Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.93.2.1
      1  1.93.2.1       tls /*	$NetBSD: cpu.c,v 1.93.2.1 2014/08/20 00:03:30 tls Exp $	*/
      2       1.2    bouyer /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp  */
      3       1.2    bouyer 
      4       1.2    bouyer /*-
      5       1.2    bouyer  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      6      1.19     joerg  * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
      7       1.2    bouyer  * All rights reserved.
      8       1.2    bouyer  *
      9       1.2    bouyer  * This code is derived from software contributed to The NetBSD Foundation
     10       1.2    bouyer  * by RedBack Networks Inc.
     11       1.2    bouyer  *
     12       1.2    bouyer  * Author: Bill Sommerfeld
     13       1.2    bouyer  *
     14       1.2    bouyer  * Redistribution and use in source and binary forms, with or without
     15       1.2    bouyer  * modification, are permitted provided that the following conditions
     16       1.2    bouyer  * are met:
     17       1.2    bouyer  * 1. Redistributions of source code must retain the above copyright
     18       1.2    bouyer  *    notice, this list of conditions and the following disclaimer.
     19       1.2    bouyer  * 2. Redistributions in binary form must reproduce the above copyright
     20       1.2    bouyer  *    notice, this list of conditions and the following disclaimer in the
     21       1.2    bouyer  *    documentation and/or other materials provided with the distribution.
     22       1.2    bouyer  *
     23       1.2    bouyer  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24       1.2    bouyer  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25       1.2    bouyer  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26       1.2    bouyer  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27       1.2    bouyer  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28       1.2    bouyer  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29       1.2    bouyer  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30       1.2    bouyer  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31       1.2    bouyer  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32       1.2    bouyer  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33       1.2    bouyer  * POSSIBILITY OF SUCH DAMAGE.
     34       1.2    bouyer  */
     35       1.2    bouyer 
     36       1.2    bouyer /*
     37       1.2    bouyer  * Copyright (c) 1999 Stefan Grefen
     38       1.2    bouyer  *
     39       1.2    bouyer  * Redistribution and use in source and binary forms, with or without
     40       1.2    bouyer  * modification, are permitted provided that the following conditions
     41       1.2    bouyer  * are met:
     42       1.2    bouyer  * 1. Redistributions of source code must retain the above copyright
     43       1.2    bouyer  *    notice, this list of conditions and the following disclaimer.
     44       1.2    bouyer  * 2. Redistributions in binary form must reproduce the above copyright
     45       1.2    bouyer  *    notice, this list of conditions and the following disclaimer in the
     46       1.2    bouyer  *    documentation and/or other materials provided with the distribution.
     47       1.2    bouyer  * 3. All advertising materials mentioning features or use of this software
     48       1.2    bouyer  *    must display the following acknowledgement:
     49       1.2    bouyer  *      This product includes software developed by the NetBSD
     50       1.2    bouyer  *      Foundation, Inc. and its contributors.
     51       1.2    bouyer  * 4. Neither the name of The NetBSD Foundation nor the names of its
     52       1.2    bouyer  *    contributors may be used to endorse or promote products derived
     53       1.2    bouyer  *    from this software without specific prior written permission.
     54       1.2    bouyer  *
     55       1.2    bouyer  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     56       1.2    bouyer  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57       1.2    bouyer  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58       1.2    bouyer  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     59       1.2    bouyer  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60       1.2    bouyer  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61       1.2    bouyer  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62       1.2    bouyer  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63       1.2    bouyer  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64       1.2    bouyer  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65       1.2    bouyer  * SUCH DAMAGE.
     66       1.2    bouyer  */
     67       1.2    bouyer 
     68       1.2    bouyer #include <sys/cdefs.h>
     69  1.93.2.1       tls __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.93.2.1 2014/08/20 00:03:30 tls Exp $");
     70       1.2    bouyer 
     71       1.2    bouyer #include "opt_ddb.h"
     72       1.2    bouyer #include "opt_multiprocessor.h"
     73       1.2    bouyer #include "opt_mpbios.h"		/* for MPDEBUG */
     74       1.2    bouyer #include "opt_mtrr.h"
     75       1.2    bouyer #include "opt_xen.h"
     76       1.2    bouyer 
     77       1.2    bouyer #include "lapic.h"
     78       1.2    bouyer #include "ioapic.h"
     79       1.2    bouyer 
     80       1.2    bouyer #include <sys/param.h>
     81       1.2    bouyer #include <sys/proc.h>
     82       1.2    bouyer #include <sys/systm.h>
     83       1.2    bouyer #include <sys/device.h>
     84      1.31    cegger #include <sys/kmem.h>
     85      1.11    cegger #include <sys/cpu.h>
     86      1.66    jruoho #include <sys/cpufreq.h>
     87      1.11    cegger #include <sys/atomic.h>
     88      1.32    cegger #include <sys/reboot.h>
     89      1.62    cherry #include <sys/idle.h>
     90       1.2    bouyer 
     91      1.51  uebayasi #include <uvm/uvm.h>
     92       1.2    bouyer 
     93       1.2    bouyer #include <machine/cpufunc.h>
     94       1.2    bouyer #include <machine/cpuvar.h>
     95       1.2    bouyer #include <machine/pmap.h>
     96       1.2    bouyer #include <machine/vmparam.h>
     97       1.2    bouyer #include <machine/mpbiosvar.h>
     98       1.2    bouyer #include <machine/pcb.h>
     99       1.2    bouyer #include <machine/specialreg.h>
    100       1.2    bouyer #include <machine/segments.h>
    101       1.2    bouyer #include <machine/gdt.h>
    102       1.2    bouyer #include <machine/mtrr.h>
    103       1.2    bouyer #include <machine/pio.h>
    104       1.2    bouyer 
    105  1.93.2.1       tls #include <x86/fpu.h>
    106      1.62    cherry 
    107      1.62    cherry #include <xen/xen.h>
    108      1.71    cegger #include <xen/xen-public/vcpu.h>
    109       1.2    bouyer #include <xen/vcpuvar.h>
    110       1.2    bouyer 
    111       1.2    bouyer #if NLAPIC > 0
    112       1.2    bouyer #include <machine/apicvar.h>
    113       1.2    bouyer #include <machine/i82489reg.h>
    114       1.2    bouyer #include <machine/i82489var.h>
    115       1.2    bouyer #endif
    116       1.2    bouyer 
    117       1.2    bouyer #include <dev/ic/mc146818reg.h>
    118       1.2    bouyer #include <dev/isa/isareg.h>
    119       1.2    bouyer 
    120      1.56    jruoho static int	cpu_match(device_t, cfdata_t, void *);
    121      1.56    jruoho static void	cpu_attach(device_t, device_t, void *);
    122      1.56    jruoho static void	cpu_defer(device_t);
    123      1.56    jruoho static int	cpu_rescan(device_t, const char *, const int *);
    124      1.56    jruoho static void	cpu_childdetached(device_t, device_t);
    125      1.56    jruoho static int	vcpu_match(device_t, cfdata_t, void *);
    126      1.56    jruoho static void	vcpu_attach(device_t, device_t, void *);
    127      1.56    jruoho static void	cpu_attach_common(device_t, device_t, void *);
    128      1.56    jruoho void		cpu_offline_md(void);
    129       1.2    bouyer 
    130       1.2    bouyer struct cpu_softc {
    131      1.10    cegger 	device_t sc_dev;		/* device tree glue */
    132       1.2    bouyer 	struct cpu_info *sc_info;	/* pointer to CPU info */
    133      1.32    cegger 	bool sc_wasonline;
    134       1.2    bouyer };
    135       1.2    bouyer 
    136      1.62    cherry int mp_cpu_start(struct cpu_info *, vaddr_t);
    137       1.2    bouyer void mp_cpu_start_cleanup(struct cpu_info *);
    138       1.2    bouyer const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    139       1.2    bouyer 				      mp_cpu_start_cleanup };
    140       1.2    bouyer 
    141      1.53    jruoho CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    142      1.53    jruoho     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    143      1.53    jruoho 
    144      1.10    cegger CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
    145       1.2    bouyer     vcpu_match, vcpu_attach, NULL, NULL);
    146       1.2    bouyer 
    147       1.2    bouyer /*
    148       1.2    bouyer  * Statically-allocated CPU info for the primary CPU (or the only
    149       1.2    bouyer  * CPU, on uniprocessors).  The CPU info list is initialized to
    150       1.2    bouyer  * point at it.
