Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.93
      1  1.93       jym /*	$NetBSD: cpu.c,v 1.93 2012/06/24 13:56:10 jym Exp $	*/
      2   1.2    bouyer /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp  */
      3   1.2    bouyer 
      4   1.2    bouyer /*-
      5   1.2    bouyer  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      6  1.19     joerg  * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
      7   1.2    bouyer  * All rights reserved.
      8   1.2    bouyer  *
      9   1.2    bouyer  * This code is derived from software contributed to The NetBSD Foundation
     10   1.2    bouyer  * by RedBack Networks Inc.
     11   1.2    bouyer  *
     12   1.2    bouyer  * Author: Bill Sommerfeld
     13   1.2    bouyer  *
     14   1.2    bouyer  * Redistribution and use in source and binary forms, with or without
     15   1.2    bouyer  * modification, are permitted provided that the following conditions
     16   1.2    bouyer  * are met:
     17   1.2    bouyer  * 1. Redistributions of source code must retain the above copyright
     18   1.2    bouyer  *    notice, this list of conditions and the following disclaimer.
     19   1.2    bouyer  * 2. Redistributions in binary form must reproduce the above copyright
     20   1.2    bouyer  *    notice, this list of conditions and the following disclaimer in the
     21   1.2    bouyer  *    documentation and/or other materials provided with the distribution.
     22   1.2    bouyer  *
     23   1.2    bouyer  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24   1.2    bouyer  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25   1.2    bouyer  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26   1.2    bouyer  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27   1.2    bouyer  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28   1.2    bouyer  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29   1.2    bouyer  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30   1.2    bouyer  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31   1.2    bouyer  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32   1.2    bouyer  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33   1.2    bouyer  * POSSIBILITY OF SUCH DAMAGE.
     34   1.2    bouyer  */
     35   1.2    bouyer 
     36   1.2    bouyer /*
     37   1.2    bouyer  * Copyright (c) 1999 Stefan Grefen
     38   1.2    bouyer  *
     39   1.2    bouyer  * Redistribution and use in source and binary forms, with or without
     40   1.2    bouyer  * modification, are permitted provided that the following conditions
     41   1.2    bouyer  * are met:
     42   1.2    bouyer  * 1. Redistributions of source code must retain the above copyright
     43   1.2    bouyer  *    notice, this list of conditions and the following disclaimer.
     44   1.2    bouyer  * 2. Redistributions in binary form must reproduce the above copyright
     45   1.2    bouyer  *    notice, this list of conditions and the following disclaimer in the
     46   1.2    bouyer  *    documentation and/or other materials provided with the distribution.
     47   1.2    bouyer  * 3. All advertising materials mentioning features or use of this software
     48   1.2    bouyer  *    must display the following acknowledgement:
     49   1.2    bouyer  *      This product includes software developed by the NetBSD
     50   1.2    bouyer  *      Foundation, Inc. and its contributors.
     51   1.2    bouyer  * 4. Neither the name of The NetBSD Foundation nor the names of its
     52   1.2    bouyer  *    contributors may be used to endorse or promote products derived
     53   1.2    bouyer  *    from this software without specific prior written permission.
     54   1.2    bouyer  *
     55   1.2    bouyer  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     56   1.2    bouyer  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57   1.2    bouyer  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58   1.2    bouyer  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     59   1.2    bouyer  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60   1.2    bouyer  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61   1.2    bouyer  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62   1.2    bouyer  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63   1.2    bouyer  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64   1.2    bouyer  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65   1.2    bouyer  * SUCH DAMAGE.
     66   1.2    bouyer  */
     67   1.2    bouyer 
     68   1.2    bouyer #include <sys/cdefs.h>
     69  1.93       jym __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.93 2012/06/24 13:56:10 jym Exp $");
     70   1.2    bouyer 
     71   1.2    bouyer #include "opt_ddb.h"
     72   1.2    bouyer #include "opt_multiprocessor.h"
     73   1.2    bouyer #include "opt_mpbios.h"		/* for MPDEBUG */
     74   1.2    bouyer #include "opt_mtrr.h"
     75   1.2    bouyer #include "opt_xen.h"
     76   1.2    bouyer 
     77   1.2    bouyer #include "lapic.h"
     78   1.2    bouyer #include "ioapic.h"
     79   1.2    bouyer 
     80   1.2    bouyer #include <sys/param.h>
     81   1.2    bouyer #include <sys/proc.h>
     82   1.2    bouyer #include <sys/systm.h>
     83   1.2    bouyer #include <sys/device.h>
     84  1.31    cegger #include <sys/kmem.h>
     85  1.11    cegger #include <sys/cpu.h>
     86  1.66    jruoho #include <sys/cpufreq.h>
     87  1.11    cegger #include <sys/atomic.h>
     88  1.32    cegger #include <sys/reboot.h>
     89  1.62    cherry #include <sys/idle.h>
     90   1.2    bouyer 
     91  1.51  uebayasi #include <uvm/uvm.h>
     92   1.2    bouyer 
     93   1.2    bouyer #include <machine/cpufunc.h>
     94   1.2    bouyer #include <machine/cpuvar.h>
     95   1.2    bouyer #include <machine/pmap.h>
     96   1.2    bouyer #include <machine/vmparam.h>
     97   1.2    bouyer #include <machine/mpbiosvar.h>
     98   1.2    bouyer #include <machine/pcb.h>
     99   1.2    bouyer #include <machine/specialreg.h>
    100   1.2    bouyer #include <machine/segments.h>
    101   1.2    bouyer #include <machine/gdt.h>
    102   1.2    bouyer #include <machine/mtrr.h>
    103   1.2    bouyer #include <machine/pio.h>
    104   1.2    bouyer 
    105  1.62    cherry #ifdef i386
    106  1.62    cherry #include <machine/npx.h>
    107  1.62    cherry #else
    108  1.62    cherry #include <machine/fpu.h>
    109  1.62    cherry #endif
    110  1.62    cherry 
    111  1.62    cherry #include <xen/xen.h>
    112  1.71    cegger #include <xen/xen-public/vcpu.h>
    113   1.2    bouyer #include <xen/vcpuvar.h>
    114   1.2    bouyer 
    115   1.2    bouyer #if NLAPIC > 0
    116   1.2    bouyer #include <machine/apicvar.h>
    117   1.2    bouyer #include <machine/i82489reg.h>
    118   1.2    bouyer #include <machine/i82489var.h>
    119   1.2    bouyer #endif
    120   1.2    bouyer 
    121   1.2    bouyer #include <dev/ic/mc146818reg.h>
    122   1.2    bouyer #include <dev/isa/isareg.h>
    123   1.2    bouyer 
    124  1.56    jruoho static int	cpu_match(device_t, cfdata_t, void *);
    125  1.56    jruoho static void	cpu_attach(device_t, device_t, void *);
    126  1.56    jruoho static void	cpu_defer(device_t);
    127  1.56    jruoho static int	cpu_rescan(device_t, const char *, const int *);
    128  1.56    jruoho static void	cpu_childdetached(device_t, device_t);
    129  1.56    jruoho static int	vcpu_match(device_t, cfdata_t, void *);
    130  1.56    jruoho static void	vcpu_attach(device_t, device_t, void *);
    131  1.56    jruoho static void	cpu_attach_common(device_t, device_t, void *);
    132  1.56    jruoho void		cpu_offline_md(void);
    133   1.2    bouyer 
    134   1.2    bouyer struct cpu_softc {
    135  1.10    cegger 	device_t sc_dev;		/* device tree glue */
    136   1.2    bouyer 	struct cpu_info *sc_info;	/* pointer to CPU info */
    137  1.32    cegger 	bool sc_wasonline;
    138   1.2    bouyer };
    139   1.2    bouyer 
    140  1.62    cherry int mp_cpu_start(struct cpu_info *, vaddr_t);
    141   1.2    bouyer void mp_cpu_start_cleanup(struct cpu_info *);
    142   1.2    bouyer const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    143   1.2    bouyer 				      mp_cpu_start_cleanup };
    144   1.2    bouyer 
    145  1.53    jruoho CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    146  1.53    jruoho     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    147  1.53    jruoho 
    148  1.10    cegger CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
    149   1.2    bouyer     vcpu_match, vcpu_attach, NULL, NULL);
    150   1.2    bouyer 
    151   1.2    bouyer /*
    152   1.2    bouyer  * Statically-allocated CPU info for the primary CPU (or the only
    153   1.2    bouyer  * CPU, on uniprocessors).  The CPU info list is initialized to
    154   1.2    bouyer  * point at it.
