Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.93.2.2
      1  1.93.2.1       tls /*	$NetBSD: cpu.c,v 1.93.2.2 2017/12/03 11:36:51 jdolecek Exp $	*/
      2       1.2    bouyer 
      3       1.2    bouyer /*-
      4       1.2    bouyer  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5      1.19     joerg  * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
      6       1.2    bouyer  * All rights reserved.
      7       1.2    bouyer  *
      8       1.2    bouyer  * This code is derived from software contributed to The NetBSD Foundation
      9       1.2    bouyer  * by RedBack Networks Inc.
     10       1.2    bouyer  *
     11       1.2    bouyer  * Author: Bill Sommerfeld
     12       1.2    bouyer  *
     13       1.2    bouyer  * Redistribution and use in source and binary forms, with or without
     14       1.2    bouyer  * modification, are permitted provided that the following conditions
     15       1.2    bouyer  * are met:
     16       1.2    bouyer  * 1. Redistributions of source code must retain the above copyright
     17       1.2    bouyer  *    notice, this list of conditions and the following disclaimer.
     18       1.2    bouyer  * 2. Redistributions in binary form must reproduce the above copyright
     19       1.2    bouyer  *    notice, this list of conditions and the following disclaimer in the
     20       1.2    bouyer  *    documentation and/or other materials provided with the distribution.
     21       1.2    bouyer  *
     22       1.2    bouyer  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23       1.2    bouyer  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24       1.2    bouyer  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25       1.2    bouyer  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26       1.2    bouyer  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27       1.2    bouyer  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28       1.2    bouyer  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29       1.2    bouyer  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30       1.2    bouyer  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31       1.2    bouyer  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32       1.2    bouyer  * POSSIBILITY OF SUCH DAMAGE.
     33       1.2    bouyer  */
     34       1.2    bouyer 
     35       1.2    bouyer /*
     36       1.2    bouyer  * Copyright (c) 1999 Stefan Grefen
     37       1.2    bouyer  *
     38       1.2    bouyer  * Redistribution and use in source and binary forms, with or without
     39       1.2    bouyer  * modification, are permitted provided that the following conditions
     40       1.2    bouyer  * are met:
     41       1.2    bouyer  * 1. Redistributions of source code must retain the above copyright
     42       1.2    bouyer  *    notice, this list of conditions and the following disclaimer.
     43       1.2    bouyer  * 2. Redistributions in binary form must reproduce the above copyright
     44       1.2    bouyer  *    notice, this list of conditions and the following disclaimer in the
     45       1.2    bouyer  *    documentation and/or other materials provided with the distribution.
     46       1.2    bouyer  * 3. All advertising materials mentioning features or use of this software
     47       1.2    bouyer  *    must display the following acknowledgement:
     48       1.2    bouyer  *      This product includes software developed by the NetBSD
     49       1.2    bouyer  *      Foundation, Inc. and its contributors.
     50       1.2    bouyer  * 4. Neither the name of The NetBSD Foundation nor the names of its
     51       1.2    bouyer  *    contributors may be used to endorse or promote products derived
     52       1.2    bouyer  *    from this software without specific prior written permission.
     53       1.2    bouyer  *
     54       1.2    bouyer  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     55       1.2    bouyer  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56       1.2    bouyer  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57       1.2    bouyer  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     58       1.2    bouyer  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59       1.2    bouyer  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60       1.2    bouyer  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61       1.2    bouyer  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62       1.2    bouyer  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63       1.2    bouyer  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64       1.2    bouyer  * SUCH DAMAGE.
     65       1.2    bouyer  */
     66       1.2    bouyer 
     67       1.2    bouyer #include <sys/cdefs.h>
     68  1.93.2.1       tls __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.93.2.2 2017/12/03 11:36:51 jdolecek Exp $");
     69       1.2    bouyer 
     70       1.2    bouyer #include "opt_ddb.h"
     71       1.2    bouyer #include "opt_multiprocessor.h"
     72       1.2    bouyer #include "opt_mpbios.h"		/* for MPDEBUG */
     73       1.2    bouyer #include "opt_mtrr.h"
     74       1.2    bouyer #include "opt_xen.h"
     75       1.2    bouyer 
     76       1.2    bouyer #include "lapic.h"
     77       1.2    bouyer #include "ioapic.h"
     78       1.2    bouyer 
     79       1.2    bouyer #include <sys/param.h>
     80       1.2    bouyer #include <sys/proc.h>
     81       1.2    bouyer #include <sys/systm.h>
     82       1.2    bouyer #include <sys/device.h>
     83      1.31    cegger #include <sys/kmem.h>
     84      1.11    cegger #include <sys/cpu.h>
     85      1.66    jruoho #include <sys/cpufreq.h>
     86      1.11    cegger #include <sys/atomic.h>
     87      1.32    cegger #include <sys/reboot.h>
     88      1.62    cherry #include <sys/idle.h>
     89       1.2    bouyer 
     90      1.51  uebayasi #include <uvm/uvm.h>
     91       1.2    bouyer 
     92  1.93.2.2  jdolecek #include <machine/cpu.h>
     93       1.2    bouyer #include <machine/cpufunc.h>
     94       1.2    bouyer #include <machine/cpuvar.h>
     95       1.2    bouyer #include <machine/pmap.h>
     96       1.2    bouyer #include <machine/vmparam.h>
     97       1.2    bouyer #include <machine/mpbiosvar.h>
     98       1.2    bouyer #include <machine/pcb.h>
     99       1.2    bouyer #include <machine/specialreg.h>
    100       1.2    bouyer #include <machine/segments.h>
    101       1.2    bouyer #include <machine/gdt.h>
    102       1.2    bouyer #include <machine/mtrr.h>
    103       1.2    bouyer #include <machine/pio.h>
    104       1.2    bouyer 
    105  1.93.2.1       tls #include <x86/fpu.h>
    106      1.62    cherry 
    107      1.62    cherry #include <xen/xen.h>
    108      1.71    cegger #include <xen/xen-public/vcpu.h>
    109       1.2    bouyer #include <xen/vcpuvar.h>
    110       1.2    bouyer 
    111       1.2    bouyer #if NLAPIC > 0
    112       1.2    bouyer #include <machine/apicvar.h>
    113       1.2    bouyer #include <machine/i82489reg.h>
    114       1.2    bouyer #include <machine/i82489var.h>
    115       1.2    bouyer #endif
    116       1.2    bouyer 
    117       1.2    bouyer #include <dev/ic/mc146818reg.h>
    118       1.2    bouyer #include <dev/isa/isareg.h>
    119       1.2    bouyer 
    120      1.56    jruoho static int	cpu_match(device_t, cfdata_t, void *);
    121      1.56    jruoho static void	cpu_attach(device_t, device_t, void *);
    122      1.56    jruoho static void	cpu_defer(device_t);
    123      1.56    jruoho static int	cpu_rescan(device_t, const char *, const int *);
    124      1.56    jruoho static void	cpu_childdetached(device_t, device_t);
    125      1.56    jruoho static int	vcpu_match(device_t, cfdata_t, void *);
    126      1.56    jruoho static void	vcpu_attach(device_t, device_t, void *);
    127      1.56    jruoho static void	cpu_attach_common(device_t, device_t, void *);
    128      1.56    jruoho void		cpu_offline_md(void);
    129       1.2    bouyer 
    130       1.2    bouyer struct cpu_softc {
    131      1.10    cegger 	device_t sc_dev;		/* device tree glue */
    132       1.2    bouyer 	struct cpu_info *sc_info;	/* pointer to CPU info */
    133      1.32    cegger 	bool sc_wasonline;
    134       1.2    bouyer };
    135       1.2    bouyer 
    136      1.62    cherry int mp_cpu_start(struct cpu_info *, vaddr_t);
    137       1.2    bouyer void mp_cpu_start_cleanup(struct cpu_info *);
    138       1.2    bouyer const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    139       1.2    bouyer 				      mp_cpu_start_cleanup };
    140       1.2    bouyer 
    141      1.53    jruoho CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    142      1.53    jruoho     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    143      1.53    jruoho 
    144      1.10    cegger CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
    145       1.2    bouyer     vcpu_match, vcpu_attach, NULL, NULL);
    146       1.2    bouyer 
    147       1.2    bouyer /*
    148       1.2    bouyer  * Statically-allocated CPU info for the primary CPU (or the only
    149       1.2    bouyer  * CPU, on uniprocessors).  The CPU info list is initialized to
    150       1.2    bouyer  * point at it.