    151       1.2    bouyer  */
    152       1.2    bouyer #ifdef TRAPLOG
    153       1.2    bouyer #include <machine/tlog.h>
    154       1.2    bouyer struct tlog tlog_primary;
    155       1.2    bouyer #endif
    156      1.38    cegger struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    157       1.7    bouyer 	.ci_dev = 0,
    158       1.2    bouyer 	.ci_self = &cpu_info_primary,
    159       1.4    bouyer 	.ci_idepth = -1,
    160       1.2    bouyer 	.ci_curlwp = &lwp0,
    161      1.25        ad 	.ci_curldt = -1,
    162       1.2    bouyer #ifdef TRAPLOG
    163       1.2    bouyer 	.ci_tlog = &tlog_primary,
    164       1.2    bouyer #endif
    165       1.2    bouyer 
    166       1.2    bouyer };
    167      1.38    cegger struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    168       1.7    bouyer 	.ci_dev = 0,
    169       1.2    bouyer 	.ci_self = &phycpu_info_primary,
    170       1.2    bouyer };
    171       1.2    bouyer 
    172       1.2    bouyer struct cpu_info *cpu_info_list = &cpu_info_primary;
    173      1.38    cegger struct cpu_info *phycpu_info_list = &phycpu_info_primary;
    174       1.2    bouyer 
    175      1.43       jym uint32_t cpu_feature[5]; /* X86 CPUID feature bits
    176      1.43       jym 			  *	[0] basic features %edx
    177      1.43       jym 			  *	[1] basic features %ecx
    178      1.43       jym 			  *	[2] extended features %edx
    179      1.43       jym 			  *	[3] extended features %ecx
    180      1.43       jym 			  *	[4] VIA padlock features
    181      1.43       jym 			  */
    182      1.43       jym 
    183      1.11    cegger bool x86_mp_online;
    184      1.11    cegger paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    185       1.2    bouyer 
    186      1.38    cegger #if defined(MULTIPROCESSOR)
    187       1.2    bouyer void    	cpu_hatch(void *);
    188       1.2    bouyer static void    	cpu_boot_secondary(struct cpu_info *ci);
    189       1.2    bouyer static void    	cpu_start_secondary(struct cpu_info *ci);
    190      1.38    cegger #endif	/* MULTIPROCESSOR */
    191       1.2    bouyer 
    192      1.56    jruoho static int
    193      1.10    cegger cpu_match(device_t parent, cfdata_t match, void *aux)
    194       1.2    bouyer {
    195       1.2    bouyer 
    196       1.2    bouyer 	return 1;
    197       1.2    bouyer }
    198       1.2    bouyer 
    199      1.56    jruoho static void
    200      1.10    cegger cpu_attach(device_t parent, device_t self, void *aux)
    201       1.2    bouyer {
    202      1.10    cegger 	struct cpu_softc *sc = device_private(self);
    203       1.2    bouyer 	struct cpu_attach_args *caa = aux;
    204       1.2    bouyer 	struct cpu_info *ci;
    205      1.34    cegger 	uintptr_t ptr;
    206      1.52    bouyer 	static int nphycpu = 0;
    207       1.2    bouyer 
    208      1.10    cegger 	sc->sc_dev = self;
    209      1.10    cegger 
    210       1.2    bouyer 	/*
    211       1.2    bouyer 	 * If we're an Application Processor, allocate a cpu_info
    212      1.52    bouyer 	 * If we're the first attached CPU use the primary cpu_info,
    213      1.52    bouyer 	 * otherwise allocate a new one
    214       1.2    bouyer 	 */
    215      1.52    bouyer 	aprint_naive("\n");
    216      1.52    bouyer 	aprint_normal("\n");
    217      1.52    bouyer 	if (nphycpu > 0) {
    218      1.52    bouyer 		struct cpu_info *tmp;
    219      1.34    cegger 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    220      1.34    cegger 		    KM_SLEEP);
    221      1.42       jym 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    222      1.24        ad 		ci->ci_curldt = -1;
    223      1.52    bouyer 
    224      1.52    bouyer 		tmp = phycpu_info_list;
    225      1.52    bouyer 		while (tmp->ci_next)
    226      1.52    bouyer 			tmp = tmp->ci_next;
    227      1.52    bouyer 
    228      1.52    bouyer 		tmp->ci_next = ci;
    229       1.2    bouyer 	} else {
    230       1.2    bouyer 		ci = &phycpu_info_primary;
    231       1.2    bouyer 	}
    232       1.2    bouyer 
    233       1.2    bouyer 	ci->ci_self = ci;
    234       1.2    bouyer 	sc->sc_info = ci;
    235       1.2    bouyer 
    236       1.2    bouyer 	ci->ci_dev = self;
    237      1.50    jruoho 	ci->ci_acpiid = caa->cpu_id;
    238      1.23        ad 	ci->ci_cpuid = caa->cpu_number;
    239      1.16    cegger 	ci->ci_vcpu = NULL;
    240      1.52    bouyer 	ci->ci_index = nphycpu++;
    241       1.2    bouyer 
    242      1.52    bouyer 	if (!pmf_device_register(self, NULL, NULL))
    243      1.52    bouyer 		aprint_error_dev(self, "couldn't establish power handler\n");
    244      1.34    cegger 
    245      1.56    jruoho 	(void)config_defer(self, cpu_defer);
    246      1.56    jruoho }
    247      1.56    jruoho 
    248      1.56    jruoho static void
    249      1.56    jruoho cpu_defer(device_t self)
    250      1.56    jruoho {
    251      1.56    jruoho 	cpu_rescan(self, NULL, NULL);
    252       1.2    bouyer }
    253       1.2    bouyer 
    254      1.56    jruoho static int
    255      1.53    jruoho cpu_rescan(device_t self, const char *ifattr, const int *locators)
    256      1.53    jruoho {
    257      1.53    jruoho 	struct cpu_softc *sc = device_private(self);
    258      1.53    jruoho 	struct cpufeature_attach_args cfaa;
    259      1.53    jruoho 	struct cpu_info *ci = sc->sc_info;
    260      1.53    jruoho 
    261      1.53    jruoho 	memset(&cfaa, 0, sizeof(cfaa));
    262      1.53    jruoho 	cfaa.ci = ci;
    263      1.53    jruoho 
    264      1.53    jruoho 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    265      1.53    jruoho 
    266      1.53    jruoho 		if (ci->ci_frequency == NULL) {
    267      1.55    jruoho 			cfaa.name = "frequency";
    268      1.54    jruoho 			ci->ci_frequency = config_found_ia(self,
    269      1.54    jruoho 			    "cpufeaturebus", &cfaa, NULL);
    270      1.54    jruoho 		}
    271      1.53    jruoho 	}
    272      1.53    jruoho 
    273      1.53    jruoho 	return 0;
    274      1.53    jruoho }
    275      1.53    jruoho 
    276      1.56    jruoho static void
    277      1.53    jruoho cpu_childdetached(device_t self, device_t child)
    278      1.53    jruoho {
    279      1.53    jruoho 	struct cpu_softc *sc = device_private(self);
    280      1.53    jruoho 	struct cpu_info *ci = sc->sc_info;
    281      1.53    jruoho 
    282      1.53    jruoho 	if (ci->ci_frequency == child)
    283      1.53    jruoho 		ci->ci_frequency = NULL;
    284      1.53    jruoho }
    285      1.53    jruoho 
    286      1.56    jruoho static int
    287      1.10    cegger vcpu_match(device_t parent, cfdata_t match, void *aux)
    288       1.2    bouyer {
    289       1.2    bouyer 	struct vcpu_attach_args *vcaa = aux;
    290      1.62    cherry 	struct vcpu_runstate_info vcr;
    291      1.62    cherry 	int error;
    292      1.62    cherry 
    293      1.62    cherry 	if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
    294      1.62    cherry 		error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
    295      1.62    cherry 					   vcaa->vcaa_caa.cpu_number,
    296      1.62    cherry 					   &vcr);
    297      1.62    cherry 		switch (error) {
    298      1.62    cherry 		case 0:
    299      1.62    cherry 			return 1;
    300      1.62    cherry 		case -ENOENT:
    301      1.62    cherry 			return 0;
    302      1.62    cherry 		default:
    303      1.62    cherry 			panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
    304      1.62    cherry 		}
    305      1.62    cherry 	}
    306       1.2    bouyer 
    307       1.2    bouyer 	return 0;
    308       1.2    bouyer }
    309       1.2    bouyer 
    310      1.56    jruoho static void
    311      1.10    cegger vcpu_attach(device_t parent, device_t self, void *aux)
    312       1.2    bouyer {
    313       1.2    bouyer 	struct vcpu_attach_args *vcaa = aux;
    314       1.2    bouyer 
    315      1.62    cherry 	KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
    316      1.62    cherry 	vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
    317       1.2    bouyer 	cpu_attach_common(parent, self, &vcaa->vcaa_caa);
    318      1.65       jym 
    319      1.65       jym 	if (!pmf_device_register(self, NULL, NULL))
    320      1.65       jym 		aprint_error_dev(self, "couldn't establish power handler\n");
    321       1.2    bouyer }
    322       1.2    bouyer 
    323      1.62    cherry static int
    324      1.62    cherry vcpu_is_up(struct cpu_info *ci)
    325      1.62    cherry {
    326      1.62    cherry 	KASSERT(ci != NULL);
    327      1.62    cherry 	return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
    328      1.62    cherry }
    329      1.62    cherry 
    330       1.2    bouyer static void
    331       1.2    bouyer cpu_vm_init(struct cpu_info *ci)
    332       1.2    bouyer {
    333       1.2    bouyer 	int ncolors = 2, i;
    334       1.2    bouyer 
    335       1.2    bouyer 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    336       1.2    bouyer 		struct x86_cache_info *cai;
    337       1.2    bouyer 		int tcolors;
    338       1.2    bouyer 
    339       1.2    bouyer 		cai = &ci->ci_cinfo[i];
    340       1.2    bouyer 
    341       1.2    bouyer 		tcolors = atop(cai->cai_totalsize);
    342       1.2    bouyer 		switch(cai->cai_associativity) {
    343       1.2    bouyer 		case 0xff:
    344       1.2    bouyer 			tcolors = 1; /* fully associative */
    345       1.2    bouyer 			break;
    346       1.2    bouyer 		case 0:
    347       1.2    bouyer 		case 1:
    348       1.2    bouyer 			break;
    349       1.2    bouyer 		default:
    350       1.2    bouyer 			tcolors /= cai->cai_associativity;
    351       1.2    bouyer 		}
    352       1.2    bouyer 		ncolors = max(ncolors, tcolors);
    353       1.2    bouyer 	}
    354       1.2    bouyer 
    355       1.2    bouyer 	/*
    356      1.67       mrg 	 * Knowing the size of the largest cache on this CPU, potentially
    357      1.67       mrg 	 * re-color our pages.