    155   1.2    bouyer  */
    156   1.2    bouyer #ifdef TRAPLOG
    157   1.2    bouyer #include <machine/tlog.h>
    158   1.2    bouyer struct tlog tlog_primary;
    159   1.2    bouyer #endif
    160  1.38    cegger struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    161   1.7    bouyer 	.ci_dev = 0,
    162   1.2    bouyer 	.ci_self = &cpu_info_primary,
    163   1.4    bouyer 	.ci_idepth = -1,
    164   1.2    bouyer 	.ci_curlwp = &lwp0,
    165  1.25        ad 	.ci_curldt = -1,
    166   1.2    bouyer #ifdef TRAPLOG
    167   1.2    bouyer 	.ci_tlog = &tlog_primary,
    168   1.2    bouyer #endif
    169   1.2    bouyer 
    170   1.2    bouyer };
    171  1.38    cegger struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    172   1.7    bouyer 	.ci_dev = 0,
    173   1.2    bouyer 	.ci_self = &phycpu_info_primary,
    174   1.2    bouyer };
    175   1.2    bouyer 
    176   1.2    bouyer struct cpu_info *cpu_info_list = &cpu_info_primary;
    177  1.38    cegger struct cpu_info *phycpu_info_list = &phycpu_info_primary;
    178   1.2    bouyer 
    179  1.43       jym uint32_t cpu_feature[5]; /* X86 CPUID feature bits
    180  1.43       jym 			  *	[0] basic features %edx
    181  1.43       jym 			  *	[1] basic features %ecx
    182  1.43       jym 			  *	[2] extended features %edx
    183  1.43       jym 			  *	[3] extended features %ecx
    184  1.43       jym 			  *	[4] VIA padlock features
    185  1.43       jym 			  */
    186  1.43       jym 
    187  1.11    cegger bool x86_mp_online;
    188  1.11    cegger paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    189   1.2    bouyer 
    190  1.38    cegger #if defined(MULTIPROCESSOR)
    191   1.2    bouyer void    	cpu_hatch(void *);
    192   1.2    bouyer static void    	cpu_boot_secondary(struct cpu_info *ci);
    193   1.2    bouyer static void    	cpu_start_secondary(struct cpu_info *ci);
    194  1.38    cegger #endif	/* MULTIPROCESSOR */
    195   1.2    bouyer 
    196  1.56    jruoho static int
    197  1.10    cegger cpu_match(device_t parent, cfdata_t match, void *aux)
    198   1.2    bouyer {
    199   1.2    bouyer 
    200   1.2    bouyer 	return 1;
    201   1.2    bouyer }
    202   1.2    bouyer 
    203  1.56    jruoho static void
    204  1.10    cegger cpu_attach(device_t parent, device_t self, void *aux)
    205   1.2    bouyer {
    206  1.10    cegger 	struct cpu_softc *sc = device_private(self);
    207   1.2    bouyer 	struct cpu_attach_args *caa = aux;
    208   1.2    bouyer 	struct cpu_info *ci;
    209  1.34    cegger 	uintptr_t ptr;
    210  1.52    bouyer 	static int nphycpu = 0;
    211   1.2    bouyer 
    212  1.10    cegger 	sc->sc_dev = self;
    213  1.10    cegger 
    214   1.2    bouyer 	/*
    215   1.2    bouyer 	 * If we're an Application Processor, allocate a cpu_info
    216  1.52    bouyer 	 * If we're the first attached CPU use the primary cpu_info,
    217  1.52    bouyer 	 * otherwise allocate a new one
    218   1.2    bouyer 	 */
    219  1.52    bouyer 	aprint_naive("\n");
    220  1.52    bouyer 	aprint_normal("\n");
    221  1.52    bouyer 	if (nphycpu > 0) {
    222  1.52    bouyer 		struct cpu_info *tmp;
    223  1.34    cegger 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    224  1.34    cegger 		    KM_SLEEP);
    225  1.42       jym 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    226  1.24        ad 		ci->ci_curldt = -1;
    227  1.52    bouyer 
    228  1.52    bouyer 		tmp = phycpu_info_list;
    229  1.52    bouyer 		while (tmp->ci_next)
    230  1.52    bouyer 			tmp = tmp->ci_next;
    231  1.52    bouyer 
    232  1.52    bouyer 		tmp->ci_next = ci;
    233   1.2    bouyer 	} else {
    234   1.2    bouyer 		ci = &phycpu_info_primary;
    235   1.2    bouyer 	}
    236   1.2    bouyer 
    237   1.2    bouyer 	ci->ci_self = ci;
    238   1.2    bouyer 	sc->sc_info = ci;
    239   1.2    bouyer 
    240   1.2    bouyer 	ci->ci_dev = self;
    241  1.50    jruoho 	ci->ci_acpiid = caa->cpu_id;
    242  1.23        ad 	ci->ci_cpuid = caa->cpu_number;
    243  1.16    cegger 	ci->ci_vcpu = NULL;
    244  1.52    bouyer 	ci->ci_index = nphycpu++;
    245   1.2    bouyer 
    246  1.52    bouyer 	if (!pmf_device_register(self, NULL, NULL))
    247  1.52    bouyer 		aprint_error_dev(self, "couldn't establish power handler\n");
    248  1.34    cegger 
    249  1.56    jruoho 	(void)config_defer(self, cpu_defer);
    250  1.56    jruoho }
    251  1.56    jruoho 
    252  1.56    jruoho static void
    253  1.56    jruoho cpu_defer(device_t self)
    254  1.56    jruoho {
    255  1.56    jruoho 	cpu_rescan(self, NULL, NULL);
    256   1.2    bouyer }
    257   1.2    bouyer 
    258  1.56    jruoho static int
    259  1.53    jruoho cpu_rescan(device_t self, const char *ifattr, const int *locators)
    260  1.53    jruoho {
    261  1.53    jruoho 	struct cpu_softc *sc = device_private(self);
    262  1.53    jruoho 	struct cpufeature_attach_args cfaa;
    263  1.53    jruoho 	struct cpu_info *ci = sc->sc_info;
    264  1.53    jruoho 
    265  1.53    jruoho 	memset(&cfaa, 0, sizeof(cfaa));
    266  1.53    jruoho 	cfaa.ci = ci;
    267  1.53    jruoho 
    268  1.53    jruoho 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    269  1.53    jruoho 
    270  1.53    jruoho 		if (ci->ci_frequency == NULL) {
    271  1.55    jruoho 			cfaa.name = "frequency";
    272  1.54    jruoho 			ci->ci_frequency = config_found_ia(self,
    273  1.54    jruoho 			    "cpufeaturebus", &cfaa, NULL);
    274  1.54    jruoho 		}
    275  1.53    jruoho 	}
    276  1.53    jruoho 
    277  1.53    jruoho 	return 0;
    278  1.53    jruoho }
    279  1.53    jruoho 
    280  1.56    jruoho static void
    281  1.53    jruoho cpu_childdetached(device_t self, device_t child)
    282  1.53    jruoho {
    283  1.53    jruoho 	struct cpu_softc *sc = device_private(self);
    284  1.53    jruoho 	struct cpu_info *ci = sc->sc_info;
    285  1.53    jruoho 
    286  1.53    jruoho 	if (ci->ci_frequency == child)
    287  1.53    jruoho 		ci->ci_frequency = NULL;
    288  1.53    jruoho }
    289  1.53    jruoho 
    290  1.56    jruoho static int
    291  1.10    cegger vcpu_match(device_t parent, cfdata_t match, void *aux)
    292   1.2    bouyer {
    293   1.2    bouyer 	struct vcpu_attach_args *vcaa = aux;
    294  1.62    cherry 	struct vcpu_runstate_info vcr;
    295  1.62    cherry 	int error;
    296  1.62    cherry 
    297  1.62    cherry 	if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
    298  1.62    cherry 		error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
    299  1.62    cherry 					   vcaa->vcaa_caa.cpu_number,
    300  1.62    cherry 					   &vcr);
    301  1.62    cherry 		switch (error) {
    302  1.62    cherry 		case 0:
    303  1.62    cherry 			return 1;
    304  1.62    cherry 		case -ENOENT:
    305  1.62    cherry 			return 0;
    306  1.62    cherry 		default:
    307  1.62    cherry 			panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
    308  1.62    cherry 		}
    309  1.62    cherry 	}
    310   1.2    bouyer 
    311   1.2    bouyer 	return 0;
    312   1.2    bouyer }
    313   1.2    bouyer 
    314  1.56    jruoho static void
    315  1.10    cegger vcpu_attach(device_t parent, device_t self, void *aux)
    316   1.2    bouyer {
    317   1.2    bouyer 	struct vcpu_attach_args *vcaa = aux;
    318   1.2    bouyer 
    319  1.62    cherry 	KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
    320  1.62    cherry 	vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
    321   1.2    bouyer 	cpu_attach_common(parent, self, &vcaa->vcaa_caa);
    322  1.65       jym 
    323  1.65       jym 	if (!pmf_device_register(self, NULL, NULL))
    324  1.65       jym 		aprint_error_dev(self, "couldn't establish power handler\n");
    325   1.2    bouyer }
    326   1.2    bouyer 
    327  1.62    cherry static int
    328  1.62    cherry vcpu_is_up(struct cpu_info *ci)
    329  1.62    cherry {
    330  1.62    cherry 	KASSERT(ci != NULL);
    331  1.62    cherry 	return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
    332  1.62    cherry }
    333  1.62    cherry 
    334   1.2    bouyer static void
    335   1.2    bouyer cpu_vm_init(struct cpu_info *ci)
    336   1.2    bouyer {
    337   1.2    bouyer 	int ncolors = 2, i;
    338   1.2    bouyer 
    339   1.2    bouyer 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    340   1.2    bouyer 		struct x86_cache_info *cai;
    341   1.2    bouyer 		int tcolors;
    342   1.2    bouyer 
    343   1.2    bouyer 		cai = &ci->ci_cinfo[i];
    344   1.2    bouyer 
    345   1.2    bouyer 		tcolors = atop(cai->cai_totalsize);
    346   1.2    bouyer 		switch(cai->cai_associativity) {
    347   1.2    bouyer 		case 0xff:
    348   1.2    bouyer 			tcolors = 1; /* fully associative */
    349   1.2    bouyer 			break;
    350   1.2    bouyer 		case 0:
    351   1.2    bouyer 		case 1:
    352   1.2    bouyer 			break;
    353   1.2    bouyer 		default:
    354   1.2    bouyer 			tcolors /= cai->cai_associativity;
    355   1.2    bouyer 		}
    356   1.2    bouyer 		ncolors = max(ncolors, tcolors);
    357   1.2    bouyer 	}
    358   1.2    bouyer 
    359   1.2    bouyer 	/*
    360  1.67       mrg 	 * Knowing the size of the largest cache on this CPU, potentially
    361  1.67       mrg 	 * re-color our pages.