    151       1.2    bouyer  */
    152      1.38    cegger struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    153       1.7    bouyer 	.ci_dev = 0,
    154       1.2    bouyer 	.ci_self = &cpu_info_primary,
    155       1.4    bouyer 	.ci_idepth = -1,
    156       1.2    bouyer 	.ci_curlwp = &lwp0,
    157      1.25        ad 	.ci_curldt = -1,
    158       1.2    bouyer };
    159      1.38    cegger struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    160       1.7    bouyer 	.ci_dev = 0,
    161       1.2    bouyer 	.ci_self = &phycpu_info_primary,
    162       1.2    bouyer };
    163       1.2    bouyer 
    164       1.2    bouyer struct cpu_info *cpu_info_list = &cpu_info_primary;
    165      1.38    cegger struct cpu_info *phycpu_info_list = &phycpu_info_primary;
    166       1.2    bouyer 
    167  1.93.2.2  jdolecek uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits
    168      1.43       jym 			  *	[0] basic features %edx
    169      1.43       jym 			  *	[1] basic features %ecx
    170      1.43       jym 			  *	[2] extended features %edx
    171      1.43       jym 			  *	[3] extended features %ecx
    172      1.43       jym 			  *	[4] VIA padlock features
    173  1.93.2.2  jdolecek 			  *	[5] structured extended features cpuid.7:%ebx
    174  1.93.2.2  jdolecek 			  *	[6] structured extended features cpuid.7:%ecx
    175      1.43       jym 			  */
    176      1.43       jym 
    177      1.11    cegger bool x86_mp_online;
    178      1.11    cegger paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    179       1.2    bouyer 
    180      1.38    cegger #if defined(MULTIPROCESSOR)
    181       1.2    bouyer void    	cpu_hatch(void *);
    182       1.2    bouyer static void    	cpu_boot_secondary(struct cpu_info *ci);
    183       1.2    bouyer static void    	cpu_start_secondary(struct cpu_info *ci);
    184      1.38    cegger #endif	/* MULTIPROCESSOR */
    185       1.2    bouyer 
    186      1.56    jruoho static int
    187      1.10    cegger cpu_match(device_t parent, cfdata_t match, void *aux)
    188       1.2    bouyer {
    189       1.2    bouyer 
    190       1.2    bouyer 	return 1;
    191       1.2    bouyer }
    192       1.2    bouyer 
    193      1.56    jruoho static void
    194      1.10    cegger cpu_attach(device_t parent, device_t self, void *aux)
    195       1.2    bouyer {
    196      1.10    cegger 	struct cpu_softc *sc = device_private(self);
    197       1.2    bouyer 	struct cpu_attach_args *caa = aux;
    198       1.2    bouyer 	struct cpu_info *ci;
    199      1.34    cegger 	uintptr_t ptr;
    200      1.52    bouyer 	static int nphycpu = 0;
    201       1.2    bouyer 
    202      1.10    cegger 	sc->sc_dev = self;
    203      1.10    cegger 
    204       1.2    bouyer 	/*
    205       1.2    bouyer 	 * If we're an Application Processor, allocate a cpu_info
    206      1.52    bouyer 	 * If we're the first attached CPU use the primary cpu_info,
    207      1.52    bouyer 	 * otherwise allocate a new one
    208       1.2    bouyer 	 */
    209      1.52    bouyer 	aprint_naive("\n");
    210      1.52    bouyer 	aprint_normal("\n");
    211      1.52    bouyer 	if (nphycpu > 0) {
    212      1.52    bouyer 		struct cpu_info *tmp;
    213      1.34    cegger 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    214      1.34    cegger 		    KM_SLEEP);
    215      1.42       jym 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    216      1.24        ad 		ci->ci_curldt = -1;
    217      1.52    bouyer 
    218      1.52    bouyer 		tmp = phycpu_info_list;
    219      1.52    bouyer 		while (tmp->ci_next)
    220      1.52    bouyer 			tmp = tmp->ci_next;
    221      1.52    bouyer 
    222      1.52    bouyer 		tmp->ci_next = ci;
    223       1.2    bouyer 	} else {
    224       1.2    bouyer 		ci = &phycpu_info_primary;
    225       1.2    bouyer 	}
    226       1.2    bouyer 
    227       1.2    bouyer 	ci->ci_self = ci;
    228       1.2    bouyer 	sc->sc_info = ci;
    229       1.2    bouyer 
    230       1.2    bouyer 	ci->ci_dev = self;
    231      1.50    jruoho 	ci->ci_acpiid = caa->cpu_id;
    232      1.23        ad 	ci->ci_cpuid = caa->cpu_number;
    233      1.16    cegger 	ci->ci_vcpu = NULL;
    234      1.52    bouyer 	ci->ci_index = nphycpu++;
    235       1.2    bouyer 
    236      1.52    bouyer 	if (!pmf_device_register(self, NULL, NULL))
    237      1.52    bouyer 		aprint_error_dev(self, "couldn't establish power handler\n");
    238      1.34    cegger 
    239      1.56    jruoho 	(void)config_defer(self, cpu_defer);
    240      1.56    jruoho }
    241      1.56    jruoho 
    242      1.56    jruoho static void
    243      1.56    jruoho cpu_defer(device_t self)
    244      1.56    jruoho {
    245      1.56    jruoho 	cpu_rescan(self, NULL, NULL);
    246       1.2    bouyer }
    247       1.2    bouyer 
    248      1.56    jruoho static int
    249      1.53    jruoho cpu_rescan(device_t self, const char *ifattr, const int *locators)
    250      1.53    jruoho {
    251      1.53    jruoho 	struct cpu_softc *sc = device_private(self);
    252      1.53    jruoho 	struct cpufeature_attach_args cfaa;
    253      1.53    jruoho 	struct cpu_info *ci = sc->sc_info;
    254      1.53    jruoho 
    255      1.53    jruoho 	memset(&cfaa, 0, sizeof(cfaa));
    256      1.53    jruoho 	cfaa.ci = ci;
    257      1.53    jruoho 
    258      1.53    jruoho 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    259      1.53    jruoho 
    260      1.53    jruoho 		if (ci->ci_frequency == NULL) {
    261      1.55    jruoho 			cfaa.name = "frequency";
    262      1.54    jruoho 			ci->ci_frequency = config_found_ia(self,
    263      1.54    jruoho 			    "cpufeaturebus", &cfaa, NULL);
    264      1.54    jruoho 		}
    265      1.53    jruoho 	}
    266      1.53    jruoho 
    267      1.53    jruoho 	return 0;
    268      1.53    jruoho }
    269      1.53    jruoho 
    270      1.56    jruoho static void
    271      1.53    jruoho cpu_childdetached(device_t self, device_t child)
    272      1.53    jruoho {
    273      1.53    jruoho 	struct cpu_softc *sc = device_private(self);
    274      1.53    jruoho 	struct cpu_info *ci = sc->sc_info;
    275      1.53    jruoho 
    276      1.53    jruoho 	if (ci->ci_frequency == child)
    277      1.53    jruoho 		ci->ci_frequency = NULL;
    278      1.53    jruoho }
    279      1.53    jruoho 
    280      1.56    jruoho static int
    281      1.10    cegger vcpu_match(device_t parent, cfdata_t match, void *aux)
    282       1.2    bouyer {
    283       1.2    bouyer 	struct vcpu_attach_args *vcaa = aux;
    284      1.62    cherry 	struct vcpu_runstate_info vcr;
    285      1.62    cherry 	int error;
    286      1.62    cherry 
    287      1.62    cherry 	if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
    288      1.62    cherry 		error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
    289  1.93.2.2  jdolecek 		    vcaa->vcaa_caa.cpu_number, &vcr);
    290      1.62    cherry 		switch (error) {
    291      1.62    cherry 		case 0:
    292      1.62    cherry 			return 1;
    293      1.62    cherry 		case -ENOENT:
    294      1.62    cherry 			return 0;
    295      1.62    cherry 		default:
    296      1.62    cherry 			panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
    297      1.62    cherry 		}
    298      1.62    cherry 	}
    299       1.2    bouyer 
    300       1.2    bouyer 	return 0;
    301       1.2    bouyer }
    302       1.2    bouyer 
    303      1.56    jruoho static void
    304      1.10    cegger vcpu_attach(device_t parent, device_t self, void *aux)
    305       1.2    bouyer {
    306       1.2    bouyer 	struct vcpu_attach_args *vcaa = aux;
    307       1.2    bouyer 
    308      1.62    cherry 	KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
    309      1.62    cherry 	vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
    310       1.2    bouyer 	cpu_attach_common(parent, self, &vcaa->vcaa_caa);
    311      1.65       jym 
    312      1.65       jym 	if (!pmf_device_register(self, NULL, NULL))
    313      1.65       jym 		aprint_error_dev(self, "couldn't establish power handler\n");
    314       1.2    bouyer }
    315       1.2    bouyer 
    316      1.62    cherry static int
    317      1.62    cherry vcpu_is_up(struct cpu_info *ci)
    318      1.62    cherry {
    319      1.62    cherry 	KASSERT(ci != NULL);
    320      1.62    cherry 	return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
    321      1.62    cherry }
    322      1.62    cherry 
    323       1.2    bouyer static void
    324       1.2    bouyer cpu_vm_init(struct cpu_info *ci)
    325       1.2    bouyer {
    326       1.2    bouyer 	int ncolors = 2, i;
    327       1.2    bouyer 
    328       1.2    bouyer 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    329       1.2    bouyer 		struct x86_cache_info *cai;
    330       1.2    bouyer 		int tcolors;
    331       1.2    bouyer 
    332       1.2    bouyer 		cai = &ci->ci_cinfo[i];
    333       1.2    bouyer 
    334       1.2    bouyer 		tcolors = atop(cai->cai_totalsize);
    335  1.93.2.2  jdolecek 		switch (cai->cai_associativity) {
    336       1.2    bouyer 		case 0xff:
    337       1.2    bouyer 			tcolors = 1; /* fully associative */
    338       1.2    bouyer 			break;
    339       1.2    bouyer 		case 0:
    340       1.2    bouyer 		case 1:
    341       1.2    bouyer 			break;
    342       1.2    bouyer 		default:
    343       1.2    bouyer 			tcolors /= cai->cai_associativity;
    344       1.2    bouyer 		}
    345       1.2    bouyer 		ncolors = max(ncolors, tcolors);
    346       1.2    bouyer 	}
    347       1.2    bouyer 
    348       1.2    bouyer 	/*
    349      1.67       mrg 	 * Knowing the size of the largest cache on this CPU, potentially
    350      1.67       mrg 	 * re-color our pages.