    358       1.2    bouyer 	 */
    359      1.28    bouyer 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    360       1.2    bouyer 	uvm_page_recolor(ncolors);
    361      1.91     rmind 	pmap_tlb_cpu_init(ci);
    362       1.2    bouyer }
    363       1.2    bouyer 
    364      1.56    jruoho static void
    365      1.11    cegger cpu_attach_common(device_t parent, device_t self, void *aux)
    366       1.2    bouyer {
    367      1.10    cegger 	struct cpu_softc *sc = device_private(self);
    368       1.2    bouyer 	struct cpu_attach_args *caa = aux;
    369       1.2    bouyer 	struct cpu_info *ci;
    370      1.12    cegger 	uintptr_t ptr;
    371       1.2    bouyer 	int cpunum = caa->cpu_number;
    372      1.38    cegger 	static bool again = false;
    373       1.2    bouyer 
    374      1.10    cegger 	sc->sc_dev = self;
    375      1.10    cegger 
    376       1.2    bouyer 	/*
    377       1.2    bouyer 	 * If we're an Application Processor, allocate a cpu_info
    378       1.2    bouyer 	 * structure, otherwise use the primary's.
    379       1.2    bouyer 	 */
    380       1.2    bouyer 	if (caa->cpu_role == CPU_ROLE_AP) {
    381      1.12    cegger 		aprint_naive(": Application Processor\n");
    382      1.31    cegger 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    383      1.31    cegger 		    KM_SLEEP);
    384      1.42       jym 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    385      1.12    cegger 		memset(ci, 0, sizeof(*ci));
    386       1.2    bouyer #ifdef TRAPLOG
    387      1.31    cegger 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
    388       1.2    bouyer #endif
    389       1.2    bouyer 	} else {
    390      1.12    cegger 		aprint_naive(": %s Processor\n",
    391      1.12    cegger 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    392       1.2    bouyer 		ci = &cpu_info_primary;
    393       1.2    bouyer 	}
    394       1.2    bouyer 
    395       1.2    bouyer 	ci->ci_self = ci;
    396       1.2    bouyer 	sc->sc_info = ci;
    397       1.2    bouyer 	ci->ci_dev = self;
    398      1.23        ad 	ci->ci_cpuid = cpunum;
    399      1.16    cegger 
    400      1.16    cegger 	KASSERT(HYPERVISOR_shared_info != NULL);
    401      1.89    bouyer 	KASSERT(cpunum < XEN_LEGACY_MAX_VCPUS);
    402      1.16    cegger 	ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
    403      1.16    cegger 
    404      1.62    cherry 	KASSERT(ci->ci_func == 0);
    405       1.2    bouyer 	ci->ci_func = caa->cpu_func;
    406       1.2    bouyer 
    407      1.38    cegger 	/* Must be called before mi_cpu_attach(). */
    408      1.38    cegger 	cpu_vm_init(ci);
    409      1.38    cegger 
    410       1.2    bouyer 	if (caa->cpu_role == CPU_ROLE_AP) {
    411       1.2    bouyer 		int error;
    412       1.2    bouyer 
    413       1.2    bouyer 		error = mi_cpu_attach(ci);
    414      1.62    cherry 
    415      1.62    cherry 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    416       1.2    bouyer 		if (error != 0) {
    417       1.2    bouyer 			aprint_normal("\n");
    418      1.38    cegger 			aprint_error_dev(self,
    419      1.38    cegger 			    "mi_cpu_attach failed with %d\n", error);
    420       1.2    bouyer 			return;
    421       1.2    bouyer 		}
    422      1.62    cherry 
    423       1.2    bouyer 	} else {
    424       1.2    bouyer 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    425       1.2    bouyer 	}
    426       1.2    bouyer 
    427      1.89    bouyer 	KASSERT(ci->ci_cpuid == ci->ci_index);
    428       1.2    bouyer 	pmap_reference(pmap_kernel());
    429       1.2    bouyer 	ci->ci_pmap = pmap_kernel();
    430       1.2    bouyer 	ci->ci_tlbstate = TLBSTATE_STALE;
    431       1.2    bouyer 
    432      1.38    cegger 	/*
    433      1.38    cegger 	 * Boot processor may not be attached first, but the below
    434      1.38    cegger 	 * must be done to allow booting other processors.