    362   1.2    bouyer 	 */
    363  1.28    bouyer 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    364   1.2    bouyer 	uvm_page_recolor(ncolors);
    365  1.91     rmind 	pmap_tlb_cpu_init(ci);
    366   1.2    bouyer }
    367   1.2    bouyer 
    368  1.56    jruoho static void
    369  1.11    cegger cpu_attach_common(device_t parent, device_t self, void *aux)
    370   1.2    bouyer {
    371  1.10    cegger 	struct cpu_softc *sc = device_private(self);
    372   1.2    bouyer 	struct cpu_attach_args *caa = aux;
    373   1.2    bouyer 	struct cpu_info *ci;
    374  1.12    cegger 	uintptr_t ptr;
    375   1.2    bouyer 	int cpunum = caa->cpu_number;
    376  1.38    cegger 	static bool again = false;
    377   1.2    bouyer 
    378  1.10    cegger 	sc->sc_dev = self;
    379  1.10    cegger 
    380   1.2    bouyer 	/*
    381   1.2    bouyer 	 * If we're an Application Processor, allocate a cpu_info
    382   1.2    bouyer 	 * structure, otherwise use the primary's.
    383   1.2    bouyer 	 */
    384   1.2    bouyer 	if (caa->cpu_role == CPU_ROLE_AP) {
    385  1.12    cegger 		aprint_naive(": Application Processor\n");
    386  1.31    cegger 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    387  1.31    cegger 		    KM_SLEEP);
    388  1.42       jym 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    389  1.12    cegger 		memset(ci, 0, sizeof(*ci));
    390   1.2    bouyer #ifdef TRAPLOG
    391  1.31    cegger 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
    392   1.2    bouyer #endif
    393   1.2    bouyer 	} else {
    394  1.12    cegger 		aprint_naive(": %s Processor\n",
    395  1.12    cegger 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    396   1.2    bouyer 		ci = &cpu_info_primary;
    397   1.2    bouyer 	}
    398   1.2    bouyer 
    399   1.2    bouyer 	ci->ci_self = ci;
    400   1.2    bouyer 	sc->sc_info = ci;
    401   1.2    bouyer 	ci->ci_dev = self;
    402  1.23        ad 	ci->ci_cpuid = cpunum;
    403  1.16    cegger 
    404  1.16    cegger 	KASSERT(HYPERVISOR_shared_info != NULL);
    405  1.89    bouyer 	KASSERT(cpunum < XEN_LEGACY_MAX_VCPUS);
    406  1.16    cegger 	ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
    407  1.16    cegger 
    408  1.62    cherry 	KASSERT(ci->ci_func == 0);
    409   1.2    bouyer 	ci->ci_func = caa->cpu_func;
    410   1.2    bouyer 
    411  1.38    cegger 	/* Must be called before mi_cpu_attach(). */
    412  1.38    cegger 	cpu_vm_init(ci);
    413  1.38    cegger 
    414   1.2    bouyer 	if (caa->cpu_role == CPU_ROLE_AP) {
    415   1.2    bouyer 		int error;
    416   1.2    bouyer 
    417   1.2    bouyer 		error = mi_cpu_attach(ci);
    418  1.62    cherry 
    419  1.62    cherry 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    420   1.2    bouyer 		if (error != 0) {
    421   1.2    bouyer 			aprint_normal("\n");
    422  1.38    cegger 			aprint_error_dev(self,
    423  1.38    cegger 			    "mi_cpu_attach failed with %d\n", error);
    424   1.2    bouyer 			return;
    425   1.2    bouyer 		}
    426  1.62    cherry 
    427   1.2    bouyer 	} else {
    428   1.2    bouyer 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    429   1.2    bouyer 	}
    430   1.2    bouyer 
    431  1.89    bouyer 	KASSERT(ci->ci_cpuid == ci->ci_index);
    432   1.2    bouyer 	pmap_reference(pmap_kernel());
    433   1.2    bouyer 	ci->ci_pmap = pmap_kernel();
    434   1.2    bouyer 	ci->ci_tlbstate = TLBSTATE_STALE;
    435   1.2    bouyer 
    436  1.38    cegger 	/*
    437  1.38    cegger 	 * Boot processor may not be attached first, but the below
    438  1.38    cegger 	 * must be done to allow booting other processors.