    351       1.2    bouyer 	 */
    352      1.28    bouyer 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    353       1.2    bouyer 	uvm_page_recolor(ncolors);
    354      1.91     rmind 	pmap_tlb_cpu_init(ci);
    355  1.93.2.2  jdolecek #ifndef __HAVE_DIRECT_MAP
    356  1.93.2.2  jdolecek 	pmap_vpage_cpu_init(ci);
    357  1.93.2.2  jdolecek #endif
    358       1.2    bouyer }
    359       1.2    bouyer 
    360      1.56    jruoho static void
    361      1.11    cegger cpu_attach_common(device_t parent, device_t self, void *aux)
    362       1.2    bouyer {
    363      1.10    cegger 	struct cpu_softc *sc = device_private(self);
    364       1.2    bouyer 	struct cpu_attach_args *caa = aux;
    365       1.2    bouyer 	struct cpu_info *ci;
    366      1.12    cegger 	uintptr_t ptr;
    367       1.2    bouyer 	int cpunum = caa->cpu_number;
    368      1.38    cegger 	static bool again = false;
    369       1.2    bouyer 
    370      1.10    cegger 	sc->sc_dev = self;
    371      1.10    cegger 
    372       1.2    bouyer 	/*
    373       1.2    bouyer 	 * If we're an Application Processor, allocate a cpu_info
    374       1.2    bouyer 	 * structure, otherwise use the primary's.
    375       1.2    bouyer 	 */
    376       1.2    bouyer 	if (caa->cpu_role == CPU_ROLE_AP) {
    377      1.12    cegger 		aprint_naive(": Application Processor\n");
    378      1.31    cegger 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    379      1.31    cegger 		    KM_SLEEP);
    380      1.42       jym 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    381      1.12    cegger 		memset(ci, 0, sizeof(*ci));
    382       1.2    bouyer 	} else {
    383      1.12    cegger 		aprint_naive(": %s Processor\n",
    384      1.12    cegger 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    385       1.2    bouyer 		ci = &cpu_info_primary;
    386       1.2    bouyer 	}
    387       1.2    bouyer 
    388       1.2    bouyer 	ci->ci_self = ci;
    389       1.2    bouyer 	sc->sc_info = ci;
    390       1.2    bouyer 	ci->ci_dev = self;
    391      1.23        ad 	ci->ci_cpuid = cpunum;
    392      1.16    cegger 
    393      1.16    cegger 	KASSERT(HYPERVISOR_shared_info != NULL);
    394      1.89    bouyer 	KASSERT(cpunum < XEN_LEGACY_MAX_VCPUS);
    395      1.16    cegger 	ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
    396      1.16    cegger 
    397      1.62    cherry 	KASSERT(ci->ci_func == 0);
    398       1.2    bouyer 	ci->ci_func = caa->cpu_func;
    399  1.93.2.2  jdolecek 	aprint_normal("\n");
    400       1.2    bouyer 
    401      1.38    cegger 	/* Must be called before mi_cpu_attach(). */
    402      1.38    cegger 	cpu_vm_init(ci);
    403      1.38    cegger 
    404       1.2    bouyer 	if (caa->cpu_role == CPU_ROLE_AP) {
    405       1.2    bouyer 		int error;
    406       1.2    bouyer 
    407       1.2    bouyer 		error = mi_cpu_attach(ci);
    408      1.62    cherry 
    409      1.62    cherry 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    410       1.2    bouyer 		if (error != 0) {
    411      1.38    cegger 			aprint_error_dev(self,
    412      1.38    cegger 			    "mi_cpu_attach failed with %d\n", error);
    413       1.2    bouyer 			return;
    414       1.2    bouyer 		}
    415      1.62    cherry 
    416       1.2    bouyer 	} else {
    417       1.2    bouyer 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    418       1.2    bouyer 	}
    419       1.2    bouyer 
    420      1.89    bouyer 	KASSERT(ci->ci_cpuid == ci->ci_index);
    421  1.93.2.2  jdolecek #ifdef __x86_64__
    422  1.93.2.2  jdolecek 	/* No user PGD mapped for this CPU yet */
    423  1.93.2.2  jdolecek 	ci->ci_xen_current_user_pgd = 0;
    424  1.93.2.2  jdolecek #endif
    425  1.93.2.2  jdolecek #if defined(__x86_64__) || defined(PAE)
    426  1.93.2.2  jdolecek 	mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
    427  1.93.2.2  jdolecek #endif
    428       1.2    bouyer 	pmap_reference(pmap_kernel());
    429       1.2    bouyer 	ci->ci_pmap = pmap_kernel();
    430       1.2    bouyer 	ci->ci_tlbstate = TLBSTATE_STALE;
    431       1.2    bouyer 
    432      1.38    cegger 	/*
    433      1.38    cegger 	 * Boot processor may not be attached first, but the below
    434      1.38    cegger 	 * must be done to allow booting other processors.