    435      1.38    cegger 	 */
    436      1.38    cegger 	if (!again) {
    437      1.38    cegger 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    438      1.38    cegger 		/* Basic init. */
    439      1.38    cegger 		cpu_intr_init(ci);
    440      1.38    cegger 		cpu_get_tsc_freq(ci);
    441      1.38    cegger 		cpu_init(ci);
    442      1.78    cherry 		pmap_cpu_init_late(ci);
    443      1.62    cherry 
    444      1.62    cherry 		/* Every processor needs to init it's own ipi h/w (similar to lapic) */
    445      1.62    cherry 		xen_ipi_init();
    446      1.62    cherry 
    447      1.38    cegger 		/* Make sure DELAY() is initialized. */
    448      1.38    cegger 		DELAY(1);
    449      1.38    cegger 		again = true;
    450      1.38    cegger 	}
    451      1.38    cegger 
    452       1.2    bouyer 	/* further PCB init done later. */
    453       1.2    bouyer 
    454       1.2    bouyer 	switch (caa->cpu_role) {
    455       1.2    bouyer 	case CPU_ROLE_SP:
    456      1.38    cegger 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    457      1.21        ad 		cpu_identify(ci);
    458      1.38    cegger 		x86_cpu_idle_init();
    459      1.62    cherry 
    460       1.2    bouyer 		break;
    461       1.2    bouyer 
    462       1.2    bouyer 	case CPU_ROLE_BP:
    463      1.38    cegger 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    464      1.21        ad 		cpu_identify(ci);
    465      1.38    cegger 		x86_cpu_idle_init();
    466      1.62    cherry 
    467       1.2    bouyer 		break;
    468       1.2    bouyer 
    469       1.2    bouyer 	case CPU_ROLE_AP:
    470      1.62    cherry 		atomic_or_32(&ci->ci_flags, CPUF_AP);
    471      1.62    cherry 
    472       1.2    bouyer 		/*
    473       1.2    bouyer 		 * report on an AP
    474       1.2    bouyer 		 */
    475       1.2    bouyer 
    476       1.2    bouyer #if defined(MULTIPROCESSOR)
    477      1.62    cherry 		/* interrupt handler stack */
    478       1.2    bouyer 		cpu_intr_init(ci);
    479      1.62    cherry 
    480      1.62    cherry 		/* Setup per-cpu memory for gdt */
    481       1.2    bouyer 		gdt_alloc_cpu(ci);
    482      1.62    cherry 
    483      1.62    cherry 		pmap_cpu_init_late(ci);
    484       1.2    bouyer 		cpu_start_secondary(ci);
    485      1.62    cherry 
    486       1.2    bouyer 		if (ci->ci_flags & CPUF_PRESENT) {
    487      1.30    cegger 			struct cpu_info *tmp;
    488      1.30    cegger 
    489      1.62    cherry 			cpu_identify(ci);
    490      1.30    cegger 			tmp = cpu_info_list;
    491      1.30    cegger 			while (tmp->ci_next)
    492      1.30    cegger 				tmp = tmp->ci_next;
    493      1.30    cegger 
    494      1.30    cegger 			tmp->ci_next = ci;
    495       1.2    bouyer 		}
    496       1.2    bouyer #else
    497      1.62    cherry 		aprint_error(": not started\n");
    498       1.2    bouyer #endif
    499       1.2    bouyer 		break;
    500       1.2    bouyer 
    501       1.2    bouyer 	default:
    502      1.12    cegger 		aprint_normal("\n");
    503       1.2    bouyer 		panic("unknown processor type??\n");
    504       1.2    bouyer 	}
    505       1.2    bouyer 
    506      1.62    cherry #ifdef MPVERBOSE
    507       1.2    bouyer 	if (mp_verbose) {
    508       1.2    bouyer 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    509      1.37     rmind 		struct pcb *pcb = lwp_getpcb(l);
    510       1.2    bouyer 
    511      1.38    cegger 		aprint_verbose_dev(self,
    512      1.38    cegger 		    "idle lwp at %p, idle sp at 0x%p\n",
    513      1.12    cegger 		    l,
    514      1.12    cegger #ifdef i386
    515      1.37     rmind 		    (void *)pcb->pcb_esp
    516      1.62    cherry #else /* i386 */
    517      1.37     rmind 		    (void *)pcb->pcb_rsp
    518      1.62    cherry #endif /* i386 */
    519      1.12    cegger 		);
    520      1.12    cegger 
    521       1.2    bouyer 	}
    522      1.62    cherry #endif /* MPVERBOSE */
    523       1.2    bouyer }
    524       1.2    bouyer 
    525       1.2    bouyer /*
    526       1.2    bouyer  * Initialize the processor appropriately.
    527       1.2    bouyer  */
    528       1.2    bouyer 
    529       1.2    bouyer void
    530      1.10    cegger cpu_init(struct cpu_info *ci)
    531       1.2    bouyer {
    532       1.2    bouyer 
    533       1.2    bouyer 	/*
    534       1.2    bouyer 	 * If we have FXSAVE/FXRESTOR, use them.
    535       1.2    bouyer 	 */
    536      1.43       jym 	if (cpu_feature[0] & CPUID_FXSR) {
    537       1.2    bouyer 		lcr4(rcr4() | CR4_OSFXSR);
    538       1.2    bouyer 
    539       1.2    bouyer 		/*
    540       1.2    bouyer 		 * If we have SSE/SSE2, enable XMM exceptions.
    541       1.2    bouyer 		 */
    542      1.43       jym 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    543       1.2    bouyer 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    544       1.2    bouyer 	}
    545       1.2    bouyer 
    546      1.47       jym #ifdef __x86_64__
    547      1.47       jym 	/* No user PGD mapped for this CPU yet */
    548      1.47       jym 	ci->ci_xen_current_user_pgd = 0;
    549      1.47       jym #endif
    550      1.81    bouyer #if defined(__x86_64__) || defined(PAE)
    551      1.81    bouyer 	mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
    552      1.81    bouyer #endif
    553      1.47       jym 
    554      1.11    cegger 	atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    555       1.2    bouyer }
    556       1.2    bouyer 
    557       1.2    bouyer 
    558       1.2    bouyer #ifdef MULTIPROCESSOR
    559      1.62    cherry 
    560       1.2    bouyer void
    561      1.10    cegger cpu_boot_secondary_processors(void)
    562       1.2    bouyer {
    563       1.2    bouyer 	struct cpu_info *ci;
    564       1.2    bouyer 	u_long i;
    565      1.38    cegger 	for (i = 0; i < maxcpus; i++) {
    566      1.38    cegger 		ci = cpu_lookup(i);
    567       1.2    bouyer 		if (ci == NULL)
    568       1.2    bouyer 			continue;
    569       1.2    bouyer 		if (ci->ci_data.cpu_idlelwp == NULL)
    570       1.2    bouyer 			continue;
    571       1.2    bouyer 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    572       1.2    bouyer 			continue;
    573       1.2    bouyer 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    574       1.2    bouyer 			continue;
    575       1.2    bouyer 		cpu_boot_secondary(ci);
    576       1.2    bouyer 	}
    577      1.11    cegger 
    578      1.11    cegger 	x86_mp_online = true;
    579       1.2    bouyer }
    580       1.2    bouyer 
    581       1.2    bouyer static void
    582       1.2    bouyer cpu_init_idle_lwp(struct cpu_info *ci)
    583       1.2    bouyer {
    584       1.2    bouyer 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    585      1.37     rmind 	struct pcb *pcb = lwp_getpcb(l);
    586       1.2    bouyer 
    587       1.2    bouyer 	pcb->pcb_cr0 = rcr0();
    588       1.2    bouyer }
    589       1.2    bouyer 
    590       1.2    bouyer void
    591      1.10    cegger cpu_init_idle_lwps(void)
    592       1.2    bouyer {
    593       1.2    bouyer 	struct cpu_info *ci;
    594       1.2    bouyer 	u_long i;
    595       1.2    bouyer 
    596      1.38    cegger 	for (i = 0; i < maxcpus; i++) {
    597      1.38    cegger 		ci = cpu_lookup(i);
    598       1.2    bouyer 		if (ci == NULL)
    599       1.2    bouyer 			continue;
    600       1.2    bouyer 		if (ci->ci_data.cpu_idlelwp == NULL)
    601       1.2    bouyer 			continue;
    602       1.2    bouyer 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    603       1.2    bouyer 			continue;
    604       1.2    bouyer 		cpu_init_idle_lwp(ci);
    605       1.2    bouyer 	}
    606       1.2    bouyer }
    607       1.2    bouyer 
    608      1.62    cherry static void
    609      1.10    cegger cpu_start_secondary(struct cpu_info *ci)
    610       1.2    bouyer {
    611       1.2    bouyer 	int i;
    612       1.2    bouyer 
    613      1.11    cegger 	aprint_debug_dev(ci->ci_dev, "starting\n");
    614       1.2    bouyer 
    615       1.2    bouyer 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    616      1.62    cherry 
    617      1.62    cherry 	if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
    618      1.11    cegger 		return;
    619      1.62    cherry 	}
    620       1.2    bouyer 
    621       1.2    bouyer 	/*
    622       1.2    bouyer 	 * wait for it to become ready
    623       1.2    bouyer 	 */
    624      1.11    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    625       1.2    bouyer 		delay(10);
    626       1.2    bouyer 	}
    627      1.11    cegger 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    628       1.9    cegger 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    629       1.2    bouyer #if defined(MPDEBUG) && defined(DDB)
    630       1.2    bouyer 		printf("dropping into debugger; continue from here to resume boot\n");
    631       1.2    bouyer 		Debugger();
    632       1.2    bouyer #endif
    633       1.2    bouyer 	}
    634       1.2    bouyer 
    635       1.2    bouyer 	CPU_START_CLEANUP(ci);
    636       1.2    bouyer }
    637       1.2    bouyer 
    638       1.2    bouyer void
    639      1.10    cegger cpu_boot_secondary(struct cpu_info *ci)
    640       1.2    bouyer {
    641       1.2    bouyer 	int i;
    642      1.11    cegger 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    643      1.11    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    644       1.2    bouyer 		delay(10);
    645       1.2    bouyer 	}
    646      1.11    cegger 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    647      1.11    cegger 		aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
    648       1.2    bouyer #if defined(MPDEBUG) && defined(DDB)
    649       1.2    bouyer 		printf("dropping into debugger; continue from here to resume boot\n");
    650       1.2    bouyer 		Debugger();
    651       1.2    bouyer #endif
    652       1.2    bouyer 	}
    653       1.2    bouyer }
    654       1.2    bouyer 
    655       1.2    bouyer /*
    656      1.62    cherry  * APs end up here immediately after initialisation and VCPUOP_up in
    657      1.62    cherry  * mp_cpu_start().