    439  1.38    cegger 	 */
    440  1.38    cegger 	if (!again) {
    441  1.38    cegger 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    442  1.38    cegger 		/* Basic init. */
    443  1.38    cegger 		cpu_intr_init(ci);
    444  1.38    cegger 		cpu_get_tsc_freq(ci);
    445  1.38    cegger 		cpu_init(ci);
    446  1.78    cherry 		pmap_cpu_init_late(ci);
    447  1.62    cherry 
    448  1.62    cherry 		/* Every processor needs to init it's own ipi h/w (similar to lapic) */
    449  1.62    cherry 		xen_ipi_init();
    450  1.62    cherry 
    451  1.38    cegger 		/* Make sure DELAY() is initialized. */
    452  1.38    cegger 		DELAY(1);
    453  1.38    cegger 		again = true;
    454  1.38    cegger 	}
    455  1.38    cegger 
    456   1.2    bouyer 	/* further PCB init done later. */
    457   1.2    bouyer 
    458   1.2    bouyer 	switch (caa->cpu_role) {
    459   1.2    bouyer 	case CPU_ROLE_SP:
    460  1.38    cegger 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    461  1.21        ad 		cpu_identify(ci);
    462  1.38    cegger 		x86_cpu_idle_init();
    463  1.62    cherry 
    464   1.2    bouyer 		break;
    465   1.2    bouyer 
    466   1.2    bouyer 	case CPU_ROLE_BP:
    467  1.38    cegger 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    468  1.21        ad 		cpu_identify(ci);
    469  1.38    cegger 		x86_cpu_idle_init();
    470  1.62    cherry 
    471   1.2    bouyer 		break;
    472   1.2    bouyer 
    473   1.2    bouyer 	case CPU_ROLE_AP:
    474  1.62    cherry 		atomic_or_32(&ci->ci_flags, CPUF_AP);
    475  1.62    cherry 
    476   1.2    bouyer 		/*
    477   1.2    bouyer 		 * report on an AP
    478   1.2    bouyer 		 */
    479   1.2    bouyer 
    480   1.2    bouyer #if defined(MULTIPROCESSOR)
    481  1.62    cherry 		/* interrupt handler stack */
    482   1.2    bouyer 		cpu_intr_init(ci);
    483  1.62    cherry 
    484  1.62    cherry 		/* Setup per-cpu memory for gdt */
    485   1.2    bouyer 		gdt_alloc_cpu(ci);
    486  1.62    cherry 
    487  1.62    cherry 		pmap_cpu_init_late(ci);
    488   1.2    bouyer 		cpu_start_secondary(ci);
    489  1.62    cherry 
    490   1.2    bouyer 		if (ci->ci_flags & CPUF_PRESENT) {
    491  1.30    cegger 			struct cpu_info *tmp;
    492  1.30    cegger 
    493  1.62    cherry 			cpu_identify(ci);
    494  1.30    cegger 			tmp = cpu_info_list;
    495  1.30    cegger 			while (tmp->ci_next)
    496  1.30    cegger 				tmp = tmp->ci_next;
    497  1.30    cegger 
    498  1.30    cegger 			tmp->ci_next = ci;
    499   1.2    bouyer 		}
    500   1.2    bouyer #else
    501  1.62    cherry 		aprint_error(": not started\n");
    502   1.2    bouyer #endif
    503   1.2    bouyer 		break;
    504   1.2    bouyer 
    505   1.2    bouyer 	default:
    506  1.12    cegger 		aprint_normal("\n");
    507   1.2    bouyer 		panic("unknown processor type??\n");
    508   1.2    bouyer 	}
    509   1.2    bouyer 
    510  1.62    cherry #ifdef MPVERBOSE
    511   1.2    bouyer 	if (mp_verbose) {
    512   1.2    bouyer 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    513  1.37     rmind 		struct pcb *pcb = lwp_getpcb(l);
    514   1.2    bouyer 
    515  1.38    cegger 		aprint_verbose_dev(self,
    516  1.38    cegger 		    "idle lwp at %p, idle sp at 0x%p\n",
    517  1.12    cegger 		    l,
    518  1.12    cegger #ifdef i386
    519  1.37     rmind 		    (void *)pcb->pcb_esp
    520  1.62    cherry #else /* i386 */
    521  1.37     rmind 		    (void *)pcb->pcb_rsp
    522  1.62    cherry #endif /* i386 */
    523  1.12    cegger 		);
    524  1.12    cegger 
    525   1.2    bouyer 	}
    526  1.62    cherry #endif /* MPVERBOSE */
    527   1.2    bouyer }
    528   1.2    bouyer 
    529   1.2    bouyer /*
    530   1.2    bouyer  * Initialize the processor appropriately.
    531   1.2    bouyer  */
    532   1.2    bouyer 
    533   1.2    bouyer void
    534  1.10    cegger cpu_init(struct cpu_info *ci)
    535   1.2    bouyer {
    536   1.2    bouyer 
    537   1.2    bouyer 	/*
    538   1.2    bouyer 	 * If we have FXSAVE/FXRESTOR, use them.
    539   1.2    bouyer 	 */
    540  1.43       jym 	if (cpu_feature[0] & CPUID_FXSR) {
    541   1.2    bouyer 		lcr4(rcr4() | CR4_OSFXSR);
    542   1.2    bouyer 
    543   1.2    bouyer 		/*
    544   1.2    bouyer 		 * If we have SSE/SSE2, enable XMM exceptions.
    545   1.2    bouyer 		 */
    546  1.43       jym 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    547   1.2    bouyer 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    548   1.2    bouyer 	}
    549   1.2    bouyer 
    550  1.47       jym #ifdef __x86_64__
    551  1.47       jym 	/* No user PGD mapped for this CPU yet */
    552  1.47       jym 	ci->ci_xen_current_user_pgd = 0;
    553  1.47       jym #endif
    554  1.81    bouyer #if defined(__x86_64__) || defined(PAE)
    555  1.81    bouyer 	mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
    556  1.81    bouyer #endif
    557  1.47       jym 
    558  1.11    cegger 	atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    559   1.2    bouyer }
    560   1.2    bouyer 
    561   1.2    bouyer 
    562   1.2    bouyer #ifdef MULTIPROCESSOR
    563  1.62    cherry 
    564   1.2    bouyer void
    565  1.10    cegger cpu_boot_secondary_processors(void)
    566   1.2    bouyer {
    567   1.2    bouyer 	struct cpu_info *ci;
    568   1.2    bouyer 	u_long i;
    569  1.38    cegger 	for (i = 0; i < maxcpus; i++) {
    570  1.38    cegger 		ci = cpu_lookup(i);
    571   1.2    bouyer 		if (ci == NULL)
    572   1.2    bouyer 			continue;
    573   1.2    bouyer 		if (ci->ci_data.cpu_idlelwp == NULL)
    574   1.2    bouyer 			continue;
    575   1.2    bouyer 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    576   1.2    bouyer 			continue;
    577   1.2    bouyer 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    578   1.2    bouyer 			continue;
    579   1.2    bouyer 		cpu_boot_secondary(ci);
    580   1.2    bouyer 	}
    581  1.11    cegger 
    582  1.11    cegger 	x86_mp_online = true;
    583   1.2    bouyer }
    584   1.2    bouyer 
    585   1.2    bouyer static void
    586   1.2    bouyer cpu_init_idle_lwp(struct cpu_info *ci)
    587   1.2    bouyer {
    588   1.2    bouyer 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    589  1.37     rmind 	struct pcb *pcb = lwp_getpcb(l);
    590   1.2    bouyer 
    591   1.2    bouyer 	pcb->pcb_cr0 = rcr0();
    592   1.2    bouyer }
    593   1.2    bouyer 
    594   1.2    bouyer void
    595  1.10    cegger cpu_init_idle_lwps(void)
    596   1.2    bouyer {
    597   1.2    bouyer 	struct cpu_info *ci;
    598   1.2    bouyer 	u_long i;
    599   1.2    bouyer 
    600  1.38    cegger 	for (i = 0; i < maxcpus; i++) {
    601  1.38    cegger 		ci = cpu_lookup(i);
    602   1.2    bouyer 		if (ci == NULL)
    603   1.2    bouyer 			continue;
    604   1.2    bouyer 		if (ci->ci_data.cpu_idlelwp == NULL)
    605   1.2    bouyer 			continue;
    606   1.2    bouyer 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    607   1.2    bouyer 			continue;
    608   1.2    bouyer 		cpu_init_idle_lwp(ci);
    609   1.2    bouyer 	}
    610   1.2    bouyer }
    611   1.2    bouyer 
    612  1.62    cherry static void
    613  1.10    cegger cpu_start_secondary(struct cpu_info *ci)
    614   1.2    bouyer {
    615   1.2    bouyer 	int i;
    616   1.2    bouyer 
    617  1.11    cegger 	aprint_debug_dev(ci->ci_dev, "starting\n");
    618   1.2    bouyer 
    619   1.2    bouyer 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    620  1.62    cherry 
    621  1.62    cherry 	if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
    622  1.11    cegger 		return;
    623  1.62    cherry 	}
    624   1.2    bouyer 
    625   1.2    bouyer 	/*
    626   1.2    bouyer 	 * wait for it to become ready
    627   1.2    bouyer 	 */
    628  1.11    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    629   1.2    bouyer 		delay(10);
    630   1.2    bouyer 	}
    631  1.11    cegger 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    632   1.9    cegger 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    633   1.2    bouyer #if defined(MPDEBUG) && defined(DDB)
    634   1.2    bouyer 		printf("dropping into debugger; continue from here to resume boot\n");
    635   1.2    bouyer 		Debugger();
    636   1.2    bouyer #endif
    637   1.2    bouyer 	}
    638   1.2    bouyer 
    639   1.2    bouyer 	CPU_START_CLEANUP(ci);
    640   1.2    bouyer }
    641   1.2    bouyer 
    642   1.2    bouyer void
    643  1.10    cegger cpu_boot_secondary(struct cpu_info *ci)
    644   1.2    bouyer {
    645   1.2    bouyer 	int i;
    646  1.11    cegger 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    647  1.11    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    648   1.2    bouyer 		delay(10);
    649   1.2    bouyer 	}
    650  1.11    cegger 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    651  1.11    cegger 		aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
    652   1.2    bouyer #if defined(MPDEBUG) && defined(DDB)
    653   1.2    bouyer 		printf("dropping into debugger; continue from here to resume boot\n");
    654   1.2    bouyer 		Debugger();
    655   1.2    bouyer #endif
    656   1.2    bouyer 	}
    657   1.2    bouyer }
    658   1.2    bouyer 
    659   1.2    bouyer /*
    660  1.62    cherry  * APs end up here immediately after initialisation and VCPUOP_up in
    661  1.62    cherry  * mp_cpu_start().