    435      1.38    cegger 	 */
    436      1.38    cegger 	if (!again) {
    437      1.38    cegger 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    438      1.38    cegger 		/* Basic init. */
    439      1.38    cegger 		cpu_intr_init(ci);
    440      1.38    cegger 		cpu_get_tsc_freq(ci);
    441      1.38    cegger 		cpu_init(ci);
    442      1.78    cherry 		pmap_cpu_init_late(ci);
    443      1.62    cherry 
    444  1.93.2.2  jdolecek 		/* Every processor needs to init its own ipi h/w (similar to lapic) */
    445      1.62    cherry 		xen_ipi_init();
    446      1.62    cherry 
    447      1.38    cegger 		/* Make sure DELAY() is initialized. */
    448      1.38    cegger 		DELAY(1);
    449      1.38    cegger 		again = true;
    450      1.38    cegger 	}
    451      1.38    cegger 
    452       1.2    bouyer 	/* further PCB init done later. */
    453       1.2    bouyer 
    454       1.2    bouyer 	switch (caa->cpu_role) {
    455       1.2    bouyer 	case CPU_ROLE_SP:
    456      1.38    cegger 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    457      1.21        ad 		cpu_identify(ci);
    458      1.38    cegger 		x86_cpu_idle_init();
    459       1.2    bouyer 		break;
    460       1.2    bouyer 
    461       1.2    bouyer 	case CPU_ROLE_BP:
    462      1.38    cegger 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    463      1.21        ad 		cpu_identify(ci);
    464      1.38    cegger 		x86_cpu_idle_init();
    465       1.2    bouyer 		break;
    466       1.2    bouyer 
    467       1.2    bouyer 	case CPU_ROLE_AP:
    468      1.62    cherry 		atomic_or_32(&ci->ci_flags, CPUF_AP);
    469      1.62    cherry 
    470       1.2    bouyer 		/*
    471       1.2    bouyer 		 * report on an AP
    472       1.2    bouyer 		 */
    473       1.2    bouyer 
    474       1.2    bouyer #if defined(MULTIPROCESSOR)
    475      1.62    cherry 		/* interrupt handler stack */
    476       1.2    bouyer 		cpu_intr_init(ci);
    477      1.62    cherry 
    478      1.62    cherry 		/* Setup per-cpu memory for gdt */
    479       1.2    bouyer 		gdt_alloc_cpu(ci);
    480      1.62    cherry 
    481      1.62    cherry 		pmap_cpu_init_late(ci);
    482       1.2    bouyer 		cpu_start_secondary(ci);
    483      1.62    cherry 
    484       1.2    bouyer 		if (ci->ci_flags & CPUF_PRESENT) {
    485      1.30    cegger 			struct cpu_info *tmp;
    486      1.30    cegger 
    487      1.62    cherry 			cpu_identify(ci);
    488      1.30    cegger 			tmp = cpu_info_list;
    489      1.30    cegger 			while (tmp->ci_next)
    490      1.30    cegger 				tmp = tmp->ci_next;
    491      1.30    cegger 
    492      1.30    cegger 			tmp->ci_next = ci;
    493       1.2    bouyer 		}
    494       1.2    bouyer #else
    495  1.93.2.2  jdolecek 		aprint_error_dev(ci->ci_dev, "not started\n");
    496       1.2    bouyer #endif
    497       1.2    bouyer 		break;
    498       1.2    bouyer 
    499       1.2    bouyer 	default:
    500       1.2    bouyer 		panic("unknown processor type??\n");
    501       1.2    bouyer 	}
    502       1.2    bouyer 
    503      1.62    cherry #ifdef MPVERBOSE
    504       1.2    bouyer 	if (mp_verbose) {
    505       1.2    bouyer 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    506      1.37     rmind 		struct pcb *pcb = lwp_getpcb(l);
    507       1.2    bouyer 
    508      1.38    cegger 		aprint_verbose_dev(self,
    509      1.38    cegger 		    "idle lwp at %p, idle sp at 0x%p\n",
    510      1.12    cegger 		    l,
    511      1.12    cegger #ifdef i386
    512      1.37     rmind 		    (void *)pcb->pcb_esp
    513  1.93.2.2  jdolecek #else
    514      1.37     rmind 		    (void *)pcb->pcb_rsp
    515  1.93.2.2  jdolecek #endif
    516      1.12    cegger 		);
    517      1.12    cegger 
    518       1.2    bouyer 	}
    519      1.62    cherry #endif /* MPVERBOSE */
    520       1.2    bouyer }
    521       1.2    bouyer 
    522       1.2    bouyer /*
    523       1.2    bouyer  * Initialize the processor appropriately.
    524       1.2    bouyer  */
    525       1.2    bouyer 
    526       1.2    bouyer void
    527      1.10    cegger cpu_init(struct cpu_info *ci)
    528       1.2    bouyer {
    529       1.2    bouyer 
    530       1.2    bouyer 	/*
    531       1.2    bouyer 	 * If we have FXSAVE/FXRESTOR, use them.
    532       1.2    bouyer 	 */
    533      1.43       jym 	if (cpu_feature[0] & CPUID_FXSR) {
    534       1.2    bouyer 		lcr4(rcr4() | CR4_OSFXSR);
    535       1.2    bouyer 
    536       1.2    bouyer 		/*
    537       1.2    bouyer 		 * If we have SSE/SSE2, enable XMM exceptions.
    538       1.2    bouyer 		 */
    539      1.43       jym 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    540       1.2    bouyer 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    541       1.2    bouyer 	}
    542       1.2    bouyer 
    543  1.93.2.2  jdolecek 	if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
    544  1.93.2.2  jdolecek 		fpuinit_mxcsr_mask();
    545  1.93.2.2  jdolecek 	}
    546      1.47       jym 
    547      1.11    cegger 	atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    548       1.2    bouyer }
    549       1.2    bouyer 
    550       1.2    bouyer 
    551       1.2    bouyer #ifdef MULTIPROCESSOR
    552      1.62    cherry 
    553       1.2    bouyer void
    554      1.10    cegger cpu_boot_secondary_processors(void)
    555       1.2    bouyer {
    556       1.2    bouyer 	struct cpu_info *ci;
    557       1.2    bouyer 	u_long i;
    558      1.38    cegger 	for (i = 0; i < maxcpus; i++) {
    559      1.38    cegger 		ci = cpu_lookup(i);
    560       1.2    bouyer 		if (ci == NULL)
    561       1.2    bouyer 			continue;
    562       1.2    bouyer 		if (ci->ci_data.cpu_idlelwp == NULL)
    563       1.2    bouyer 			continue;
    564       1.2    bouyer 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    565       1.2    bouyer 			continue;
    566       1.2    bouyer 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    567       1.2    bouyer 			continue;
    568       1.2    bouyer 		cpu_boot_secondary(ci);
    569       1.2    bouyer 	}
    570      1.11    cegger 
    571      1.11    cegger 	x86_mp_online = true;
    572       1.2    bouyer }
    573       1.2    bouyer 
    574       1.2    bouyer static void
    575       1.2    bouyer cpu_init_idle_lwp(struct cpu_info *ci)
    576       1.2    bouyer {
    577       1.2    bouyer 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    578      1.37     rmind 	struct pcb *pcb = lwp_getpcb(l);
    579       1.2    bouyer 
    580       1.2    bouyer 	pcb->pcb_cr0 = rcr0();
    581       1.2    bouyer }
    582       1.2    bouyer 
    583       1.2    bouyer void
    584      1.10    cegger cpu_init_idle_lwps(void)
    585       1.2    bouyer {
    586       1.2    bouyer 	struct cpu_info *ci;
    587       1.2    bouyer 	u_long i;
    588       1.2    bouyer 
    589      1.38    cegger 	for (i = 0; i < maxcpus; i++) {
    590      1.38    cegger 		ci = cpu_lookup(i);
    591       1.2    bouyer 		if (ci == NULL)
    592       1.2    bouyer 			continue;
    593       1.2    bouyer 		if (ci->ci_data.cpu_idlelwp == NULL)
    594       1.2    bouyer 			continue;
    595       1.2    bouyer 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    596       1.2    bouyer 			continue;
    597       1.2    bouyer 		cpu_init_idle_lwp(ci);
    598       1.2    bouyer 	}
    599       1.2    bouyer }
    600       1.2    bouyer 
    601      1.62    cherry static void
    602      1.10    cegger cpu_start_secondary(struct cpu_info *ci)
    603       1.2    bouyer {
    604       1.2    bouyer 	int i;
    605       1.2    bouyer 
    606      1.11    cegger 	aprint_debug_dev(ci->ci_dev, "starting\n");
    607       1.2    bouyer 
    608       1.2    bouyer 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    609      1.62    cherry 
    610      1.62    cherry 	if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
    611      1.11    cegger 		return;
    612      1.62    cherry 	}
    613       1.2    bouyer 
    614       1.2    bouyer 	/*
    615       1.2    bouyer 	 * wait for it to become ready
    616       1.2    bouyer 	 */
    617      1.11    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    618       1.2    bouyer 		delay(10);
    619       1.2    bouyer 	}
    620      1.11    cegger 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    621       1.9    cegger 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    622       1.2    bouyer #if defined(MPDEBUG) && defined(DDB)
    623       1.2    bouyer 		printf("dropping into debugger; continue from here to resume boot\n");
    624       1.2    bouyer 		Debugger();
    625       1.2    bouyer #endif
    626       1.2    bouyer 	}
    627       1.2    bouyer 
    628       1.2    bouyer 	CPU_START_CLEANUP(ci);
    629       1.2    bouyer }
    630       1.2    bouyer 
    631       1.2    bouyer void
    632      1.10    cegger cpu_boot_secondary(struct cpu_info *ci)
    633       1.2    bouyer {
    634       1.2    bouyer 	int i;
    635      1.11    cegger 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    636      1.11    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    637       1.2    bouyer 		delay(10);
    638       1.2    bouyer 	}
    639      1.11    cegger 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    640      1.11    cegger 		aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
    641       1.2    bouyer #if defined(MPDEBUG) && defined(DDB)
    642       1.2    bouyer 		printf("dropping into debugger; continue from here to resume boot\n");
    643       1.2    bouyer 		Debugger();
    644       1.2    bouyer #endif
    645       1.2    bouyer 	}
    646       1.2    bouyer }
    647       1.2    bouyer 
    648       1.2    bouyer /*
    649      1.62    cherry  * APs end up here immediately after initialisation and VCPUOP_up in
    650      1.62    cherry  * mp_cpu_start().