    658      1.62    cherry  * At this point, we are running in the idle pcb/idle stack of the new
    659      1.62    cherry  * CPU.  This function jumps to the idle loop and starts looking for
    660      1.62    cherry  * work.
    661       1.2    bouyer  */
    662      1.62    cherry extern void x86_64_tls_switch(struct lwp *);
    663       1.2    bouyer void
    664       1.2    bouyer cpu_hatch(void *v)
    665       1.2    bouyer {
    666       1.2    bouyer 	struct cpu_info *ci = (struct cpu_info *)v;
    667      1.37     rmind 	struct pcb *pcb;
    668      1.11    cegger 	int s, i;
    669      1.11    cegger 
    670      1.62    cherry 	/* Setup TLS and kernel GS/FS */
    671      1.62    cherry 	cpu_init_msrs(ci, true);
    672      1.62    cherry 	cpu_init_idt();
    673      1.62    cherry 	gdt_init_cpu(ci);
    674      1.62    cherry 
    675      1.21        ad 	cpu_probe(ci);
    676      1.11    cegger 
    677      1.62    cherry 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    678       1.2    bouyer 
    679      1.11    cegger 	while ((ci->ci_flags & CPUF_GO) == 0) {
    680      1.11    cegger 		/* Don't use delay, boot CPU may be patching the text. */
    681      1.11    cegger 		for (i = 10000; i != 0; i--)
    682      1.11    cegger 			x86_pause();
    683      1.11    cegger 	}
    684       1.2    bouyer 
    685      1.11    cegger 	/* Because the text may have been patched in x86_patch(). */
    686      1.11    cegger 	x86_flush();
    687      1.58     rmind 	tlbflushg();
    688       1.2    bouyer 
    689      1.11    cegger 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    690       1.2    bouyer 
    691      1.37     rmind 	pcb = lwp_getpcb(curlwp);
    692      1.85    cherry 	pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
    693      1.37     rmind 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    694      1.37     rmind 
    695      1.62    cherry 	xen_ipi_init();
    696      1.62    cherry 
    697      1.62    cherry 	xen_initclocks();
    698      1.62    cherry 
    699      1.62    cherry #ifdef __x86_64__
    700      1.12    cegger 	fpuinit(ci);
    701      1.12    cegger #endif
    702       1.2    bouyer 
    703       1.2    bouyer 	lldt(GSEL(GLDT_SEL, SEL_KPL));
    704       1.2    bouyer 
    705       1.2    bouyer 	cpu_init(ci);
    706      1.11    cegger 	cpu_get_tsc_freq(ci);
    707       1.2    bouyer 
    708       1.2    bouyer 	s = splhigh();
    709      1.11    cegger 	x86_enable_intr();
    710      1.11    cegger 	splx(s);
    711       1.2    bouyer 
    712      1.62    cherry 	aprint_debug_dev(ci->ci_dev, "running\n");
    713      1.62    cherry 
    714      1.62    cherry 	cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
    715      1.62    cherry 
    716      1.91     rmind 	idle_loop(NULL);
    717      1.91     rmind 	KASSERT(false);
    718       1.2    bouyer }
    719       1.2    bouyer 
    720       1.2    bouyer #if defined(DDB)
    721       1.2    bouyer 
    722       1.2    bouyer #include <ddb/db_output.h>
    723       1.2    bouyer #include <machine/db_machdep.h>
    724       1.2    bouyer 
    725       1.2    bouyer /*
    726       1.2    bouyer  * Dump CPU information from ddb.
    727       1.2    bouyer  */
    728       1.2    bouyer void
    729       1.2    bouyer cpu_debug_dump(void)
    730       1.2    bouyer {
    731       1.2    bouyer 	struct cpu_info *ci;
    732       1.2    bouyer 	CPU_INFO_ITERATOR cii;
    733       1.2    bouyer 
    734      1.13      yamt 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    735       1.2    bouyer 	for (CPU_INFO_FOREACH(cii, ci)) {
    736       1.2    bouyer 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    737       1.2    bouyer 		    ci,
    738       1.9    cegger 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    739      1.12    cegger 		    (long)ci->ci_cpuid,
    740       1.2    bouyer 		    ci->ci_flags, ci->ci_ipis,
    741       1.2    bouyer 		    ci->ci_curlwp,
    742       1.2    bouyer 		    ci->ci_fpcurlwp);
    743       1.2    bouyer 	}
    744       1.2    bouyer }
    745      1.38    cegger #endif /* DDB */
    746       1.2    bouyer 
    747      1.62    cherry #endif /* MULTIPROCESSOR */
    748      1.62    cherry 
    749      1.62    cherry extern void hypervisor_callback(void);
    750      1.62    cherry extern void failsafe_callback(void);
    751      1.62    cherry #ifdef __x86_64__
    752      1.62    cherry typedef void (vector)(void);
    753      1.62    cherry extern vector Xsyscall, Xsyscall32;
    754      1.62    cherry #endif
    755      1.62    cherry 
    756      1.62    cherry /*
    757      1.62    cherry  * Setup the "trampoline". On Xen, we setup nearly all cpu context
    758      1.62    cherry  * outside a trampoline, so we prototype and call targetip like so:
    759      1.62    cherry  * void targetip(struct cpu_info *);
    760      1.62    cherry  */
    761      1.62    cherry 
    762       1.2    bouyer static void
    763      1.62    cherry gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
    764       1.2    bouyer {
    765      1.62    cherry 	int i;
    766      1.62    cherry 	for (i = 0; i < roundup(entries, PAGE_SIZE) >> PAGE_SHIFT; i++) {
    767      1.62    cherry 
    768      1.62    cherry 		frames[i] = ((paddr_t) xpmap_ptetomach(
    769      1.62    cherry 				(pt_entry_t *) (base + (i << PAGE_SHIFT))))
    770      1.62    cherry 			>> PAGE_SHIFT;
    771      1.62    cherry 
    772      1.62    cherry 		/* Mark Read-only */
    773      1.62    cherry 		pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
    774      1.62    cherry 		    PG_RW);
    775      1.62    cherry 	}
    776      1.62    cherry }
    777      1.62    cherry 
    778      1.62    cherry #ifdef __x86_64__
    779      1.85    cherry extern char *ldtstore;
    780      1.62    cherry 
    781      1.62    cherry static void
    782      1.62    cherry xen_init_amd64_vcpuctxt(struct cpu_info *ci,
    783      1.62    cherry 			struct vcpu_guest_context *initctx,
    784      1.62    cherry 			void targetrip(struct cpu_info *))
    785      1.62    cherry {
    786      1.62    cherry 	/* page frames to point at GDT */
    787      1.62    cherry 	extern int gdt_size;
    788      1.62    cherry 	paddr_t frames[16];
    789      1.62    cherry 	psize_t gdt_ents;
    790      1.62    cherry 
    791      1.62    cherry 	struct lwp *l;
    792      1.62    cherry 	struct pcb *pcb;
    793      1.62    cherry 
    794      1.62    cherry 	volatile struct vcpu_info *vci;
    795      1.62    cherry 
    796      1.62    cherry 	KASSERT(ci != NULL);
    797      1.62    cherry 	KASSERT(ci != &cpu_info_primary);
    798      1.62    cherry 	KASSERT(initctx != NULL);
    799      1.62    cherry 	KASSERT(targetrip != NULL);
    800      1.62    cherry 
    801      1.62    cherry 	memset(initctx, 0, sizeof *initctx);
    802      1.62    cherry 
    803      1.85    cherry 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
    804      1.62    cherry 	KASSERT(gdt_ents <= 16);
    805      1.62    cherry 
    806      1.62    cherry 	gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
    807      1.62    cherry 
    808      1.62    cherry 	/* Initialise the vcpu context: We use idle_loop()'s pcb context. */
    809      1.11    cegger 
    810      1.62    cherry 	l = ci->ci_data.cpu_idlelwp;
    811      1.11    cegger 
    812      1.62    cherry 	KASSERT(l != NULL);
    813      1.62    cherry 	pcb = lwp_getpcb(l);
    814      1.62    cherry 	KASSERT(pcb != NULL);
    815      1.11    cegger 
    816      1.62    cherry 	/* resume with interrupts off */
    817      1.62    cherry 	vci = ci->ci_vcpu;
    818      1.62    cherry 	vci->evtchn_upcall_mask = 1;
    819      1.62    cherry 	xen_mb();
    820       1.2    bouyer 
    821      1.62    cherry 	/* resume in kernel-mode */
    822      1.62    cherry 	initctx->flags = VGCF_in_kernel | VGCF_online;
    823       1.2    bouyer 
    824      1.62    cherry 	/* Stack and entry points:
    825      1.62    cherry 	 * We arrange for the stack frame for cpu_hatch() to
    826      1.62    cherry 	 * appear as a callee frame of lwp_trampoline(). Being a
    827      1.62    cherry 	 * leaf frame prevents trampling on any of the MD stack setup
    828      1.62    cherry 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    829      1.62    cherry 	 */
    830       1.2    bouyer 
    831      1.62    cherry 	initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
    832      1.62    cherry 	initctx->user_regs.rip = (vaddr_t) targetrip;
    833       1.2    bouyer 