    662  1.62    cherry  * At this point, we are running in the idle pcb/idle stack of the new
    663  1.62    cherry  * CPU.  This function jumps to the idle loop and starts looking for
    664  1.62    cherry  * work.
    665   1.2    bouyer  */
    666  1.62    cherry extern void x86_64_tls_switch(struct lwp *);
    667   1.2    bouyer void
    668   1.2    bouyer cpu_hatch(void *v)
    669   1.2    bouyer {
    670   1.2    bouyer 	struct cpu_info *ci = (struct cpu_info *)v;
    671  1.37     rmind 	struct pcb *pcb;
    672  1.11    cegger 	int s, i;
    673  1.11    cegger 
    674  1.62    cherry 	/* Setup TLS and kernel GS/FS */
    675  1.62    cherry 	cpu_init_msrs(ci, true);
    676  1.62    cherry 	cpu_init_idt();
    677  1.62    cherry 	gdt_init_cpu(ci);
    678  1.62    cherry 
    679  1.21        ad 	cpu_probe(ci);
    680  1.11    cegger 
    681  1.62    cherry 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    682   1.2    bouyer 
    683  1.11    cegger 	while ((ci->ci_flags & CPUF_GO) == 0) {
    684  1.11    cegger 		/* Don't use delay, boot CPU may be patching the text. */
    685  1.11    cegger 		for (i = 10000; i != 0; i--)
    686  1.11    cegger 			x86_pause();
    687  1.11    cegger 	}
    688   1.2    bouyer 
    689  1.11    cegger 	/* Because the text may have been patched in x86_patch(). */
    690  1.11    cegger 	x86_flush();
    691  1.58     rmind 	tlbflushg();
    692   1.2    bouyer 
    693  1.11    cegger 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    694   1.2    bouyer 
    695  1.37     rmind 	pcb = lwp_getpcb(curlwp);
    696  1.85    cherry 	pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
    697  1.37     rmind 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    698  1.37     rmind 
    699  1.62    cherry 	xen_ipi_init();
    700  1.62    cherry 
    701  1.62    cherry 	xen_initclocks();
    702  1.62    cherry 
    703  1.62    cherry #ifdef __x86_64__
    704  1.12    cegger 	fpuinit(ci);
    705  1.12    cegger #endif
    706   1.2    bouyer 
    707   1.2    bouyer 	lldt(GSEL(GLDT_SEL, SEL_KPL));
    708   1.2    bouyer 
    709   1.2    bouyer 	cpu_init(ci);
    710  1.11    cegger 	cpu_get_tsc_freq(ci);
    711   1.2    bouyer 
    712   1.2    bouyer 	s = splhigh();
    713  1.11    cegger 	x86_enable_intr();
    714  1.11    cegger 	splx(s);
    715   1.2    bouyer 
    716  1.62    cherry 	aprint_debug_dev(ci->ci_dev, "running\n");
    717  1.62    cherry 
    718  1.62    cherry 	cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
    719  1.62    cherry 
    720  1.91     rmind 	idle_loop(NULL);
    721  1.91     rmind 	KASSERT(false);
    722   1.2    bouyer }
    723   1.2    bouyer 
    724   1.2    bouyer #if defined(DDB)
    725   1.2    bouyer 
    726   1.2    bouyer #include <ddb/db_output.h>
    727   1.2    bouyer #include <machine/db_machdep.h>
    728   1.2    bouyer 
    729   1.2    bouyer /*
    730   1.2    bouyer  * Dump CPU information from ddb.
    731   1.2    bouyer  */
    732   1.2    bouyer void
    733   1.2    bouyer cpu_debug_dump(void)
    734   1.2    bouyer {
    735   1.2    bouyer 	struct cpu_info *ci;
    736   1.2    bouyer 	CPU_INFO_ITERATOR cii;
    737   1.2    bouyer 
    738  1.13      yamt 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    739   1.2    bouyer 	for (CPU_INFO_FOREACH(cii, ci)) {
    740   1.2    bouyer 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    741   1.2    bouyer 		    ci,
    742   1.9    cegger 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    743  1.12    cegger 		    (long)ci->ci_cpuid,
    744   1.2    bouyer 		    ci->ci_flags, ci->ci_ipis,
    745   1.2    bouyer 		    ci->ci_curlwp,
    746   1.2    bouyer 		    ci->ci_fpcurlwp);
    747   1.2    bouyer 	}
    748   1.2    bouyer }
    749  1.38    cegger #endif /* DDB */
    750   1.2    bouyer 
    751  1.62    cherry #endif /* MULTIPROCESSOR */
    752  1.62    cherry 
    753  1.62    cherry extern void hypervisor_callback(void);
    754  1.62    cherry extern void failsafe_callback(void);
    755  1.62    cherry #ifdef __x86_64__
    756  1.62    cherry typedef void (vector)(void);
    757  1.62    cherry extern vector Xsyscall, Xsyscall32;
    758  1.62    cherry #endif
    759  1.62    cherry 
    760  1.62    cherry /*
    761  1.62    cherry  * Setup the "trampoline". On Xen, we setup nearly all cpu context
    762  1.62    cherry  * outside a trampoline, so we prototype and call targetip like so:
    763  1.62    cherry  * void targetip(struct cpu_info *);
    764  1.62    cherry  */
    765  1.62    cherry 
    766   1.2    bouyer static void
    767  1.62    cherry gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
    768   1.2    bouyer {
    769  1.62    cherry 	int i;
    770  1.62    cherry 	for (i = 0; i < roundup(entries, PAGE_SIZE) >> PAGE_SHIFT; i++) {
    771  1.62    cherry 
    772  1.62    cherry 		frames[i] = ((paddr_t) xpmap_ptetomach(
    773  1.62    cherry 				(pt_entry_t *) (base + (i << PAGE_SHIFT))))
    774  1.62    cherry 			>> PAGE_SHIFT;
    775  1.62    cherry 
    776  1.62    cherry 		/* Mark Read-only */
    777  1.62    cherry 		pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
    778  1.62    cherry 		    PG_RW);
    779  1.62    cherry 	}
    780  1.62    cherry }
    781  1.62    cherry 
    782  1.62    cherry #ifdef __x86_64__
    783  1.85    cherry extern char *ldtstore;
    784  1.62    cherry 
    785  1.62    cherry static void
    786  1.62    cherry xen_init_amd64_vcpuctxt(struct cpu_info *ci,
    787  1.62    cherry 			struct vcpu_guest_context *initctx,
    788  1.62    cherry 			void targetrip(struct cpu_info *))
    789  1.62    cherry {
    790  1.62    cherry 	/* page frames to point at GDT */
    791  1.62    cherry 	extern int gdt_size;
    792  1.62    cherry 	paddr_t frames[16];
    793  1.62    cherry 	psize_t gdt_ents;
    794  1.62    cherry 
    795  1.62    cherry 	struct lwp *l;
    796  1.62    cherry 	struct pcb *pcb;
    797  1.62    cherry 
    798  1.62    cherry 	volatile struct vcpu_info *vci;
    799  1.62    cherry 
    800  1.62    cherry 	KASSERT(ci != NULL);
    801  1.62    cherry 	KASSERT(ci != &cpu_info_primary);
    802  1.62    cherry 	KASSERT(initctx != NULL);
    803  1.62    cherry 	KASSERT(targetrip != NULL);
    804  1.62    cherry 
    805  1.62    cherry 	memset(initctx, 0, sizeof *initctx);
    806  1.62    cherry 
    807  1.85    cherry 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
    808  1.62    cherry 	KASSERT(gdt_ents <= 16);
    809  1.62    cherry 
    810  1.62    cherry 	gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
    811  1.62    cherry 
    812  1.62    cherry 	/* Initialise the vcpu context: We use idle_loop()'s pcb context. */
    813  1.11    cegger 
    814  1.62    cherry 	l = ci->ci_data.cpu_idlelwp;
    815  1.11    cegger 
    816  1.62    cherry 	KASSERT(l != NULL);
    817  1.62    cherry 	pcb = lwp_getpcb(l);
    818  1.62    cherry 	KASSERT(pcb != NULL);
    819  1.11    cegger 
    820  1.62    cherry 	/* resume with interrupts off */
    821  1.62    cherry 	vci = ci->ci_vcpu;
    822  1.62    cherry 	vci->evtchn_upcall_mask = 1;
    823  1.62    cherry 	xen_mb();
    824   1.2    bouyer 
    825  1.62    cherry 	/* resume in kernel-mode */
    826  1.62    cherry 	initctx->flags = VGCF_in_kernel | VGCF_online;
    827   1.2    bouyer 
    828  1.62    cherry 	/* Stack and entry points:
    829  1.62    cherry 	 * We arrange for the stack frame for cpu_hatch() to
    830  1.62    cherry 	 * appear as a callee frame of lwp_trampoline(). Being a
    831  1.62    cherry 	 * leaf frame prevents trampling on any of the MD stack setup
    832  1.62    cherry 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    833  1.62    cherry 	 */
    834   1.2    bouyer 
    835  1.62    cherry 	initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
    836  1.62    cherry 	initctx->user_regs.rip = (vaddr_t) targetrip;
    837   1.2    bouyer 
    838  1.62    cherry 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    839  1.11    cegger 