    651      1.62    cherry  * At this point, we are running in the idle pcb/idle stack of the new
    652      1.62    cherry  * CPU.  This function jumps to the idle loop and starts looking for
    653      1.62    cherry  * work.
    654       1.2    bouyer  */
    655      1.62    cherry extern void x86_64_tls_switch(struct lwp *);
    656       1.2    bouyer void
    657       1.2    bouyer cpu_hatch(void *v)
    658       1.2    bouyer {
    659       1.2    bouyer 	struct cpu_info *ci = (struct cpu_info *)v;
    660      1.37     rmind 	struct pcb *pcb;
    661      1.11    cegger 	int s, i;
    662      1.11    cegger 
    663      1.62    cherry 	/* Setup TLS and kernel GS/FS */
    664      1.62    cherry 	cpu_init_msrs(ci, true);
    665      1.62    cherry 	cpu_init_idt();
    666      1.62    cherry 	gdt_init_cpu(ci);
    667      1.62    cherry 
    668      1.21        ad 	cpu_probe(ci);
    669      1.11    cegger 
    670      1.62    cherry 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    671       1.2    bouyer 
    672      1.11    cegger 	while ((ci->ci_flags & CPUF_GO) == 0) {
    673      1.11    cegger 		/* Don't use delay, boot CPU may be patching the text. */
    674      1.11    cegger 		for (i = 10000; i != 0; i--)
    675      1.11    cegger 			x86_pause();
    676      1.11    cegger 	}
    677       1.2    bouyer 
    678      1.11    cegger 	/* Because the text may have been patched in x86_patch(). */
    679      1.11    cegger 	x86_flush();
    680      1.58     rmind 	tlbflushg();
    681       1.2    bouyer 
    682      1.11    cegger 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    683       1.2    bouyer 
    684      1.37     rmind 	pcb = lwp_getpcb(curlwp);
    685      1.85    cherry 	pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
    686      1.37     rmind 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    687      1.37     rmind 
    688      1.62    cherry 	xen_ipi_init();
    689      1.62    cherry 
    690      1.62    cherry 	xen_initclocks();
    691  1.93.2.2  jdolecek 
    692      1.62    cherry #ifdef __x86_64__
    693      1.12    cegger 	fpuinit(ci);
    694      1.12    cegger #endif
    695       1.2    bouyer 
    696       1.2    bouyer 	lldt(GSEL(GLDT_SEL, SEL_KPL));
    697       1.2    bouyer 
    698       1.2    bouyer 	cpu_init(ci);
    699      1.11    cegger 	cpu_get_tsc_freq(ci);
    700       1.2    bouyer 
    701       1.2    bouyer 	s = splhigh();
    702      1.11    cegger 	x86_enable_intr();
    703      1.11    cegger 	splx(s);
    704       1.2    bouyer 
    705      1.62    cherry 	aprint_debug_dev(ci->ci_dev, "running\n");
    706      1.62    cherry 
    707      1.62    cherry 	cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
    708      1.62    cherry 
    709      1.91     rmind 	idle_loop(NULL);
    710      1.91     rmind 	KASSERT(false);
    711       1.2    bouyer }
    712       1.2    bouyer 
    713       1.2    bouyer #if defined(DDB)
    714       1.2    bouyer 
    715       1.2    bouyer #include <ddb/db_output.h>
    716       1.2    bouyer #include <machine/db_machdep.h>
    717       1.2    bouyer 
    718       1.2    bouyer /*
    719       1.2    bouyer  * Dump CPU information from ddb.
    720       1.2    bouyer  */
    721       1.2    bouyer void
    722       1.2    bouyer cpu_debug_dump(void)
    723       1.2    bouyer {
    724       1.2    bouyer 	struct cpu_info *ci;
    725       1.2    bouyer 	CPU_INFO_ITERATOR cii;
    726       1.2    bouyer 
    727      1.13      yamt 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    728       1.2    bouyer 	for (CPU_INFO_FOREACH(cii, ci)) {
    729       1.2    bouyer 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    730       1.2    bouyer 		    ci,
    731       1.9    cegger 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    732      1.12    cegger 		    (long)ci->ci_cpuid,
    733       1.2    bouyer 		    ci->ci_flags, ci->ci_ipis,
    734       1.2    bouyer 		    ci->ci_curlwp,
    735       1.2    bouyer 		    ci->ci_fpcurlwp);
    736       1.2    bouyer 	}
    737       1.2    bouyer }
    738      1.38    cegger #endif /* DDB */
    739       1.2    bouyer 
    740      1.62    cherry #endif /* MULTIPROCESSOR */
    741      1.62    cherry 
    742      1.62    cherry extern void hypervisor_callback(void);
    743      1.62    cherry extern void failsafe_callback(void);
    744      1.62    cherry #ifdef __x86_64__
    745      1.62    cherry typedef void (vector)(void);
    746      1.62    cherry extern vector Xsyscall, Xsyscall32;
    747      1.62    cherry #endif
    748      1.62    cherry 
    749      1.62    cherry /*
    750      1.62    cherry  * Setup the "trampoline". On Xen, we setup nearly all cpu context
    751      1.62    cherry  * outside a trampoline, so we prototype and call targetip like so:
    752      1.62    cherry  * void targetip(struct cpu_info *);
    753      1.62    cherry  */
    754      1.62    cherry 
    755       1.2    bouyer static void
    756      1.62    cherry gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
    757       1.2    bouyer {
    758  1.93.2.2  jdolecek 	int i;
    759  1.93.2.2  jdolecek 	for (i = 0; i < entries; i++) {
    760  1.93.2.2  jdolecek 		frames[i] = ((paddr_t)xpmap_ptetomach(
    761  1.93.2.2  jdolecek 		    (pt_entry_t *)(base + (i << PAGE_SHIFT)))) >> PAGE_SHIFT;
    762      1.62    cherry 
    763      1.62    cherry 		/* Mark Read-only */
    764      1.62    cherry 		pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
    765      1.62    cherry 		    PG_RW);
    766      1.62    cherry 	}
    767      1.62    cherry }
    768      1.62    cherry 
    769      1.62    cherry #ifdef __x86_64__
    770      1.85    cherry extern char *ldtstore;
    771      1.62    cherry 
    772      1.62    cherry static void
    773  1.93.2.2  jdolecek xen_init_amd64_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
    774  1.93.2.2  jdolecek     void targetrip(struct cpu_info *))
    775      1.62    cherry {
    776      1.62    cherry 	/* page frames to point at GDT */
    777      1.62    cherry 	extern int gdt_size;
    778      1.62    cherry 	paddr_t frames[16];
    779      1.62    cherry 	psize_t gdt_ents;
    780      1.62    cherry 
    781      1.62    cherry 	struct lwp *l;
    782      1.62    cherry 	struct pcb *pcb;
    783      1.62    cherry 
    784      1.62    cherry 	volatile struct vcpu_info *vci;
    785      1.62    cherry 
    786      1.62    cherry 	KASSERT(ci != NULL);
    787      1.62    cherry 	KASSERT(ci != &cpu_info_primary);
    788      1.62    cherry 	KASSERT(initctx != NULL);
    789      1.62    cherry 	KASSERT(targetrip != NULL);
    790      1.62    cherry 
    791  1.93.2.2  jdolecek 	memset(initctx, 0, sizeof(*initctx));
    792      1.62    cherry 
    793  1.93.2.2  jdolecek 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
    794      1.62    cherry 	KASSERT(gdt_ents <= 16);
    795      1.62    cherry 
    796  1.93.2.2  jdolecek 	gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
    797      1.62    cherry 
    798      1.62    cherry 	/* Initialise the vcpu context: We use idle_loop()'s pcb context. */
    799      1.11    cegger 
    800      1.62    cherry 	l = ci->ci_data.cpu_idlelwp;
    801      1.11    cegger 
    802      1.62    cherry 	KASSERT(l != NULL);
    803      1.62    cherry 	pcb = lwp_getpcb(l);
    804      1.62    cherry 	KASSERT(pcb != NULL);
    805      1.11    cegger 
    806      1.62    cherry 	/* resume with interrupts off */
    807      1.62    cherry 	vci = ci->ci_vcpu;
    808      1.62    cherry 	vci->evtchn_upcall_mask = 1;
    809      1.62    cherry 	xen_mb();
    810       1.2    bouyer 
    811      1.62    cherry 	/* resume in kernel-mode */
    812      1.62    cherry 	initctx->flags = VGCF_in_kernel | VGCF_online;
    813       1.2    bouyer 
    814      1.62    cherry 	/* Stack and entry points:
    815      1.62    cherry 	 * We arrange for the stack frame for cpu_hatch() to
    816      1.62    cherry 	 * appear as a callee frame of lwp_trampoline(). Being a
    817      1.62    cherry 	 * leaf frame prevents trampling on any of the MD stack setup
    818      1.62    cherry 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    819      1.62    cherry 	 */
    820       1.2    bouyer 
    821      1.62    cherry 	initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
    822      1.62    cherry 	initctx->user_regs.rip = (vaddr_t) targetrip;
    823       1.2    bouyer 
