pm_pdir;
   1195  1.80.2.1       riz 		KASSERT(pmap == ci->ci_pmap);
   1196      1.70    cherry 
   1197  1.80.2.1       riz 		/* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
   1198  1.80.2.1       riz 		for (i = 0; i < PDIR_SLOT_PTE; i++) {
   1199  1.80.2.1       riz 			KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
   1200  1.80.2.1       riz 			if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
   1201  1.80.2.1       riz 				xpq_queue_pte_update(
   1202  1.80.2.1       riz 				   l4_pd_ma + i * sizeof(pd_entry_t),
   1203  1.80.2.1       riz 				    new_pgd[i]);
   1204  1.80.2.1       riz 			}
   1205  1.80.2.1       riz 		}
   1206      1.70    cherry 
   1207  1.80.2.1       riz 		if (__predict_true(pmap != pmap_kernel())) {
   1208  1.80.2.1       riz 			xen_set_user_pgd(pmap_pdirpa(pmap, 0));
   1209  1.80.2.1       riz 			ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
   1210  1.80.2.1       riz 		}
   1211  1.80.2.1       riz 		else {
   1212  1.80.2.1       riz 			xpq_queue_pt_switch(l4_pd_ma);
   1213  1.80.2.1       riz 			ci->ci_xen_current_user_pgd = 0;
   1214  1.80.2.1       riz 		}
   1215      1.70    cherry 
   1216  1.80.2.1       riz 		tlbflush();
   1217  1.80.2.1       riz 	}
   1218      1.70    cherry 
   1219      1.47       jym #endif /* __x86_64__ */
   1220  1.80.2.1       riz #if defined(__x86_64__) || defined(PAE)
   1221  1.80.2.1       riz 	/* old pmap no longer visible to pmap_kpm_sync_xcall() */
   1222  1.80.2.5       riz 	if (oldpmap != pmap_kernel()) {
   1223  1.80.2.5       riz 		kcpuset_atomic_clear(oldpmap->pm_xen_ptp_cpus, cid);
   1224  1.80.2.5       riz 	}
   1225  1.80.2.1       riz 	mutex_exit(&ci->ci_kpm_mtx);
   1226  1.80.2.1       riz #endif
   1227      1.47       jym }
   1228      1.61    cherry 
   1229      1.70    cherry  /*
   1230      1.70    cherry   * pmap_cpu_init_late: perform late per-CPU initialization.
   1231      1.70    cherry   * Short note about percpu PDIR pages:
   1232      1.70    cherry   * Both the PAE and __x86_64__ architectures have per-cpu PDIR
   1233      1.70    cherry   * tables. This is to get around Xen's pagetable setup constraints for
   1234      1.70    cherry   * PAE (multiple L3[3]s cannot point to the same L2 - Xen
   1235      1.70    cherry   * will refuse to pin a table setup this way.) and for multiple cpus
   1236      1.70    cherry   * to map in different user pmaps on __x86_64__ (see: cpu_load_pmap())
   1237      1.70    cherry   *
   1238      1.70    cherry   * What this means for us is that the PDIR of the pmap_kernel() is
   1239      1.70    cherry   * considered to be a canonical "SHADOW" PDIR with the following
   1240      1.70    cherry   * properties:
   1241      1.70    cherry   * - Its recursive mapping points to itself
   1242      1.79    cherry   * - per-cpu recurseive mappings point to themselves on __x86_64__
   1243      1.70    cherry   * - per-cpu L4 pages' kernel entries are expected to be in sync with
   1244      1.70    cherry   *   the shadow
   1245      1.70    cherry   */
   1246      1.70    cherry 
   1247      1.70    cherry void
   1248      1.70    cherry pmap_cpu_init_late(struct cpu_info *ci)
   1249      1.70    cherry {
   1250      1.70    cherry #if defined(PAE) || defined(__x86_64__)
   1251      1.70    cherry 	/*
   1252      1.70    cherry 	 * The BP has already its own PD page allocated during early
   1253      1.70    cherry 	 * MD startup.