    840  1.62    cherry 	initctx->user_regs.rflags = pcb->pcb_flags;
    841  1.62    cherry 	initctx->user_regs.rsp = pcb->pcb_rsp;
    842  1.11    cegger 
    843  1.62    cherry 	/* Data segments */
    844  1.62    cherry 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
    845  1.62    cherry 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
    846  1.62    cherry 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
    847  1.62    cherry 
    848  1.62    cherry 	/* GDT */
    849  1.62    cherry 	memcpy(initctx->gdt_frames, frames, sizeof frames);
    850  1.62    cherry 	initctx->gdt_ents = gdt_ents;
    851  1.62    cherry 
    852  1.62    cherry 	/* LDT */
    853  1.62    cherry 	initctx->ldt_base = (unsigned long) ldtstore;
    854  1.62    cherry 	initctx->ldt_ents = LDT_SIZE >> 3;
    855  1.62    cherry 
    856  1.62    cherry 	/* Kernel context state */
    857  1.62    cherry 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
    858  1.62    cherry 	initctx->kernel_sp = pcb->pcb_rsp0;
    859  1.62    cherry 	initctx->ctrlreg[0] = pcb->pcb_cr0;
    860  1.62    cherry 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
    861  1.85    cherry 	initctx->ctrlreg[2] = (vaddr_t) targetrip;
    862  1.62    cherry 	/*
    863  1.62    cherry 	 * Use pmap_kernel() L4 PD directly, until we setup the
    864  1.62    cherry 	 * per-cpu L4 PD in pmap_cpu_init_late()
    865   1.2    bouyer 	 */
    866  1.70    cherry 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
    867  1.62    cherry 	initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
    868   1.2    bouyer 
    869  1.62    cherry 
    870  1.62    cherry 	/* Xen callbacks */
    871  1.62    cherry 	initctx->event_callback_eip = (unsigned long) hypervisor_callback;
    872  1.62    cherry 	initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
    873  1.62    cherry 	initctx->syscall_callback_eip = (unsigned long) Xsyscall;
    874  1.62    cherry 
    875  1.62    cherry 	return;
    876   1.2    bouyer }
    877  1.62    cherry #else /* i386 */
    878  1.62    cherry extern union descriptor *ldt;
    879  1.62    cherry extern void Xsyscall(void);
    880  1.62    cherry 
    881  1.11    cegger static void
    882  1.62    cherry xen_init_i386_vcpuctxt(struct cpu_info *ci,
    883  1.62    cherry 			struct vcpu_guest_context *initctx,
    884  1.62    cherry 			void targeteip(struct cpu_info *))
    885  1.62    cherry {
    886  1.62    cherry 	/* page frames to point at GDT */
    887  1.62    cherry 	extern int gdt_size;
    888  1.62    cherry 	paddr_t frames[16];
    889  1.62    cherry 	psize_t gdt_ents;
    890  1.62    cherry 
    891  1.62    cherry 	struct lwp *l;
    892  1.62    cherry 	struct pcb *pcb;
    893  1.62    cherry 
    894  1.62    cherry 	volatile struct vcpu_info *vci;
    895  1.62    cherry 
    896  1.62    cherry 	KASSERT(ci != NULL);
    897  1.62    cherry 	KASSERT(ci != &cpu_info_primary);
    898  1.62    cherry 	KASSERT(initctx != NULL);
    899  1.62    cherry 	KASSERT(targeteip != NULL);
    900  1.62    cherry 
    901  1.62    cherry 	memset(initctx, 0, sizeof *initctx);
    902  1.11    cegger 
    903  1.85    cherry 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
    904  1.62    cherry 	KASSERT(gdt_ents <= 16);
    905   1.2    bouyer 
    906  1.62    cherry 	gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
    907   1.2    bouyer 
    908  1.62    cherry 	/*
    909  1.62    cherry 	 * Initialise the vcpu context:
    910  1.62    cherry 	 * We use this cpu's idle_loop() pcb context.
    911  1.11    cegger 	 */
    912  1.11    cegger 
    913  1.62    cherry 	l = ci->ci_data.cpu_idlelwp;
    914  1.62    cherry 
    915  1.62    cherry 	KASSERT(l != NULL);
    916  1.62    cherry 	pcb = lwp_getpcb(l);
    917  1.62    cherry 	KASSERT(pcb != NULL);
    918  1.62    cherry 
    919  1.62    cherry 	/* resume with interrupts off */
    920  1.62    cherry 	vci = ci->ci_vcpu;
    921  1.62    cherry 	vci->evtchn_upcall_mask = 1;
    922  1.62    cherry 	xen_mb();
    923  1.62    cherry 
    924  1.62    cherry 	/* resume in kernel-mode */
    925  1.62    cherry 	initctx->flags = VGCF_in_kernel | VGCF_online;
    926  1.62    cherry 
    927  1.62    cherry 	/* Stack frame setup for cpu_hatch():
    928  1.62    cherry 	 * We arrange for the stack frame for cpu_hatch() to
    929  1.62    cherry 	 * appear as a callee frame of lwp_trampoline(). Being a
    930  1.62    cherry 	 * leaf frame prevents trampling on any of the MD stack setup
    931  1.62    cherry 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    932   1.2    bouyer 	 */
    933   1.2    bouyer 
    934  1.62    cherry 	initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
    935  1.62    cherry 						      arg1 */
    936  1.62    cherry 	{ /* targeteip(ci); */
    937  1.62    cherry 		uint32_t *arg = (uint32_t *) initctx->user_regs.esp;
    938  1.62    cherry 		arg[1] = (uint32_t) ci; /* arg1 */
    939  1.62    cherry 
    940  1.62    cherry 	}
    941   1.2    bouyer 
    942  1.62    cherry 	initctx->user_regs.eip = (vaddr_t) targeteip;
    943  1.62    cherry 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    944  1.62    cherry 	initctx->user_regs.eflags |= pcb->pcb_iopl;
    945  1.62    cherry 
    946  1.62    cherry 	/* Data segments */
    947  1.62    cherry 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
    948  1.62    cherry 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
    949  1.62    cherry 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
    950  1.62    cherry 	initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
    951  1.62    cherry 
    952  1.62    cherry 	/* GDT */
    953  1.62    cherry 	memcpy(initctx->gdt_frames, frames, sizeof frames);
    954  1.62    cherry 	initctx->gdt_ents = gdt_ents;
    955  1.62    cherry 
    956  1.62    cherry 	/* LDT */
    957  1.62    cherry 	initctx->ldt_base = (unsigned long) ldt;
    958  1.62    cherry 	initctx->ldt_ents = NLDT;
    959  1.62    cherry 
    960  1.62    cherry 	/* Kernel context state */
    961  1.62    cherry 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
    962  1.62    cherry 	initctx->kernel_sp = pcb->pcb_esp0;
    963  1.62    cherry 	initctx->ctrlreg[0] = pcb->pcb_cr0;
    964  1.62    cherry 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
    965  1.85    cherry 	initctx->ctrlreg[2] = (vaddr_t) targeteip;
    966  1.70    cherry #ifdef PAE
    967  1.70    cherry 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
    968  1.70    cherry #else /* PAE */
    969  1.70    cherry 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
    970  1.70    cherry #endif /* PAE */
    971  1.62    cherry 	initctx->ctrlreg[4] = /* CR4_PAE |  */CR4_OSFXSR | CR4_OSXMMEXCPT;
    972   1.2    bouyer 
    973   1.2    bouyer 
    974  1.62    cherry 	/* Xen callbacks */
    975  1.62    cherry 	initctx->event_callback_eip = (unsigned long) hypervisor_callback;
    976  1.62    cherry 	initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
    977  1.62    cherry 	initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
    978  1.62    cherry 	initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
    979  1.45     rmind 
    980  1.62    cherry 	return;
    981  1.62    cherry }
    982  1.62    cherry #endif /* __x86_64__ */
    983  1.45     rmind 
    984  1.62    cherry int
    985  1.62    cherry mp_cpu_start(struct cpu_info *ci, vaddr_t target)
    986  1.62    cherry {
    987  1.62    cherry 
    988  1.62    cherry 	int hyperror;
    989  1.62    cherry 	struct vcpu_guest_context vcpuctx;
    990   1.2    bouyer 
    991  1.62    cherry 	KASSERT(ci != NULL);
    992  1.62    cherry 	KASSERT(ci != &cpu_info_primary);
    993  1.62    cherry 	KASSERT(ci->ci_flags & CPUF_AP);
    994  1.62    cherry 
    995  1.62    cherry #ifdef __x86_64__
    996  1.62    cherry 	xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
    997  1.62    cherry #else  /* i386 */
    998  1.62    cherry 	xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