    824      1.62    cherry 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    825      1.11    cegger 
    826      1.62    cherry 	initctx->user_regs.rflags = pcb->pcb_flags;
    827      1.62    cherry 	initctx->user_regs.rsp = pcb->pcb_rsp;
    828      1.11    cegger 
    829      1.62    cherry 	/* Data segments */
    830      1.62    cherry 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
    831      1.62    cherry 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
    832      1.62    cherry 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
    833      1.62    cherry 
    834      1.62    cherry 	/* GDT */
    835  1.93.2.2  jdolecek 	memcpy(initctx->gdt_frames, frames, sizeof(frames));
    836      1.62    cherry 	initctx->gdt_ents = gdt_ents;
    837      1.62    cherry 
    838      1.62    cherry 	/* LDT */
    839  1.93.2.2  jdolecek 	initctx->ldt_base = (unsigned long)ldtstore;
    840      1.62    cherry 	initctx->ldt_ents = LDT_SIZE >> 3;
    841      1.62    cherry 
    842      1.62    cherry 	/* Kernel context state */
    843      1.62    cherry 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
    844      1.62    cherry 	initctx->kernel_sp = pcb->pcb_rsp0;
    845      1.62    cherry 	initctx->ctrlreg[0] = pcb->pcb_cr0;
    846      1.62    cherry 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
    847  1.93.2.2  jdolecek 	initctx->ctrlreg[2] = (vaddr_t)targetrip;
    848  1.93.2.2  jdolecek 	/*
    849      1.62    cherry 	 * Use pmap_kernel() L4 PD directly, until we setup the
    850      1.62    cherry 	 * per-cpu L4 PD in pmap_cpu_init_late()
    851       1.2    bouyer 	 */
    852      1.70    cherry 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
    853      1.62    cherry 	initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
    854       1.2    bouyer 
    855      1.62    cherry 	/* Xen callbacks */
    856  1.93.2.2  jdolecek 	initctx->event_callback_eip = (unsigned long)hypervisor_callback;
    857  1.93.2.2  jdolecek 	initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
    858  1.93.2.2  jdolecek 	initctx->syscall_callback_eip = (unsigned long)Xsyscall;
    859      1.62    cherry 
    860      1.62    cherry 	return;
    861       1.2    bouyer }
    862      1.62    cherry #else /* i386 */
    863  1.93.2.2  jdolecek extern union descriptor *ldtstore;
    864      1.62    cherry extern void Xsyscall(void);
    865      1.62    cherry 
    866      1.11    cegger static void
    867  1.93.2.2  jdolecek xen_init_i386_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
    868  1.93.2.2  jdolecek     void targeteip(struct cpu_info *))
    869      1.62    cherry {
    870      1.62    cherry 	/* page frames to point at GDT */
    871      1.62    cherry 	extern int gdt_size;
    872      1.62    cherry 	paddr_t frames[16];
    873      1.62    cherry 	psize_t gdt_ents;
    874      1.62    cherry 
    875      1.62    cherry 	struct lwp *l;
    876      1.62    cherry 	struct pcb *pcb;
    877      1.62    cherry 
    878      1.62    cherry 	volatile struct vcpu_info *vci;
    879      1.62    cherry 
    880      1.62    cherry 	KASSERT(ci != NULL);
    881      1.62    cherry 	KASSERT(ci != &cpu_info_primary);
    882      1.62    cherry 	KASSERT(initctx != NULL);
    883      1.62    cherry 	KASSERT(targeteip != NULL);
    884      1.62    cherry 
    885  1.93.2.2  jdolecek 	memset(initctx, 0, sizeof(*initctx));
    886      1.11    cegger 
    887      1.85    cherry 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
    888      1.62    cherry 	KASSERT(gdt_ents <= 16);
    889       1.2    bouyer 
    890  1.93.2.2  jdolecek 	gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
    891       1.2    bouyer 
    892      1.62    cherry 	/*
    893      1.62    cherry 	 * Initialise the vcpu context:
    894      1.62    cherry 	 * We use this cpu's idle_loop() pcb context.
    895      1.11    cegger 	 */
    896      1.11    cegger 
    897      1.62    cherry 	l = ci->ci_data.cpu_idlelwp;
    898      1.62    cherry 
    899      1.62    cherry 	KASSERT(l != NULL);
    900      1.62    cherry 	pcb = lwp_getpcb(l);
    901      1.62    cherry 	KASSERT(pcb != NULL);
    902      1.62    cherry 
    903      1.62    cherry 	/* resume with interrupts off */
    904      1.62    cherry 	vci = ci->ci_vcpu;
    905      1.62    cherry 	vci->evtchn_upcall_mask = 1;
    906      1.62    cherry 	xen_mb();
    907      1.62    cherry 
    908      1.62    cherry 	/* resume in kernel-mode */
    909      1.62    cherry 	initctx->flags = VGCF_in_kernel | VGCF_online;
    910      1.62    cherry 
    911      1.62    cherry 	/* Stack frame setup for cpu_hatch():
    912      1.62    cherry 	 * We arrange for the stack frame for cpu_hatch() to
    913      1.62    cherry 	 * appear as a callee frame of lwp_trampoline(). Being a
    914      1.62    cherry 	 * leaf frame prevents trampling on any of the MD stack setup
    915      1.62    cherry 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    916       1.2    bouyer 	 */
    917       1.2    bouyer 
    918      1.62    cherry 	initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
    919      1.62    cherry 						      arg1 */
    920  1.93.2.2  jdolecek 	{
    921  1.93.2.2  jdolecek 		/* targeteip(ci); */
    922  1.93.2.2  jdolecek 		uint32_t *arg = (uint32_t *)initctx->user_regs.esp;
    923  1.93.2.2  jdolecek 		arg[1] = (uint32_t)ci; /* arg1 */
    924      1.62    cherry 	}
    925       1.2    bouyer 
    926  1.93.2.2  jdolecek 	initctx->user_regs.eip = (vaddr_t)targeteip;
    927      1.62    cherry 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    928      1.62    cherry 	initctx->user_regs.eflags |= pcb->pcb_iopl;
    929      1.62    cherry 
    930      1.62    cherry 	/* Data segments */
    931      1.62    cherry 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
    932      1.62    cherry 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
    933      1.62    cherry 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
    934      1.62    cherry 	initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
    935      1.62    cherry 
    936      1.62    cherry 	/* GDT */
    937  1.93.2.2  jdolecek 	memcpy(initctx->gdt_frames, frames, sizeof(frames));
    938      1.62    cherry 	initctx->gdt_ents = gdt_ents;
    939      1.62    cherry 
    940      1.62    cherry 	/* LDT */
    941  1.93.2.2  jdolecek 	initctx->ldt_base = (unsigned long)ldtstore;
    942      1.62    cherry 	initctx->ldt_ents = NLDT;
    943      1.62    cherry 
    944      1.62    cherry 	/* Kernel context state */
    945      1.62    cherry 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
    946      1.62    cherry 	initctx->kernel_sp = pcb->pcb_esp0;
    947      1.62    cherry 	initctx->ctrlreg[0] = pcb->pcb_cr0;
    948      1.62    cherry 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
    949  1.93.2.2  jdolecek 	initctx->ctrlreg[2] = (vaddr_t)targeteip;
    950      1.70    cherry #ifdef PAE
    951      1.70    cherry 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
    952  1.93.2.2  jdolecek #else
    953      1.70    cherry 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
    954  1.93.2.2  jdolecek #endif
    955  1.93.2.2  jdolecek 	initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;
    956       1.2    bouyer 
    957      1.62    cherry 	/* Xen callbacks */
    958  1.93.2.2  jdolecek 	initctx->event_callback_eip = (unsigned long)hypervisor_callback;
    959      1.62    cherry 	initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
    960  1.93.2.2  jdolecek 	initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
    961      1.62    cherry 	initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
    962      1.45     rmind 
    963      1.62    cherry 	return;
    964      1.62    cherry }
    965      1.62    cherry #endif /* __x86_64__ */
    966      1.45     rmind 
    967      1.62    cherry int
    968      1.62    cherry mp_cpu_start(struct cpu_info *ci, vaddr_t target)
    969      1.62    cherry {
    970      1.62    cherry 	int hyperror;
    971      1.62    cherry 	struct vcpu_guest_context vcpuctx;
    972       1.2    bouyer 
    973      1.62    cherry 	KASSERT(ci != NULL);
    974      1.62    cherry 	KASSERT(ci != &cpu_info_primary);
    975      1.62    cherry 	KASSERT(ci->ci_flags & CPUF_AP);
    976      1.62    cherry 
    977      1.62    cherry #ifdef __x86_64__
    978      1.62    cherry 	xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
    979  1.93.2.2  jdolecek #else