    834      1.62    cherry 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    835      1.11    cegger 
    836      1.62    cherry 	initctx->user_regs.rflags = pcb->pcb_flags;
    837      1.62    cherry 	initctx->user_regs.rsp = pcb->pcb_rsp;
    838      1.11    cegger 
    839      1.62    cherry 	/* Data segments */
    840      1.62    cherry 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
    841      1.62    cherry 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
    842      1.62    cherry 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
    843      1.62    cherry 
    844      1.62    cherry 	/* GDT */
    845      1.62    cherry 	memcpy(initctx->gdt_frames, frames, sizeof frames);
    846      1.62    cherry 	initctx->gdt_ents = gdt_ents;
    847      1.62    cherry 
    848      1.62    cherry 	/* LDT */
    849      1.62    cherry 	initctx->ldt_base = (unsigned long) ldtstore;
    850      1.62    cherry 	initctx->ldt_ents = LDT_SIZE >> 3;
    851      1.62    cherry 
    852      1.62    cherry 	/* Kernel context state */
    853      1.62    cherry 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
    854      1.62    cherry 	initctx->kernel_sp = pcb->pcb_rsp0;
    855      1.62    cherry 	initctx->ctrlreg[0] = pcb->pcb_cr0;
    856      1.62    cherry 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
    857      1.85    cherry 	initctx->ctrlreg[2] = (vaddr_t) targetrip;
    858      1.62    cherry 	/*
    859      1.62    cherry 	 * Use pmap_kernel() L4 PD directly, until we setup the
    860      1.62    cherry 	 * per-cpu L4 PD in pmap_cpu_init_late()
    861       1.2    bouyer 	 */
    862      1.70    cherry 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
    863      1.62    cherry 	initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
    864       1.2    bouyer 
    865      1.62    cherry 
    866      1.62    cherry 	/* Xen callbacks */
    867      1.62    cherry 	initctx->event_callback_eip = (unsigned long) hypervisor_callback;
    868      1.62    cherry 	initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
    869      1.62    cherry 	initctx->syscall_callback_eip = (unsigned long) Xsyscall;
    870      1.62    cherry 
    871      1.62    cherry 	return;
    872       1.2    bouyer }
    873      1.62    cherry #else /* i386 */
    874      1.62    cherry extern union descriptor *ldt;
    875      1.62    cherry extern void Xsyscall(void);
    876      1.62    cherry 
    877      1.11    cegger static void
    878      1.62    cherry xen_init_i386_vcpuctxt(struct cpu_info *ci,
    879      1.62    cherry 			struct vcpu_guest_context *initctx,
    880      1.62    cherry 			void targeteip(struct cpu_info *))
    881      1.62    cherry {
    882      1.62    cherry 	/* page frames to point at GDT */
    883      1.62    cherry 	extern int gdt_size;
    884      1.62    cherry 	paddr_t frames[16];
    885      1.62    cherry 	psize_t gdt_ents;
    886      1.62    cherry 
    887      1.62    cherry 	struct lwp *l;
    888      1.62    cherry 	struct pcb *pcb;
    889      1.62    cherry 
    890      1.62    cherry 	volatile struct vcpu_info *vci;
    891      1.62    cherry 
    892      1.62    cherry 	KASSERT(ci != NULL);
    893      1.62    cherry 	KASSERT(ci != &cpu_info_primary);
    894      1.62    cherry 	KASSERT(initctx != NULL);
    895      1.62    cherry 	KASSERT(targeteip != NULL);
    896      1.62    cherry 
    897      1.62    cherry 	memset(initctx, 0, sizeof *initctx);
    898      1.11    cegger 
    899      1.85    cherry 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
    900      1.62    cherry 	KASSERT(gdt_ents <= 16);
    901       1.2    bouyer 
    902      1.62    cherry 	gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
    903       1.2    bouyer 
    904      1.62    cherry 	/*
    905      1.62    cherry 	 * Initialise the vcpu context:
    906      1.62    cherry 	 * We use this cpu's idle_loop() pcb context.
    907      1.11    cegger 	 */
    908      1.11    cegger 
    909      1.62    cherry 	l = ci->ci_data.cpu_idlelwp;
    910      1.62    cherry 
    911      1.62    cherry 	KASSERT(l != NULL);
    912      1.62    cherry 	pcb = lwp_getpcb(l);
    913      1.62    cherry 	KASSERT(pcb != NULL);
    914      1.62    cherry 
    915      1.62    cherry 	/* resume with interrupts off */
    916      1.62    cherry 	vci = ci->ci_vcpu;
    917      1.62    cherry 	vci->evtchn_upcall_mask = 1;
    918      1.62    cherry 	xen_mb();
    919      1.62    cherry 
    920      1.62    cherry 	/* resume in kernel-mode */
    921      1.62    cherry 	initctx->flags = VGCF_in_kernel | VGCF_online;
    922      1.62    cherry 
    923      1.62    cherry 	/* Stack frame setup for cpu_hatch():
    924      1.62    cherry 	 * We arrange for the stack frame for cpu_hatch() to
    925      1.62    cherry 	 * appear as a callee frame of lwp_trampoline(). Being a
    926      1.62    cherry 	 * leaf frame prevents trampling on any of the MD stack setup
    927      1.62    cherry 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    928       1.2    bouyer 	 */
    929       1.2    bouyer 
    930      1.62    cherry 	initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
    931      1.62    cherry 						      arg1 */
    932      1.62    cherry 	{ /* targeteip(ci); */
    933      1.62    cherry 		uint32_t *arg = (uint32_t *) initctx->user_regs.esp;
    934      1.62    cherry 		arg[1] = (uint32_t) ci; /* arg1 */
    935      1.62    cherry 
    936      1.62    cherry 	}
    937       1.2    bouyer 
    938      1.62    cherry 	initctx->user_regs.eip = (vaddr_t) targeteip;
    939      1.62    cherry 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    940      1.62    cherry 	initctx->user_regs.eflags |= pcb->pcb_iopl;
    941      1.62    cherry 
    942      1.62    cherry 	/* Data segments */
    943      1.62    cherry 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
    944      1.62    cherry 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
    945      1.62    cherry 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
    946      1.62    cherry 	initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
    947      1.62    cherry 
    948      1.62    cherry 	/* GDT */
    949      1.62    cherry 	memcpy(initctx->gdt_frames, frames, sizeof frames);
    950      1.62    cherry 	initctx->gdt_ents = gdt_ents;
    951      1.62    cherry 
    952      1.62    cherry 	/* LDT */
    953      1.62    cherry 	initctx->ldt_base = (unsigned long) ldt;
    954      1.62    cherry 	initctx->ldt_ents = NLDT;
    955      1.62    cherry 
    956      1.62    cherry 	/* Kernel context state */
    957      1.62    cherry 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
    958      1.62    cherry 	initctx->kernel_sp = pcb->pcb_esp0;
    959      1.62    cherry 	initctx->ctrlreg[0] = pcb->pcb_cr0;
    960      1.62    cherry 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
    961      1.85    cherry 	initctx->ctrlreg[2] = (vaddr_t) targeteip;
    962      1.70    cherry #ifdef PAE
    963      1.70    cherry 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
    964      1.70    cherry #else /* PAE */
    965      1.70    cherry 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
    966      1.70    cherry #endif /* PAE */
    967      1.62    cherry 	initctx->ctrlreg[4] = /* CR4_PAE |  */CR4_OSFXSR | CR4_OSXMMEXCPT;
    968       1.2    bouyer 
    969       1.2    bouyer 
    970      1.62    cherry 	/* Xen callbacks */
    971      1.62    cherry 	initctx->event_callback_eip = (unsigned long) hypervisor_callback;
    972      1.62    cherry 	initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
    973      1.62    cherry 	initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
    974      1.62    cherry 	initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
    975      1.45     rmind 
    976      1.62    cherry 	return;
    977      1.62    cherry }
    978      1.62    cherry #endif /* __x86_64__ */
    979      1.45     rmind 
    980      1.62    cherry int
    981      1.62    cherry mp_cpu_start(struct cpu_info *ci, vaddr_t target)
    982      1.62    cherry {
    983      1.62    cherry 
    984      1.62    cherry 	int hyperror;
    985      1.62    cherry 	struct vcpu_guest_context vcpuctx;
    986       1.2    bouyer 
    987      1.62    cherry 	KASSERT(ci != NULL);
    988      1.62    cherry 	KASSERT(ci != &cpu_info_primary);
    989      1.62    cherry 	KASSERT(ci->ci_flags & CPUF_AP);
    990      1.62    cherry 
    991      1.62    cherry #ifdef __x86_64__
    992      1.62    cherry 	xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
    993      1.62    cherry #else  /* i386 */