    999  1.62    cherry #endif /* __x86_64__ */
   1000  1.62    cherry 
   1001  1.62    cherry 	/* Initialise the given vcpu to execute cpu_hatch(ci); */
   1002  1.62    cherry 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
   1003  1.62    cherry 		aprint_error(": context initialisation failed. errno = %d\n", hyperror);
   1004  1.62    cherry 		return hyperror;
   1005  1.62    cherry 	}
   1006  1.62    cherry 
   1007  1.62    cherry 	/* Start it up */
   1008  1.62    cherry 
   1009  1.70    cherry 	/* First bring it down */
   1010  1.62    cherry 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
   1011  1.62    cherry 		aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
   1012  1.62    cherry 		return hyperror;
   1013  1.62    cherry 	}
   1014  1.62    cherry 
   1015  1.62    cherry 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
   1016  1.62    cherry 		aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
   1017  1.62    cherry 		return hyperror;
   1018  1.62    cherry 	}
   1019   1.2    bouyer 
   1020  1.62    cherry 	if (!vcpu_is_up(ci)) {
   1021  1.62    cherry 		aprint_error(": did not come up\n");
   1022  1.62    cherry 		return -1;
   1023   1.2    bouyer 	}
   1024  1.62    cherry 
   1025   1.2    bouyer 	return 0;
   1026   1.2    bouyer }
   1027   1.2    bouyer 
   1028   1.2    bouyer void
   1029   1.2    bouyer mp_cpu_start_cleanup(struct cpu_info *ci)
   1030   1.2    bouyer {
   1031  1.62    cherry 	if (vcpu_is_up(ci)) {
   1032  1.62    cherry 		aprint_debug_dev(ci->ci_dev, "is started.\n");
   1033  1.62    cherry 	}
   1034  1.62    cherry 	else {
   1035  1.62    cherry 		aprint_error_dev(ci->ci_dev, "did not start up.\n");
   1036  1.62    cherry 	}
   1037  1.62    cherry 
   1038   1.2    bouyer }
   1039   1.2    bouyer 
   1040   1.2    bouyer void
   1041   1.3    bouyer cpu_init_msrs(struct cpu_info *ci, bool full)
   1042   1.2    bouyer {
   1043  1.43       jym #ifdef __x86_64__
   1044   1.3    bouyer 	if (full) {
   1045   1.3    bouyer 		HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
   1046  1.11    cegger 		HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
   1047   1.3    bouyer 		HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
   1048   1.3    bouyer 	}
   1049  1.43       jym #endif	/* __x86_64__ */
   1050  1.44       jym 
   1051  1.44       jym 	if (cpu_feature[2] & CPUID_NOX)
   1052  1.44       jym 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1053  1.62    cherry 
   1054   1.2    bouyer }
   1055   1.2    bouyer 
   1056  1.11    cegger void
   1057  1.11    cegger cpu_offline_md(void)
   1058  1.11    cegger {
   1059  1.11    cegger         int s;
   1060  1.11    cegger 
   1061  1.11    cegger         s = splhigh();
   1062  1.11    cegger #ifdef __i386__
   1063  1.11    cegger         npxsave_cpu(true);
   1064  1.11    cegger #else
   1065  1.11    cegger         fpusave_cpu(true);
   1066  1.11    cegger #endif
   1067  1.11    cegger         splx(s);
   1068  1.11    cegger }
   1069  1.11    cegger 
   1070   1.2    bouyer void
   1071   1.2    bouyer cpu_get_tsc_freq(struct cpu_info *ci)
   1072   1.2    bouyer {
   1073  1.62    cherry 	uint32_t vcpu_tversion;
   1074  1.16    cegger 	const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
   1075  1.62    cherry 
   1076  1.62    cherry 	vcpu_tversion = tinfo->version;
   1077  1.62    cherry 	while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
   1078  1.62    cherry 
   1079   1.2    bouyer 	uint64_t freq = 1000000000ULL << 32;
   1080   1.2    bouyer 	freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
   1081   1.2    bouyer 	if ( tinfo->tsc_shift < 0 )
   1082   1.2    bouyer 		freq = freq << -tinfo->tsc_shift;
   1083   1.2    bouyer 	else
   1084   1.2    bouyer 		freq = freq >> tinfo->tsc_shift;
   1085  1.20        ad 	ci->ci_data.cpu_cc_freq = freq;
   1086   1.2    bouyer }
   1087  1.19     joerg 
   1088  1.19     joerg void
   1089  1.19     joerg x86_cpu_idle_xen(void)
   1090  1.19     joerg {
   1091  1.19     joerg 	struct cpu_info *ci = curcpu();
   1092  1.62    cherry 
   1093  1.19     joerg 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1094  1.19     joerg 
   1095  1.19     joerg 	x86_disable_intr();
   1096  1.19     joerg 	if (!__predict_false(ci->ci_want_resched)) {
   1097  1.19     joerg 		idle_block();
   1098  1.19     joerg 	} else {
   1099  1.19     joerg 		x86_enable_intr();
   1100  1.19     joerg 	}
   1101  1.19     joerg }
   1102  1.47       jym 
   1103  1.47       jym /*
   1104  1.47       jym  * Loads pmap for the current CPU.
   1105  1.47       jym  */
   1106  1.47       jym void
   1107  1.81    bouyer cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
   1108  1.47       jym {
   1109  1.84    cherry 	KASSERT(pmap != pmap_kernel());
   1110  1.91     rmind 
   1111  1.81    bouyer #if defined(__x86_64__) || defined(PAE)
   1112  1.81    bouyer 	struct cpu_info *ci = curcpu();
   1113  1.92     rmind 	cpuid_t cid = cpu_index(ci);
   1114  1.81    bouyer 
   1115  1.81    bouyer 	mutex_enter(&ci->ci_kpm_mtx);
   1116  1.93       jym 	/* make new pmap visible to xen_kpm_sync() */
   1117  1.92     rmind 	kcpuset_atomic_set(pmap->pm_xen_ptp_cpus, cid);
   1118  1.81    bouyer #endif
   1119  1.47       jym #ifdef i386
   1120  1.47       jym #ifdef PAE
   1121  1.81    bouyer 	{
   1122  1.81    bouyer 		int i;
   1123  1.81    bouyer 		paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
   1124  1.81    bouyer 		/* don't update the kernel L3 slot */
   1125  1.81    bouyer 		for (i = 0 ; i < PDP_SIZE - 1; i++) {
   1126  1.81    bouyer 			xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
   1127  1.81    bouyer 			    xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
   1128  1.81    bouyer 		}
   1129  1.81    bouyer 		tlbflush();
   1130  1.47       jym 	}
   1131  1.47       jym #else /* PAE */
   1132  1.47       jym 	lcr3(pmap_pdirpa(pmap, 0));
   1133  1.47       jym #endif /* PAE */
   1134  1.47       jym #endif /* i386 */
   1135  1.47       jym 
   1136  1.47       jym #ifdef __x86_64__
   1137  1.81    bouyer 	{
   1138  1.81    bouyer 		int i;
   1139  1.81    bouyer 		pd_entry_t *new_pgd;
   1140  1.81    bouyer 		paddr_t l4_pd_ma;
   1141  1.81    bouyer 
   1142  1.81    bouyer 		l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
   1143  1.47       jym 
   1144  1.81    bouyer 		/*
   1145  1.81    bouyer 		 * Map user space address in kernel space and load
   1146  1.81    bouyer 		 * user cr3
   1147  1.81    bouyer 		 */
   1148  1.81    bouyer 		new_pgd = pmap->pm_pdir;
   1149  1.81    bouyer 		KASSERT(pmap == ci->ci_pmap);
   1150  1.70    cherry 
   1151  1.81    bouyer 		/* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
   1152  1.81    bouyer 		for (i = 0; i < PDIR_SLOT_PTE; i++) {
   1153  1.81    bouyer 			KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
   1154  1.81    bouyer 			if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
   1155  1.81    bouyer 				xpq_queue_pte_update(
   1156  1.81    bouyer 				   l4_pd_ma + i * sizeof(pd_entry_t),
   1157  1.81    bouyer 				    new_pgd[i]);
   1158  1.81    bouyer 			}
   1159  1.81    bouyer 		}
   1160  1.70    cherry 
   1161  1.84    cherry 		xen_set_user_pgd(pmap_pdirpa(pmap, 0));
   1162  1.84    cherry 		ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
   1163  1.70    cherry 
   1164  1.81    bouyer 		tlbflush();
   1165  1.70    cherry 	}
   1166  1.70    cherry 
   1167  1.47       jym #endif /* __x86_64__ */
   1168  1.81    bouyer #if defined(__x86_64__) || defined(PAE)
   1169  1.93       jym 	/* old pmap no longer visible to xen_kpm_sync() */
   1170  1.92     rmind 	if (oldpmap != pmap_kernel()) {
   1171  1.92     rmind 		kcpuset_atomic_clear(oldpmap->pm_xen_ptp_cpus, cid);
   1172  1.92     rmind 	}
   1173  1.81    bouyer 	mutex_exit(&ci->ci_kpm_mtx);
   1174  1.81    bouyer #endif
   1175  1.47       jym }
   1176  1.61    cherry 
   1177  1.70    cherry  /*
   1178  1.70    cherry   * pmap_cpu_init_late: perform late per-CPU initialization.