    980      1.62    cherry 	xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
    981  1.93.2.2  jdolecek #endif
    982      1.62    cherry 
    983      1.62    cherry 	/* Initialise the given vcpu to execute cpu_hatch(ci); */
    984      1.62    cherry 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
    985      1.62    cherry 		aprint_error(": context initialisation failed. errno = %d\n", hyperror);
    986      1.62    cherry 		return hyperror;
    987      1.62    cherry 	}
    988      1.62    cherry 
    989      1.62    cherry 	/* Start it up */
    990      1.62    cherry 
    991      1.70    cherry 	/* First bring it down */
    992      1.62    cherry 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
    993      1.62    cherry 		aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
    994      1.62    cherry 		return hyperror;
    995      1.62    cherry 	}
    996      1.62    cherry 
    997      1.62    cherry 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
    998      1.62    cherry 		aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
    999      1.62    cherry 		return hyperror;
   1000      1.62    cherry 	}
   1001       1.2    bouyer 
   1002      1.62    cherry 	if (!vcpu_is_up(ci)) {
   1003      1.62    cherry 		aprint_error(": did not come up\n");
   1004      1.62    cherry 		return -1;
   1005       1.2    bouyer 	}
   1006      1.62    cherry 
   1007       1.2    bouyer 	return 0;
   1008       1.2    bouyer }
   1009       1.2    bouyer 
   1010       1.2    bouyer void
   1011       1.2    bouyer mp_cpu_start_cleanup(struct cpu_info *ci)
   1012       1.2    bouyer {
   1013      1.62    cherry 	if (vcpu_is_up(ci)) {
   1014      1.62    cherry 		aprint_debug_dev(ci->ci_dev, "is started.\n");
   1015  1.93.2.2  jdolecek 	} else {
   1016      1.62    cherry 		aprint_error_dev(ci->ci_dev, "did not start up.\n");
   1017      1.62    cherry 	}
   1018       1.2    bouyer }
   1019       1.2    bouyer 
   1020       1.2    bouyer void
   1021       1.3    bouyer cpu_init_msrs(struct cpu_info *ci, bool full)
   1022       1.2    bouyer {
   1023      1.43       jym #ifdef __x86_64__
   1024       1.3    bouyer 	if (full) {
   1025  1.93.2.2  jdolecek 		HYPERVISOR_set_segment_base(SEGBASE_FS, 0);
   1026  1.93.2.2  jdolecek 		HYPERVISOR_set_segment_base(SEGBASE_GS_KERNEL, (uint64_t)ci);
   1027  1.93.2.2  jdolecek 		HYPERVISOR_set_segment_base(SEGBASE_GS_USER, 0);
   1028       1.3    bouyer 	}
   1029  1.93.2.2  jdolecek #endif
   1030      1.44       jym 
   1031      1.44       jym 	if (cpu_feature[2] & CPUID_NOX)
   1032      1.44       jym 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1033       1.2    bouyer }
   1034       1.2    bouyer 
   1035      1.11    cegger void
   1036      1.11    cegger cpu_offline_md(void)
   1037      1.11    cegger {
   1038  1.93.2.2  jdolecek 	int s;
   1039      1.11    cegger 
   1040  1.93.2.2  jdolecek 	s = splhigh();
   1041  1.93.2.2  jdolecek 	fpusave_cpu(true);
   1042  1.93.2.2  jdolecek 	splx(s);
   1043      1.11    cegger }
   1044      1.11    cegger 
   1045  1.93.2.2  jdolecek void
   1046       1.2    bouyer cpu_get_tsc_freq(struct cpu_info *ci)
   1047       1.2    bouyer {
   1048      1.62    cherry 	uint32_t vcpu_tversion;
   1049      1.16    cegger 	const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
   1050      1.62    cherry 
   1051      1.62    cherry 	vcpu_tversion = tinfo->version;
   1052      1.62    cherry 	while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
   1053      1.62    cherry 
   1054       1.2    bouyer 	uint64_t freq = 1000000000ULL << 32;
   1055       1.2    bouyer 	freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
   1056  1.93.2.2  jdolecek 	if (tinfo->tsc_shift < 0)
   1057       1.2    bouyer 		freq = freq << -tinfo->tsc_shift;
   1058       1.2    bouyer 	else
   1059       1.2    bouyer 		freq = freq >> tinfo->tsc_shift;
   1060      1.20        ad 	ci->ci_data.cpu_cc_freq = freq;
   1061       1.2    bouyer }
   1062      1.19     joerg 
   1063      1.19     joerg void
   1064      1.19     joerg x86_cpu_idle_xen(void)
   1065      1.19     joerg {
   1066      1.19     joerg 	struct cpu_info *ci = curcpu();
   1067      1.62    cherry 
   1068      1.19     joerg 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1069      1.19     joerg 
   1070      1.19     joerg 	x86_disable_intr();
   1071      1.19     joerg 	if (!__predict_false(ci->ci_want_resched)) {
   1072      1.19     joerg 		idle_block();
   1073      1.19     joerg 	} else {
   1074      1.19     joerg 		x86_enable_intr();
   1075      1.19     joerg 	}
   1076      1.19     joerg }
   1077      1.47       jym 
   1078      1.47       jym /*
   1079      1.47       jym  * Loads pmap for the current CPU.
   1080      1.47       jym  */
   1081      1.47       jym void
   1082      1.81    bouyer cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
   1083      1.47       jym {
   1084      1.84    cherry 	KASSERT(pmap != pmap_kernel());
   1085      1.91     rmind 
   1086      1.81    bouyer #if defined(__x86_64__) || defined(PAE)
   1087      1.81    bouyer 	struct cpu_info *ci = curcpu();
   1088      1.92     rmind 	cpuid_t cid = cpu_index(ci);
   1089      1.81    bouyer 
   1090      1.81    bouyer 	mutex_enter(&ci->ci_kpm_mtx);
   1091      1.93       jym 	/* make new pmap visible to xen_kpm_sync() */
   1092      1.92     rmind 	kcpuset_atomic_set(pmap->pm_xen_ptp_cpus, cid);
   1093      1.81    bouyer #endif
   1094  1.93.2.2  jdolecek 
   1095      1.47       jym #ifdef i386
   1096      1.47       jym #ifdef PAE
   1097      1.81    bouyer 	{
   1098      1.81    bouyer 		int i;
   1099      1.81    bouyer 		paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
   1100      1.81    bouyer 		/* don't update the kernel L3 slot */
   1101      1.81    bouyer 		for (i = 0 ; i < PDP_SIZE - 1; i++) {
   1102      1.81    bouyer 			xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
   1103      1.81    bouyer 			    xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
   1104      1.81    bouyer 		}
   1105      1.81    bouyer 		tlbflush();
   1106      1.47       jym 	}
   1107      1.47       jym #else /* PAE */
   1108      1.47       jym 	lcr3(pmap_pdirpa(pmap, 0));
   1109      1.47       jym #endif /* PAE */
   1110      1.47       jym #endif /* i386 */
   1111      1.47       jym 
   1112      1.47       jym #ifdef __x86_64__
   1113      1.81    bouyer 	{
   1114      1.81    bouyer 		int i;
   1115      1.81    bouyer 		pd_entry_t *new_pgd;
   1116      1.81    bouyer 		paddr_t l4_pd_ma;
   1117      1.81    bouyer 
   1118      1.81    bouyer 		l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
   1119      1.47       jym 
   1120      1.81    bouyer 		/*
   1121      1.81    bouyer 		 * Map user space address in kernel space and load
   1122      1.81    bouyer 		 * user cr3
   1123      1.81    bouyer 		 */
   1124      1.81    bouyer 		new_pgd = pmap->pm_pdir;
   1125      1.81    bouyer 		KASSERT(pmap == ci->ci_pmap);
   1126      1.70    cherry 
   1127      1.81    bouyer 		/* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
   1128      1.81    bouyer 		for (i = 0; i < PDIR_SLOT_PTE; i++) {
   1129      1.81    bouyer 			KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
   1130      1.81    bouyer 			if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
   1131      1.81    bouyer 				xpq_queue_pte_update(
   1132  1.93.2.2  jdolecek 				    l4_pd_ma + i * sizeof(pd_entry_t),
   1133      1.81    bouyer 				    new_pgd[i]);
   1134      1.81    bouyer 			}
   1135      1.81    bouyer 		}
   1136      1.70    cherry 
   1137      1.84    cherry 		xen_set_user_pgd(pmap_pdirpa(pmap, 0));
   1138      1.84    cherry 		ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
   1139      1.70    cherry 
   1140      1.81    bouyer 		tlbflush();
   1141      1.70    cherry 	}
   1142      1.47       jym #endif /* __x86_64__ */
   1143  1.93.2.2  jdolecek 
   1144      1.81    bouyer #if defined(__x86_64__) || defined(PAE)
   1145      1.93       jym 	/* old pmap no longer visible to xen_kpm_sync() */
   1146      1.92     rmind 	if (oldpmap != pmap_kernel()) {
   1147      1.92     rmind 		kcpuset_atomic_clear(oldpmap->pm_xen_ptp_cpus, cid);
   1148      1.92     rmind 	}
   1149      1.81    bouyer 	mutex_exit(&ci->ci_kpm_mtx);
   1150      1.81    bouyer #endif
   1151      1.47       jym }
   1152      1.61    cherry 
   1153  1.93.2.2  jdolecek /*
   1154  1.93.2.2  jdolecek  * pmap_cpu_init_late: perform late per-CPU initialization.