    994      1.62    cherry 	xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
    995      1.62    cherry #endif /* __x86_64__ */
    996      1.62    cherry 
    997      1.62    cherry 	/* Initialise the given vcpu to execute cpu_hatch(ci); */
    998      1.62    cherry 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
    999      1.62    cherry 		aprint_error(": context initialisation failed. errno = %d\n", hyperror);
   1000      1.62    cherry 		return hyperror;
   1001      1.62    cherry 	}
   1002      1.62    cherry 
   1003      1.62    cherry 	/* Start it up */
   1004      1.62    cherry 
   1005      1.70    cherry 	/* First bring it down */
   1006      1.62    cherry 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
   1007      1.62    cherry 		aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
   1008      1.62    cherry 		return hyperror;
   1009      1.62    cherry 	}
   1010      1.62    cherry 
   1011      1.62    cherry 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
   1012      1.62    cherry 		aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
   1013      1.62    cherry 		return hyperror;
   1014      1.62    cherry 	}
   1015       1.2    bouyer 
   1016      1.62    cherry 	if (!vcpu_is_up(ci)) {
   1017      1.62    cherry 		aprint_error(": did not come up\n");
   1018      1.62    cherry 		return -1;
   1019       1.2    bouyer 	}
   1020      1.62    cherry 
   1021       1.2    bouyer 	return 0;
   1022       1.2    bouyer }
   1023       1.2    bouyer 
   1024       1.2    bouyer void
   1025       1.2    bouyer mp_cpu_start_cleanup(struct cpu_info *ci)
   1026       1.2    bouyer {
   1027      1.62    cherry 	if (vcpu_is_up(ci)) {
   1028      1.62    cherry 		aprint_debug_dev(ci->ci_dev, "is started.\n");
   1029      1.62    cherry 	}
   1030      1.62    cherry 	else {
   1031      1.62    cherry 		aprint_error_dev(ci->ci_dev, "did not start up.\n");
   1032      1.62    cherry 	}
   1033      1.62    cherry 
   1034       1.2    bouyer }
   1035       1.2    bouyer 
   1036       1.2    bouyer void
   1037       1.3    bouyer cpu_init_msrs(struct cpu_info *ci, bool full)
   1038       1.2    bouyer {
   1039      1.43       jym #ifdef __x86_64__
   1040       1.3    bouyer 	if (full) {
   1041       1.3    bouyer 		HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
   1042      1.11    cegger 		HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
   1043       1.3    bouyer 		HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
   1044       1.3    bouyer 	}
   1045      1.43       jym #endif	/* __x86_64__ */
   1046      1.44       jym 
   1047      1.44       jym 	if (cpu_feature[2] & CPUID_NOX)
   1048      1.44       jym 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1049      1.62    cherry 
   1050       1.2    bouyer }
   1051       1.2    bouyer 
   1052      1.11    cegger void
   1053      1.11    cegger cpu_offline_md(void)
   1054      1.11    cegger {
   1055      1.11    cegger         int s;
   1056      1.11    cegger 
   1057      1.11    cegger         s = splhigh();
   1058      1.11    cegger         fpusave_cpu(true);
   1059      1.11    cegger         splx(s);
   1060      1.11    cegger }
   1061      1.11    cegger 
   1062       1.2    bouyer void
   1063       1.2    bouyer cpu_get_tsc_freq(struct cpu_info *ci)
   1064       1.2    bouyer {
   1065      1.62    cherry 	uint32_t vcpu_tversion;
   1066      1.16    cegger 	const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
   1067      1.62    cherry 
   1068      1.62    cherry 	vcpu_tversion = tinfo->version;
   1069      1.62    cherry 	while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
   1070      1.62    cherry 
   1071       1.2    bouyer 	uint64_t freq = 1000000000ULL << 32;
   1072       1.2    bouyer 	freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
   1073       1.2    bouyer 	if ( tinfo->tsc_shift < 0 )
   1074       1.2    bouyer 		freq = freq << -tinfo->tsc_shift;
   1075       1.2    bouyer 	else
   1076       1.2    bouyer 		freq = freq >> tinfo->tsc_shift;
   1077      1.20        ad 	ci->ci_data.cpu_cc_freq = freq;
   1078       1.2    bouyer }
   1079      1.19     joerg 
   1080      1.19     joerg void
   1081      1.19     joerg x86_cpu_idle_xen(void)
   1082      1.19     joerg {
   1083      1.19     joerg 	struct cpu_info *ci = curcpu();
   1084      1.62    cherry 
   1085      1.19     joerg 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1086      1.19     joerg 
   1087      1.19     joerg 	x86_disable_intr();
   1088      1.19     joerg 	if (!__predict_false(ci->ci_want_resched)) {
   1089      1.19     joerg 		idle_block();
   1090      1.19     joerg 	} else {
   1091      1.19     joerg 		x86_enable_intr();
   1092      1.19     joerg 	}
   1093      1.19     joerg }
   1094      1.47       jym 
   1095      1.47       jym /*
   1096      1.47       jym  * Loads pmap for the current CPU.
   1097      1.47       jym  */
   1098      1.47       jym void
   1099      1.81    bouyer cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
   1100      1.47       jym {
   1101      1.84    cherry 	KASSERT(pmap != pmap_kernel());
   1102      1.91     rmind 
   1103      1.81    bouyer #if defined(__x86_64__) || defined(PAE)
   1104      1.81    bouyer 	struct cpu_info *ci = curcpu();
   1105      1.92     rmind 	cpuid_t cid = cpu_index(ci);
   1106      1.81    bouyer 
   1107      1.81    bouyer 	mutex_enter(&ci->ci_kpm_mtx);
   1108      1.93       jym 	/* make new pmap visible to xen_kpm_sync() */
   1109      1.92     rmind 	kcpuset_atomic_set(pmap->pm_xen_ptp_cpus, cid);
   1110      1.81    bouyer #endif
   1111      1.47       jym #ifdef i386
   1112      1.47       jym #ifdef PAE
   1113      1.81    bouyer 	{
   1114      1.81    bouyer 		int i;
   1115      1.81    bouyer 		paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
   1116      1.81    bouyer 		/* don't update the kernel L3 slot */
   1117      1.81    bouyer 		for (i = 0 ; i < PDP_SIZE - 1; i++) {
   1118      1.81    bouyer 			xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
   1119      1.81    bouyer 			    xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
   1120      1.81    bouyer 		}
   1121      1.81    bouyer 		tlbflush();
   1122      1.47       jym 	}
   1123      1.47       jym #else /* PAE */
   1124      1.47       jym 	lcr3(pmap_pdirpa(pmap, 0));
   1125      1.47       jym #endif /* PAE */
   1126      1.47       jym #endif /* i386 */
   1127      1.47       jym 
   1128      1.47       jym #ifdef __x86_64__
   1129      1.81    bouyer 	{
   1130      1.81    bouyer 		int i;
   1131      1.81    bouyer 		pd_entry_t *new_pgd;
   1132      1.81    bouyer 		paddr_t l4_pd_ma;
   1133      1.81    bouyer 
   1134      1.81    bouyer 		l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
   1135      1.47       jym 
   1136      1.81    bouyer 		/*
   1137      1.81    bouyer 		 * Map user space address in kernel space and load
   1138      1.81    bouyer 		 * user cr3
   1139      1.81    bouyer 		 */
   1140      1.81    bouyer 		new_pgd = pmap->pm_pdir;
   1141      1.81    bouyer 		KASSERT(pmap == ci->ci_pmap);
   1142      1.70    cherry 
   1143      1.81    bouyer 		/* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
   1144      1.81    bouyer 		for (i = 0; i < PDIR_SLOT_PTE; i++) {
   1145      1.81    bouyer 			KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
   1146      1.81    bouyer 			if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
   1147      1.81    bouyer 				xpq_queue_pte_update(
   1148      1.81    bouyer 				   l4_pd_ma + i * sizeof(pd_entry_t),
   1149      1.81    bouyer 				    new_pgd[i]);
   1150      1.81    bouyer 			}
   1151      1.81    bouyer 		}
   1152      1.70    cherry 
   1153      1.84    cherry 		xen_set_user_pgd(pmap_pdirpa(pmap, 0));
   1154      1.84    cherry 		ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
   1155      1.70    cherry 
   1156      1.81    bouyer 		tlbflush();
   1157      1.70    cherry 	}
   1158      1.70    cherry 
   1159      1.47       jym #endif /* __x86_64__ */
   1160      1.81    bouyer #if defined(__x86_64__) || defined(PAE)
   1161      1.93       jym 	/* old pmap no longer visible to xen_kpm_sync() */
   1162      1.92     rmind 	if (oldpmap != pmap_kernel()) {
   1163      1.92     rmind 		kcpuset_atomic_clear(oldpmap->pm_xen_ptp_cpus, cid);
   1164      1.92     rmind 	}
   1165      1.81    bouyer 	mutex_exit(&ci->ci_kpm_mtx);
   1166      1.81    bouyer #endif
   1167      1.47       jym }
   1168      1.61    cherry 
   1169      1.70    cherry  /*
   1170      1.70    cherry   * pmap_cpu_init_late: perform late per-CPU initialization.