   1254      1.70    cherry 	 */
   1255      1.70    cherry 
   1256      1.78    cherry #if defined(__x86_64__)
   1257      1.78    cherry 	/* Setup per-cpu normal_pdes */
   1258      1.78    cherry 	int i;
   1259      1.78    cherry 	extern pd_entry_t * const normal_pdes[];
   1260      1.78    cherry 	for (i = 0;i < PTP_LEVELS - 1;i++) {
   1261      1.78    cherry 		ci->ci_normal_pdes[i] = normal_pdes[i];
   1262      1.78    cherry 	}
   1263      1.78    cherry #endif /* __x86_64__ */
   1264      1.78    cherry 
   1265      1.70    cherry 	if (ci == &cpu_info_primary)
   1266      1.70    cherry 		return;
   1267      1.70    cherry 
   1268      1.70    cherry 	KASSERT(ci != NULL);
   1269      1.70    cherry 
   1270      1.70    cherry #if defined(PAE)
   1271      1.73    cherry 	cpu_alloc_l3_page(ci);
   1272      1.70    cherry 	KASSERT(ci->ci_pae_l3_pdirpa != 0);
   1273      1.70    cherry 
   1274      1.70    cherry 	/* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
   1275      1.73    cherry 	int i;
   1276      1.75    cherry 	for (i = 0 ; i < PDP_SIZE - 1; i++) {
   1277      1.73    cherry 		ci->ci_pae_l3_pdir[i] =
   1278      1.73    cherry 		    xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PG_V;
   1279      1.73    cherry 	}
   1280      1.70    cherry #endif /* PAE */
   1281      1.70    cherry 
   1282      1.70    cherry 	ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1283      1.70    cherry 	    UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
   1284      1.70    cherry 
   1285      1.70    cherry 	if (ci->ci_kpm_pdir == NULL) {
   1286      1.70    cherry 		panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
   1287      1.70    cherry 		      __func__, cpu_index(ci));
   1288      1.70    cherry 	}
   1289      1.70    cherry 	ci->ci_kpm_pdirpa = vtophys((vaddr_t) ci->ci_kpm_pdir);
   1290      1.70    cherry 	KASSERT(ci->ci_kpm_pdirpa != 0);
   1291      1.70    cherry 
   1292      1.70    cherry #if defined(__x86_64__)
   1293      1.70    cherry 	/*
   1294      1.70    cherry 	 * Copy over the pmap_kernel() shadow L4 entries
   1295      1.70    cherry 	 */
   1296      1.70    cherry 
   1297      1.70    cherry 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
   1298      1.70    cherry 
   1299      1.70    cherry 	/* Recursive kernel mapping */
   1300      1.70    cherry 	ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
   1301      1.70    cherry #elif defined(PAE)
   1302      1.70    cherry 	/* Copy over the pmap_kernel() shadow L2 entries that map the kernel */
   1303      1.70    cherry 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN, nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
   1304      1.70    cherry #endif /* __x86_64__ else PAE */
   1305      1.70    cherry 
   1306      1.70    cherry 	/* Xen wants R/O */
   1307  1.80.2.2       riz 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
   1308  1.80.2.2       riz 	    (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
   1309  1.80.2.2       riz 	pmap_update(pmap_kernel());
   1310      1.70    cherry #if defined(PAE)
   1311      1.70    cherry 	/* Initialise L3 entry 3. This mapping is shared across all
   1312      1.70    cherry 	 * pmaps and is static, ie; loading a new pmap will not update
   1313      1.70    cherry 	 * this entry.
   1314      1.70    cherry 	 */
   1315      1.70    cherry 
   1316      1.70    cherry 	ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
   1317      1.70    cherry 
   1318      1.70    cherry 	/* Mark L3 R/O (Xen wants this) */
   1319  1.80.2.2       riz 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
   1320  1.80.2.2       riz 	    (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
   1321  1.80.2.2       riz 	pmap_update(pmap_kernel());
   1322      1.70    cherry 
   1323      1.70    cherry 	xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
   1324      1.70    cherry 
   1325      1.70    cherry #elif defined(__x86_64__)
   1326      1.70    cherry 	xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
   1327      1.78    cherry #endif /* PAE , __x86_64__ */
   1328      1.70    cherry #endif /* defined(PAE) || defined(__x86_64__) */
   1329      1.70    cherry }
   1330      1.70    cherry 
   1331      1.61    cherry /*
   1332      1.61    cherry  * Notify all other cpus to halt.
   1333      1.61    cherry  */
   1334      1.61    cherry 
   1335      1.61    cherry void
   1336      1.61    cherry cpu_broadcast_halt(void)
   1337      1.61    cherry {
   1338      1.61    cherry 	xen_broadcast_ipi(XEN_IPI_HALT);
   1339      1.61    cherry }
   1340      1.61    cherry 
   1341      1.61    cherry /*
   1342      1.61    cherry  * Send a dummy ipi to a cpu.
   1343      1.61    cherry  */
   1344      1.61    cherry 
   1345      1.61    cherry void
   1346      1.61    cherry cpu_kick(struct cpu_info *ci)
   1347      1.61    cherry {
   1348      1.64  dholland 	(void)xen_send_ipi(ci, XEN_IPI_KICK);
   1349      1.61    cherry }
   1350