   1179  1.70    cherry   * Short note about percpu PDIR pages:
   1180  1.70    cherry   * Both the PAE and __x86_64__ architectures have per-cpu PDIR
   1181  1.70    cherry   * tables. This is to get around Xen's pagetable setup constraints for
   1182  1.70    cherry   * PAE (multiple L3[3]s cannot point to the same L2 - Xen
   1183  1.70    cherry   * will refuse to pin a table setup this way.) and for multiple cpus
   1184  1.70    cherry   * to map in different user pmaps on __x86_64__ (see: cpu_load_pmap())
   1185  1.70    cherry   *
   1186  1.70    cherry   * What this means for us is that the PDIR of the pmap_kernel() is
   1187  1.70    cherry   * considered to be a canonical "SHADOW" PDIR with the following
   1188  1.70    cherry   * properties:
   1189  1.70    cherry   * - Its recursive mapping points to itself
   1190  1.90       jym   * - per-cpu recursive mappings point to themselves on __x86_64__
   1191  1.70    cherry   * - per-cpu L4 pages' kernel entries are expected to be in sync with
   1192  1.70    cherry   *   the shadow
   1193  1.70    cherry   */
   1194  1.70    cherry 
   1195  1.70    cherry void
   1196  1.70    cherry pmap_cpu_init_late(struct cpu_info *ci)
   1197  1.70    cherry {
   1198  1.70    cherry #if defined(PAE) || defined(__x86_64__)
   1199  1.70    cherry 	/*
   1200  1.70    cherry 	 * The BP has already its own PD page allocated during early
   1201  1.70    cherry 	 * MD startup.
   1202  1.70    cherry 	 */
   1203  1.70    cherry 
   1204  1.78    cherry #if defined(__x86_64__)
   1205  1.78    cherry 	/* Setup per-cpu normal_pdes */
   1206  1.78    cherry 	int i;
   1207  1.78    cherry 	extern pd_entry_t * const normal_pdes[];
   1208  1.78    cherry 	for (i = 0;i < PTP_LEVELS - 1;i++) {
   1209  1.78    cherry 		ci->ci_normal_pdes[i] = normal_pdes[i];
   1210  1.78    cherry 	}
   1211  1.78    cherry #endif /* __x86_64__ */
   1212  1.78    cherry 
   1213  1.70    cherry 	if (ci == &cpu_info_primary)
   1214  1.70    cherry 		return;
   1215  1.70    cherry 
   1216  1.70    cherry 	KASSERT(ci != NULL);
   1217  1.70    cherry 
   1218  1.70    cherry #if defined(PAE)
   1219  1.73    cherry 	cpu_alloc_l3_page(ci);
   1220  1.70    cherry 	KASSERT(ci->ci_pae_l3_pdirpa != 0);
   1221  1.70    cherry 
   1222  1.70    cherry 	/* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
   1223  1.73    cherry 	int i;
   1224  1.75    cherry 	for (i = 0 ; i < PDP_SIZE - 1; i++) {
   1225  1.73    cherry 		ci->ci_pae_l3_pdir[i] =
   1226  1.73    cherry 		    xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PG_V;
   1227  1.73    cherry 	}
   1228  1.70    cherry #endif /* PAE */
   1229  1.70    cherry 
   1230  1.70    cherry 	ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1231  1.70    cherry 	    UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
   1232  1.70    cherry 
   1233  1.70    cherry 	if (ci->ci_kpm_pdir == NULL) {
   1234  1.70    cherry 		panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
   1235  1.70    cherry 		      __func__, cpu_index(ci));
   1236  1.70    cherry 	}
   1237  1.70    cherry 	ci->ci_kpm_pdirpa = vtophys((vaddr_t) ci->ci_kpm_pdir);
   1238  1.70    cherry 	KASSERT(ci->ci_kpm_pdirpa != 0);
   1239  1.70    cherry 
   1240  1.70    cherry #if defined(__x86_64__)
   1241  1.70    cherry 	/*
   1242  1.70    cherry 	 * Copy over the pmap_kernel() shadow L4 entries
   1243  1.70    cherry 	 */
   1244  1.70    cherry 
   1245  1.70    cherry 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
   1246  1.70    cherry 
   1247  1.70    cherry 	/* Recursive kernel mapping */
   1248  1.70    cherry 	ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
   1249  1.70    cherry #elif defined(PAE)
   1250  1.70    cherry 	/* Copy over the pmap_kernel() shadow L2 entries that map the kernel */
   1251  1.70    cherry 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN, nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
   1252  1.70    cherry #endif /* __x86_64__ else PAE */
   1253  1.70    cherry 
   1254  1.70    cherry 	/* Xen wants R/O */
   1255  1.83    bouyer 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
   1256  1.83    bouyer 	    (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
   1257  1.83    bouyer 	pmap_update(pmap_kernel());
   1258  1.70    cherry #if defined(PAE)
   1259  1.70    cherry 	/* Initialise L3 entry 3. This mapping is shared across all
   1260  1.70    cherry 	 * pmaps and is static, ie; loading a new pmap will not update
   1261  1.70    cherry 	 * this entry.
   1262  1.70    cherry 	 */
   1263  1.70    cherry 
   1264  1.70    cherry 	ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
   1265  1.70    cherry 
   1266  1.70    cherry 	/* Mark L3 R/O (Xen wants this) */
   1267  1.83    bouyer 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
   1268  1.83    bouyer 	    (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
   1269  1.83    bouyer 	pmap_update(pmap_kernel());
   1270  1.70    cherry 
   1271  1.70    cherry 	xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
   1272  1.70    cherry 
   1273  1.70    cherry #elif defined(__x86_64__)
   1274  1.70    cherry 	xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
   1275  1.78    cherry #endif /* PAE , __x86_64__ */
   1276  1.70    cherry #endif /* defined(PAE) || defined(__x86_64__) */
   1277  1.70    cherry }
   1278  1.70    cherry 
   1279  1.61    cherry /*
   1280  1.61    cherry  * Notify all other cpus to halt.
   1281  1.61    cherry  */
   1282  1.61    cherry 
   1283  1.61    cherry void
   1284  1.61    cherry cpu_broadcast_halt(void)
   1285  1.61    cherry {
   1286  1.61    cherry 	xen_broadcast_ipi(XEN_IPI_HALT);
   1287  1.61    cherry }
   1288  1.61    cherry 
   1289  1.61    cherry /*
   1290  1.61    cherry  * Send a dummy ipi to a cpu.
   1291  1.61    cherry  */
   1292  1.61    cherry 
   1293  1.61    cherry void
   1294  1.61    cherry cpu_kick(struct cpu_info *ci)
   1295  1.61    cherry {
   1296  1.64  dholland 	(void)xen_send_ipi(ci, XEN_IPI_KICK);
   1297  1.61    cherry }
   1298