   1171      1.70    cherry   * Short note about percpu PDIR pages:
   1172      1.70    cherry   * Both the PAE and __x86_64__ architectures have per-cpu PDIR
   1173      1.70    cherry   * tables. This is to get around Xen's pagetable setup constraints for
   1174      1.70    cherry   * PAE (multiple L3[3]s cannot point to the same L2 - Xen
   1175      1.70    cherry   * will refuse to pin a table setup this way.) and for multiple cpus
   1176      1.70    cherry   * to map in different user pmaps on __x86_64__ (see: cpu_load_pmap())
   1177      1.70    cherry   *
   1178      1.70    cherry   * What this means for us is that the PDIR of the pmap_kernel() is
   1179      1.70    cherry   * considered to be a canonical "SHADOW" PDIR with the following
   1180      1.70    cherry   * properties:
   1181      1.70    cherry   * - Its recursive mapping points to itself
   1182      1.90       jym   * - per-cpu recursive mappings point to themselves on __x86_64__
   1183      1.70    cherry   * - per-cpu L4 pages' kernel entries are expected to be in sync with
   1184      1.70    cherry   *   the shadow
   1185      1.70    cherry   */
   1186      1.70    cherry 
   1187      1.70    cherry void
   1188      1.70    cherry pmap_cpu_init_late(struct cpu_info *ci)
   1189      1.70    cherry {
   1190      1.70    cherry #if defined(PAE) || defined(__x86_64__)
   1191      1.70    cherry 	/*
   1192      1.70    cherry 	 * The BP has already its own PD page allocated during early
   1193      1.70    cherry 	 * MD startup.
   1194      1.70    cherry 	 */
   1195      1.70    cherry 
   1196      1.78    cherry #if defined(__x86_64__)
   1197      1.78    cherry 	/* Setup per-cpu normal_pdes */
   1198      1.78    cherry 	int i;
   1199      1.78    cherry 	extern pd_entry_t * const normal_pdes[];
   1200      1.78    cherry 	for (i = 0;i < PTP_LEVELS - 1;i++) {
   1201      1.78    cherry 		ci->ci_normal_pdes[i] = normal_pdes[i];
   1202      1.78    cherry 	}
   1203      1.78    cherry #endif /* __x86_64__ */
   1204      1.78    cherry 
   1205      1.70    cherry 	if (ci == &cpu_info_primary)
   1206      1.70    cherry 		return;
   1207      1.70    cherry 
   1208      1.70    cherry 	KASSERT(ci != NULL);
   1209      1.70    cherry 
   1210      1.70    cherry #if defined(PAE)
   1211      1.73    cherry 	cpu_alloc_l3_page(ci);
   1212      1.70    cherry 	KASSERT(ci->ci_pae_l3_pdirpa != 0);
   1213      1.70    cherry 
   1214      1.70    cherry 	/* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
   1215      1.73    cherry 	int i;
   1216      1.75    cherry 	for (i = 0 ; i < PDP_SIZE - 1; i++) {
   1217      1.73    cherry 		ci->ci_pae_l3_pdir[i] =
   1218      1.73    cherry 		    xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PG_V;
   1219      1.73    cherry 	}
   1220      1.70    cherry #endif /* PAE */
   1221      1.70    cherry 
   1222      1.70    cherry 	ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1223      1.70    cherry 	    UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
   1224      1.70    cherry 
   1225      1.70    cherry 	if (ci->ci_kpm_pdir == NULL) {
   1226      1.70    cherry 		panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
   1227      1.70    cherry 		      __func__, cpu_index(ci));
   1228      1.70    cherry 	}
   1229      1.70    cherry 	ci->ci_kpm_pdirpa = vtophys((vaddr_t) ci->ci_kpm_pdir);
   1230      1.70    cherry 	KASSERT(ci->ci_kpm_pdirpa != 0);
   1231      1.70    cherry 
   1232      1.70    cherry #if defined(__x86_64__)
   1233      1.70    cherry 	/*
   1234      1.70    cherry 	 * Copy over the pmap_kernel() shadow L4 entries
   1235      1.70    cherry 	 */
   1236      1.70    cherry 
   1237      1.70    cherry 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
   1238      1.70    cherry 
   1239      1.70    cherry 	/* Recursive kernel mapping */
   1240      1.70    cherry 	ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
   1241      1.70    cherry #elif defined(PAE)
   1242      1.70    cherry 	/* Copy over the pmap_kernel() shadow L2 entries that map the kernel */
   1243      1.70    cherry 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN, nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
   1244      1.70    cherry #endif /* __x86_64__ else PAE */
   1245      1.70    cherry 
   1246      1.70    cherry 	/* Xen wants R/O */
   1247      1.83    bouyer 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
   1248      1.83    bouyer 	    (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
   1249      1.83    bouyer 	pmap_update(pmap_kernel());
   1250      1.70    cherry #if defined(PAE)
   1251      1.70    cherry 	/* Initialise L3 entry 3. This mapping is shared across all
   1252      1.70    cherry 	 * pmaps and is static, ie; loading a new pmap will not update
   1253      1.70    cherry 	 * this entry.
   1254      1.70    cherry 	 */
   1255      1.70    cherry 
   1256      1.70    cherry 	ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
   1257      1.70    cherry 
   1258      1.70    cherry 	/* Mark L3 R/O (Xen wants this) */
   1259      1.83    bouyer 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
   1260      1.83    bouyer 	    (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
   1261      1.83    bouyer 	pmap_update(pmap_kernel());
   1262      1.70    cherry 
   1263      1.70    cherry 	xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
   1264      1.70    cherry 
   1265      1.70    cherry #elif defined(__x86_64__)
   1266      1.70    cherry 	xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
   1267      1.78    cherry #endif /* PAE , __x86_64__ */
   1268      1.70    cherry #endif /* defined(PAE) || defined(__x86_64__) */
   1269      1.70    cherry }
   1270      1.70    cherry 
   1271      1.61    cherry /*
   1272      1.61    cherry  * Notify all other cpus to halt.
   1273      1.61    cherry  */
   1274      1.61    cherry 
   1275      1.61    cherry void
   1276      1.61    cherry cpu_broadcast_halt(void)
   1277      1.61    cherry {
   1278      1.61    cherry 	xen_broadcast_ipi(XEN_IPI_HALT);
   1279      1.61    cherry }
   1280      1.61    cherry 
   1281      1.61    cherry /*
   1282      1.61    cherry  * Send a dummy ipi to a cpu.
   1283      1.61    cherry  */
   1284      1.61    cherry 
   1285      1.61    cherry void
   1286      1.61    cherry cpu_kick(struct cpu_info *ci)
   1287      1.61    cherry {
   1288      1.64  dholland 	(void)xen_send_ipi(ci, XEN_IPI_KICK);
   1289      1.61    cherry }
   1290