   1155  1.93.2.2  jdolecek  *
   1156  1.93.2.2  jdolecek  * Short note about percpu PDIR pages. Both the PAE and __x86_64__ architectures
   1157  1.93.2.2  jdolecek  * have per-cpu PDIR tables, for two different reasons:
   1158  1.93.2.2  jdolecek  *  - on PAE, this is to get around Xen's pagetable setup constraints (multiple
   1159  1.93.2.2  jdolecek  *    L3[3]s cannot point to the same L2 - Xen will refuse to pin a table set up
   1160  1.93.2.2  jdolecek  *    this way).
   1161  1.93.2.2  jdolecek  *  - on __x86_64__, this is for multiple CPUs to map in different user pmaps
   1162  1.93.2.2  jdolecek  *    (see cpu_load_pmap()).
   1163  1.93.2.2  jdolecek  *
   1164  1.93.2.2  jdolecek  * What this means for us is that the PDIR of the pmap_kernel() is considered
   1165  1.93.2.2  jdolecek  * to be a canonical "SHADOW" PDIR with the following properties:
   1166  1.93.2.2  jdolecek  *  - its recursive mapping points to itself
   1167  1.93.2.2  jdolecek  *  - per-cpu recursive mappings point to themselves on __x86_64__
   1168  1.93.2.2  jdolecek  *  - per-cpu L4 pages' kernel entries are expected to be in sync with
   1169  1.93.2.2  jdolecek  *    the shadow
   1170  1.93.2.2  jdolecek  */
   1171      1.70    cherry 
   1172      1.70    cherry void
   1173      1.70    cherry pmap_cpu_init_late(struct cpu_info *ci)
   1174      1.70    cherry {
   1175      1.70    cherry #if defined(PAE) || defined(__x86_64__)
   1176      1.70    cherry 	/*
   1177      1.70    cherry 	 * The BP has already its own PD page allocated during early
   1178      1.70    cherry 	 * MD startup.
   1179      1.70    cherry 	 */
   1180      1.70    cherry 
   1181      1.78    cherry #if defined(__x86_64__)
   1182      1.78    cherry 	/* Setup per-cpu normal_pdes */
   1183      1.78    cherry 	int i;
   1184      1.78    cherry 	extern pd_entry_t * const normal_pdes[];
   1185      1.78    cherry 	for (i = 0;i < PTP_LEVELS - 1;i++) {
   1186      1.78    cherry 		ci->ci_normal_pdes[i] = normal_pdes[i];
   1187      1.78    cherry 	}
   1188      1.78    cherry #endif /* __x86_64__ */
   1189      1.78    cherry 
   1190      1.70    cherry 	if (ci == &cpu_info_primary)
   1191      1.70    cherry 		return;
   1192      1.70    cherry 
   1193      1.70    cherry 	KASSERT(ci != NULL);
   1194      1.70    cherry 
   1195      1.70    cherry #if defined(PAE)
   1196      1.73    cherry 	cpu_alloc_l3_page(ci);
   1197      1.70    cherry 	KASSERT(ci->ci_pae_l3_pdirpa != 0);
   1198      1.70    cherry 
   1199      1.70    cherry 	/* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
   1200      1.73    cherry 	int i;
   1201      1.75    cherry 	for (i = 0 ; i < PDP_SIZE - 1; i++) {
   1202      1.73    cherry 		ci->ci_pae_l3_pdir[i] =
   1203      1.73    cherry 		    xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PG_V;
   1204      1.73    cherry 	}
   1205      1.70    cherry #endif /* PAE */
   1206      1.70    cherry 
   1207      1.70    cherry 	ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1208      1.70    cherry 	    UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
   1209      1.70    cherry 
   1210      1.70    cherry 	if (ci->ci_kpm_pdir == NULL) {
   1211      1.70    cherry 		panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
   1212  1.93.2.2  jdolecek 		    __func__, cpu_index(ci));
   1213      1.70    cherry 	}
   1214  1.93.2.2  jdolecek 	ci->ci_kpm_pdirpa = vtophys((vaddr_t)ci->ci_kpm_pdir);
   1215      1.70    cherry 	KASSERT(ci->ci_kpm_pdirpa != 0);
   1216      1.70    cherry 
   1217      1.70    cherry #if defined(__x86_64__)
   1218  1.93.2.2  jdolecek 	extern pt_entry_t xpmap_pg_nx;
   1219      1.70    cherry 
   1220  1.93.2.2  jdolecek 	/* Copy over the pmap_kernel() shadow L4 entries */
   1221      1.70    cherry 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
   1222      1.70    cherry 
   1223      1.70    cherry 	/* Recursive kernel mapping */
   1224  1.93.2.2  jdolecek 	ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa)
   1225  1.93.2.2  jdolecek 	    | PG_V | xpmap_pg_nx;
   1226      1.70    cherry #elif defined(PAE)
   1227  1.93.2.2  jdolecek 	/* Copy over the pmap_kernel() shadow L2 entries */
   1228  1.93.2.2  jdolecek 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN,
   1229  1.93.2.2  jdolecek 	    nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
   1230  1.93.2.2  jdolecek #endif
   1231      1.70    cherry 
   1232  1.93.2.2  jdolecek 	/* Xen wants a RO pdir. */
   1233      1.83    bouyer 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
   1234      1.83    bouyer 	    (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
   1235      1.83    bouyer 	pmap_update(pmap_kernel());
   1236      1.70    cherry #if defined(PAE)
   1237  1.93.2.2  jdolecek 	/*
   1238  1.93.2.2  jdolecek 	 * Initialize L3 entry 3. This mapping is shared across all pmaps and is
   1239  1.93.2.2  jdolecek 	 * static, ie: loading a new pmap will not update this entry.
   1240      1.70    cherry 	 */
   1241  1.93.2.2  jdolecek 	ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_V;
   1242      1.70    cherry 
   1243  1.93.2.2  jdolecek 	/* Xen wants a RO L3. */
   1244      1.83    bouyer 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
   1245      1.83    bouyer 	    (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
   1246      1.83    bouyer 	pmap_update(pmap_kernel());
   1247      1.70    cherry 
   1248      1.70    cherry 	xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
   1249      1.70    cherry 
   1250  1.93.2.2  jdolecek #elif defined(__x86_64__)
   1251      1.70    cherry 	xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
   1252      1.78    cherry #endif /* PAE , __x86_64__ */
   1253      1.70    cherry #endif /* defined(PAE) || defined(__x86_64__) */
   1254      1.70    cherry }
   1255      1.70    cherry 
   1256      1.61    cherry /*
   1257      1.61    cherry  * Notify all other cpus to halt.
   1258      1.61    cherry  */
   1259      1.61    cherry 
   1260      1.61    cherry void
   1261      1.61    cherry cpu_broadcast_halt(void)
   1262      1.61    cherry {
   1263      1.61    cherry 	xen_broadcast_ipi(XEN_IPI_HALT);
   1264      1.61    cherry }
   1265      1.61    cherry 
   1266      1.61    cherry /*
   1267      1.61    cherry  * Send a dummy ipi to a cpu.
   1268      1.61    cherry  */
   1269      1.61    cherry 
   1270      1.61    cherry void
   1271      1.61    cherry cpu_kick(struct cpu_info *ci)
   1272      1.61    cherry {
   1273      1.64  dholland 	(void)xen_send_ipi(ci, XEN_IPI_KICK);
   1274      1.61    cherry }
   1275